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Abstract
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nomically subtle roles of geographical distance in regional price dispersions. In this paper, we
challenge this empirical “death of distance” as a primary source of LOP violations investigating
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simple structural model to explain the observed product-delivery patterns and argue that ignoring
the underlying delivery choice results in a serious under-bias toward inferences on distance effects
on regional price dispersions due to sample selection. Estimating a sample-selection model, on
which theoretical restrictions of our structural model are imposed, with data of several agricultural
products, we find quite large estimates of the distance elasticity of price differential compared with
conventional estimates. This paper, hence, provides evidence that conventional estimates of the
distance elasticity could be heavily biased downwards and spuriously underestimate the role trans-
portation costs play in regional price dispersions and LOP violations.
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1. Introduction

Does an identical good share an identical price across geographically distinct places? Many

of recent papers approach this fundamental question of the law of one price (LOP) exploiting micro-

level information of retail prices observed across retail stores internationally as well as domestically.

Since the seminal works by Parsley and Wei (1996) and Engel and Rogers (1996), one of the most

robust findings within the literature of the LOP is a statistically significant effect of geographical

distance on statistical properties of cross-regional retail price differentials within a variety of gravity-

type regressions. Given economic rationale provided by iceberg-type transportation costs, this

robust finding suggests that transportation costs play a statistically significant role in the observed

violations of the absolute LOP hindering cross-regional arbitrage of products.

The size of the distance effect that is commonly estimated in this literature, nevertheless,

seems economically subtle. Regressing the absolute value of the difference in the log of the retail

price of an identical product between two retail stores in two distinct regions on the log of the

corresponding geographical distance, many of past studies infer less than about 3 % elasticity of

price differential with respect to distance.1 This means that even when the geographical distance

of two distinct cities becomes double, the price differential of a product between the cities increases

at best only 3 % on average. Since the standard deviation of the absolute value of the log price

differential is typically reported around 20 % in this literature, we need the standard deviation of

the log of distance of 6.66 (=0.20/0.03) if we want to explain the observed degree of regional price

dispersions only by geographical distance. The required standard deviation of the log of distance,

however, is too large to be consistent with the actual degree of geographical scattering of cities.2

This observation naturally casts doubt on transportation costs, which are approximately measured

by distance, as a main economic source of regional price dispersions. In this sense, geographical

distance is empirically “dead” as a prime suspect for the commonly observed violations of the LOP.

What is further puzzling is the fact that past empirical studies of international trade unam-

biguously recognize that geographical distance plays economically crucial roles in determinations of

bilateral trade directions and volumes. For example, Anderson and van Wincoop (2003) estimate a

gravity model of bilateral trade volumes controlling for multilateral trade resistance and infer the

distance elasticity of transportation costs to be around 20 % conditional on a calibrated elasticity

of substitution equal to 5. Estimating a gravity model using bilateral export volume data across

183 countries, Helpman et al. (2008) find that the distance elasticity of bilateral export volumes

is about 80 % once they take into account firms’ selections into bilateral exports as well as firms’

1Among a series of past studies, for example, Broda and Weinstein (2008) observe the 1.2 % distance elasticity

of the absolute log price differentials within barcode-level scanner data of retail prices across Canadian and the U.S.

cities. Engel et al.(2005) find the distance elasticity of 0.32 % with pooled annual panel data distributed by Economic

Intelligence Unit (EIU) that covers retail prices of 100 consumer goods surveyed in 17 Canadian and the U.S. cities.

Ceglowski (2003) reports 1.6-2.0 % estimates of the distance elasticities of 45 different products across 25 Canadian

cities. Baba (2007) scrutinizes Japanese and Korean retail price survey data and estimates less than about 3 % of

the distance elasticity after taking into account a border dummy between the two countries.
2For instance, the standard deviation of the log of distance between two prefectural capital cities in Japan is 0.803

over all the 1081 city-pairs from 47 prefectures.
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heterogeneity in export volumes.3 Interestingly, their estimate suggests a 20 % distance elasticity

of transportation costs once we calibrate the price elasticity of demand equal to 5 as in Ander-

son and van Wincoop (2003). Since these studies also exploit iceberg-type transportation costs

to characterize their gravity equations, the huge discrepancy in terms of the estimated size of the

distance elasticity of transportation costs between the above two research agenda — the absolute

LOP and the gravity model of international trade — is indeed an empirical challenge students of

international economics need to explore profoundly.

In this paper, we tackle this empirical “death of distance” in regional price dispersions. Our

contributions are threefold. First, this paper investigates a unique daily data set of wholesale prices

of agricultural products in Japan.4 We follow the spirit of Parsley and Wei (1996) using disaggregate

price data within a country to avoid any potential effects of cross-country differences in tax and

currency on our inference on transportation costs. Scrutinizing information of wholesale prices helps

us make our estimate of transportation costs immune against influences of local distributional costs

as well as local retailers’ pricing strategies such as temporary sales. More importantly, there are two

outstanding characteristics of this data set: (i) we can identify the wholesale prices of an identical

product at both producing and consuming regions and (ii) we can also grasp daily delivery patterns

of an identical product from the former region to the latter. The first characteristic is essential

for identifying transportation costs because, as discussed by Anderson and van Wincoop (2004),

only when the source region of a product is identified, correct information of transportation costs

could be extracted from relative prices at consuming regions to the corresponding source region.

The main difficulty past studies face is in the fact that a retail price survey at retail stores rarely

provides information of the source regions of a product and the market prices prevailed in these

regions. Our data set, on the other hand, shows us not only in which regions in Japan a variety

of fruits and vegetables are produced but also at what wholesale prices these products are sold in

their originated regions.5

Identification of the source region of a product, however, immediately leads to another fun-

damental question: how far a product is delivered from the source region? The second outstanding

aspect of our data set empirically shows us the answer to this question. As the second contribution

of this paper, we build a model to explain the observed patterns of product delivery and claim theo-

retically that ignoring the underlying choice of delivery might result in a serious under-bias toward

our inference on the role of distance in regional price dispersions. To see this, suppose that trans-

portation costs are unobservable and comprise two components: the one increasing proportionally

3This size of distance effects on export volumes is common in the literature of empirical trade. For example, in

their meta analysis based on 1,051 past estimates of distance effects, Disdier and Head (2008) report the average of

0.893.
4This is not the first paper that intensively scrutinizes price data of agricultural products in the literature of

the LOP and PPP. Midrigan (2007) employs prices of agricultural products sold in open-air markets in European

countries to test theoretical implications of his state-dependint pricing model with trade costs.
5In a recent paper, Inanc and Zachariadis (2010) identify source regions of products reported in the Eurostat

survey in several indirect ways and find around 10 % distance elasticity of price differentials in the 1990 survey. This

could be indirect evidence that identification of the origin of a product is essential for inference of transportation

costs.
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in geographical distance and the other unobservable. A rise in transportation costs increases the

price of the product at a consuming region relative to those of other substitutable products and

depresses the corresponding local demand for the product. Given the shape of the demand func-

tion, this fall in the local product demand then tends to lower the profitability and, as a result, the

probability of delivery to the consuming region from the producing region. Since the price of the

product at a consuming region is observed only when a product delivery indeed occurs, an inference

drawn only from information of price differentials could be subject to a sample-selection bias due

to an incidental truncation. In particular, the direction of the potential bias should be downward

because a rise in the unobservable component of transportation costs in general increases a price

differential but deteriorates a probability of delivery at the same time.

In this paper, following Melitz (2003) and Helpman et al. (2008), we build a simple struc-

tural model of cross-regional product-delivery in which cross-regional price differentials and delivery

patterns are jointly determined by the same structure of transportation costs. We then show that

the degree of a sample-selection bias depends critically on two structural parameters of the model:

the elasticity of transportation costs to distance and that of demand to price. Our theoretical anal-

ysis implies that drawing a correct inference on transportation costs requires us to estimate these

two elasticities jointly. To do so, we propose a structural sample-selection model, which consists

of the price differential and sample-selection equations, imposing nonlinear theoretical restrictions

on the joint probability distribution of data. We develop a full information maximum likelihood

(FIML) estimator incorporating instrumental variables for the empirical model. Our Monte Carlo

experiments based on the model not only show us that, given the price elasticity of demand, the

degree of sample selection depends positively on the distance elasticity of transportation costs but

also uncover two crucial facts: (i) the standard exercise of regressing price differentials on the cor-

responding distances provides a heavily downwards-biased estimate of the true distance elasticity

of transportation costs and (ii) our FIML estimator successfully identifies the distance elasticity.

Finally, as the third contribution of this paper, we estimate our sample-selection model

by FIML using the data of wholesale prices of several selected vegetables. The estimated sample-

selection model passes two diagnosis criteria in that it does a fairly good job in replicating the actual

delivery patterns of these vegetables as well as the actual data association of price differentials with

distances. We find large estimates of the distance elasticity of transportation costs across all the

vegetables relative to the existing estimates in the LOP literature: all of them are more than 20

% and their average is about 24 %. Given the 24 % distance elasticity of transportation costs, we

need only the standard deviation of the log of distance of 0.833 (=0.2/0.24) if we want to explain

only by distance the whole part of the commonly observed standard deviation of the log of price

differential of 20 %. The estimate of this paper, therefore, implies an economically critical role

of transportation costs in regional price dispersions. It is worth noting that this large distance

elasticity does not necessarily stem from a particular characteristic of the product category of

agricultural products. To prove this, we also conduct the OLS regression exercise without respecting

the selection mechanism using our wholesale price data. Interestingly, we obtain the conventional

range of the OLS estimate of the distance elasticity about 3 %. This provides evidence that

conventional estimates of the distance elasticity could be heavily biased downwards and spuriously
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underestimate the role transportation costs play in regional price dispersions and LOP violations.6

The organization of the rest of this paper is as follows. In the next section, we introduce

our model and derive our FIML estimator based on the corresponding sample-selection model.

In section 3, we conduct Monte Carlo experiments to check the validity of the FIML estimator.

Section 4 describes our data set. After reporting the empirical results in section 5, we conclude in

section 6.

2. Model and empirical framework

2.1. A model of cross-regional product delivery

The empirical analysis of this paper relies on a model of monopolistic competitive firms as

in Melitz (2003) and Helpman et al. (2008). In this model, a country consists of I distinct regions

indexed by i = 1, 2, · · · , I. In each region i, the representative household consumes a continuum

of agricultural products indexed by l that takes a value between the closed unit interval, i.e.,

l ∈ [0, 1]. We assume that the representative household in each region purchases an identical set

of agricultural products at the regional wholesale market and raises its utility with a Dixit-Stigliz

type constant elastic function ui = [
∫ 1
0 xi(l)

αdl]1/α with 0 < α < 1, where xi(l) is the consumption

level of product l in region i. This utility function implies that the elasticity of substitution across

products is ϵ = 1/(1 − α) > 1, which is assumed to be common across all regions. Region i’s

demand function for product l under the average price of product l, pi(l), is xi(l) = [pi(l)/pi]
−ϵ xi

where pi = [
∫ 1
0 pi(l)

1−ϵdl]1/(1−ϵ) represents the consumer price index (CPI) aggregated over all

agricultural products in region i and xi ≡ ui indicates the indirect utility represented as the

aggregate consumption level of agricultural products in the region i.

We assume that each product l can be produced in all regions with an identical production

technology discussed below. Producing region j of product l, then, delivers its product to the

wholesale markets in the same region j as well as distinct consuming regions i ̸= j only if the delivery

is profitable. Let xi(j, l) denote the demand of region i for product l produced in and delivered from

region j. The representative household in region i then earns its utility from consuming product l

with the following constant elastic utility function

xi(l) =

[∫
j∈Bi(l)

{δi(j, l)xi(j, l)}αdj

]1/α

, 0 < α < 1,

where Bi(l) is the set of the producing regions that deliver product l to region i. This utility function

specific to product l exhibits that the representative household in region i recognizes product l,

if it is produced in different source regions, as different products: the substitution of product l

across distinct source regions is imperfect with the constant elasticity ϵ. Term δi(j, l) reflects the

6In other words, the conventional estimator suffers from a low power problem: it cannot distinguish between the

null hypotheses of high and low transportation costs.
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household’s biased preference on different producing regions: the greater the term δi(j, l) is, the

more the household in region i prefers product l from source region j relative to those from other

source regions, ceteris paribus. The above utility function then derives region i’s demand function

for product l produced in region j under the price pi(j, l)

xi(j, l) =

[
pi(j, l)

pi(l)

]−ϵ

δi(j, l)
ϵ−1xi(l), (1)

where pi(l) = [
∫
j∈Bi(l)

{δi(j, l)pi(j, l)}1−ϵdj]1/(1−ϵ) is the the aggregate price level of product l in

region i.

A producer in region j is a monopolistically competitive producer at the wholesale markets

in the same region as well as the other regions to deliver. As specified by Helpman et al. (2008),

a producer in region j yields a unit of an agricultural product paying costs minimizing a bundle of

factor inputs. The marginal cost of producing product l is denoted by cja(l), where a(l) measures

the number of bundles of factor inputs used per unit output of product l and cj measures the unit

cost of this bundle of factor inputs. Notice that a(l) is product-specific, while cj is region-specific.

This means that the efficient combination of inputs for producing a product is common across

regions, while factor costs are different across regions.

At the wholesale market in region j, the producer of product l, who faces the demand

function (1), maximizes profits by charging markup price pj(j, l) = cja(l)/α. This means that a

producer of a region does not need to bear any transportation costs when selling its product at

the wholesale market in the same region. On the other hand, if the same producer seeks to sell its

product at the wholesale market in region i ̸= j, two types of delivery costs should be borne by the

producer: a fixed cost of serving at the market in region i, denoted by cjfij , and an “iceberg”-type

transportation cost, denoted by τij . Hence, as in Helpman et al. (2008), we assume that fjj = 0

for any j and fij > 0 for i ̸= j, and τjj = 1 for any j and τij > 1 for i ̸= j. The optimal price to

set, pi(j, l), then is

pi(j, l) = τij
cja(l)

α
. (2)

In this case, the operating profits of delivering product l to region i is

πij(l) = (1− α)

[
τijcj
αpi(l)

]1−ϵ

θi(j, l)
ϵ−1pi(l)xi(l)− cjfij ,

where θi(j, l) is the ratio of the productivity level to the producing regional bias a(l)/δi(j, l). If the

producer in region j sells its product l at the regional wholesale market, monopolistic profit πjj(l)

is always positive because fjj = 0 and τjj = 1. However, delivering the same product to another

consuming region i is profitable only if θi(j, l) is smaller than a threshold θ̄ij(l), where θ̄ij(l) is

defined by the zero profit condition πij(l) = 0, or equivalently,

(1− α)

[
τijcj
αpi(l)

]1−ϵ

θ̄ij(l)
1−ϵpi(l)xi(l) = cjfij . (3)
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Let Tij(l) denote an indicator function that takes the value of one if there is a delivery of product l

from source region j to consuming region i, and the value of zero if there is no delivery. The above

determination of the threshold (3), then, implies

Tij(l) =

{
1 if θi(j, l) < θ̄ij(l),

0 otherwise.
(4)

Therefore, equations (3) and (4) describe the decision mechanism of a profitable delivery.

Optimal price (2) implies that a price differential of an identical product between source

and consuming regions provides a precise identification of transportation cost τij . To see this, let

qij(l) denote the log of the price differential of product l between producing and consuming regions

j and i: qij(l) ≡ ln pi(j, l)− ln pj(j, l). Then, optimal price (2) and delivery decision mechanism (4)

together yield the price differential equation

qij(l) = ln τij , only if Tij(l) = 1. (5)

Price differential equation (5) has two important empirical implications. First, transportation

cost τij can be measured from the corresponding price differential only when we can identify the

prices in the producing and consuming regions. This is exactly the argument of Anderson and

van Wincoop (2004) against the conventional approach to measuring transportation costs in the

literature of regional and cross-country price dispersions. The second implication, however, says

that identifying producing and consuming regions is not enough for estimating transportation costs

precisely. Equation (5) shows that there is an incidental truncation or sample section: we can

observe the price differential of product l between producing and consuming regions only when the

product is indeed delivered from the former region to the latter. Hence, the sample is non-randomly

selected by the selection mechanism of (3) and (4). This selection mechanism indeed depends on

transportation cost τij . Therefore, transportation cost τij in equation (5) could be inconsistently

estimated unless we can take into account sample-selection mechanism (4) explicitly.

An important caveat of the above identification of transportation costs stems from product

arbitrage. With product arbitrage, price differential (5) might not be a sufficient statistic of the

underlying transportation cost because the observed equilibrium price in a consuming region can

deviate from the optimal price (2). There could be three possibilities of product arbitrage in this

model. The first possibility is arbitrage of product l across source regions j = 1, · · · , J that occurs

within each consuming region i. However, because the demand function (1) implies an imperfect

degree of product substitution with a constant elasticity ϵ, the arbitrage of product l across different

producing regions is also imperfect in each consuming region i. The second possibility is the

case that product l cropping in source region j is delivered to consuming region i once and then

transferred to another consuming region k ̸= i that is not delivered from the original source region

j: j ∈ Bi(l) but j /∈ Bk(l). There is no profitable product transfer if the inequality τkiτij ≥ τkj
holds.7 Finally the third possibility is the case that product l produced in source region j are

delivered to two consuming regions i and k and the arbitrage of product l occurs between delivered

7This inequality is the direct result of the following two conditions. Notice that the condition for source region j
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consuming regions i and k: j ∈ Bi(l) and j ∈ Bk(l). Since product l from source region j is

perfectly substitutable between two delivered consuming regions i and k, the standard no-arbitrage

band 1/τki ≤ pi(j, l)/pk(j, l) = τij/τkj ≤ τki can be applicable: if this condition holds, the product

arbitrage in the third type does not occurs between delivered consuming regions i and k.

In this paper, we do not impose the no-arbitrage conditions of the second and third types on

our data. However, as we discuss more details in section 5, the amount of product transfers across

wholesale markets of agricultural products is quite small relative to the total amount of wholesale

transactions in Japan. We interpret this fact as almost no opportunity of product arbitrage in

equilibrium wholesale prices in our data set. We simply control for any possible effects of product

arbitrage on price differentials by adding an i.i.d. zero-mean random error to the price differential

equation (5).8

2.2. The empirical framework

Given the structural model, we now discuss our empirical framework for estimating trans-

portation cost τij . Following Helpman et al.(2008), we specify transportation cost τij parametri-

cally by Dγ
ij exp(µ + uij) where Dij represents the symmetric distance between regions i and j,

and uij ∼ N(0, σ2
u) is an i.i.d. unobserved region-pair specific element of the transportation cost.

Positive constant µ > 0 makes it possible that the transportation cost always takes a value greater

than 1 for all (i, j) pairs. Price differential (5), then, is

qij(l) = µ+ γdij + uij , only if Tij(l) = 1. (6)

The delivery choice of product l from region j to region i is determined by threshold θ̄ij(l) defined by

zero profit condition (3). Define a latent Zij(l) ≡ (1 − α)[τijcj/αpi(l)]
1−ϵθi(j, l)

1−ϵpi(l)xi(l)/cjfij .

Product l, then, is delivered from region j to region i only if Zij(l) > 1. We assume that the fixed

cost of delivery, fij , is stochastic due to an i.i.d. unobserved regional-pair specific element vij . Just

as in Helpman et al. (2008), we exploit a parametric specification of fij : fij ≡ exp(λj + λi − vij),

where vij ∼ i.i.d.N(0, σ2
v) and is uncorrelated with uij . The log of Zij(l), zij(l), is

zij(l) = β − (ϵ− 1)γdij + ϵ ln pi(l) + lnxi(l) + ξj + λi + ωl − ϱijl + ηij , (7)

where β ≡ ln(1−α)+(ϵ−1) lnα+(1−ϵ)µ, ξj ≡ −ϵ ln cj−λj , ωl ≡ (1−ϵ) ln a(l), ϱijl ≡ (1−ϵ) ln δi(j, l),

not to deliver its product l to consuming region k is (1−α)(τkjcj/αpk)
1−ϵθk(j, l)

1−ϵpkxk < cjfkj . Also the condition

for source region j takes an option in which it delivers product l to region i and subsequently transfers the product to

region k is (1−α)(τkiτijcj/αpk)
1−ϵθk(j, l)

1−ϵpkxk ≥ cjfkj , when we assume the fixed costs are identical between the

former and latter delivery options. The two conditions turn out to be τkiτij < τkj , and, hence, no profitable product

transfer occurs if the inequality τkiτij ≥ τkj holds. As imposed by Bernard et al.(2003) on their Ricardian model, this

well-known “triangular inequality” means that the transportation cost of delivering the product from source region j

to consuming region i and then transferring the product further to consuming region k is more expensive than that

of delivering the same product from source region j to consuming region k directly.
8Atkeson and Burstein (2008) also discuss a possibility of international product arbitrage in their two-country

general equilibrium model with imperfect competition and trade costs. They report no role of product arbitrage in

their quantitative simulation results. Therefore, our data set shares the same characteristic on product arbitrage as

in their simulation exercise.
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and ηij ≡ (1 − ϵ)uij + vij ∼ i.i.d.N(0, (1 − ϵ)2σ2
u + σ2

v). Selection equation (7) then implies that

Tij(l) = 1 only if zij(l) > 0.

Price differential equation (6) and selection equation (7) jointly reveal two critical aspects

when identifying the distance elasticity of transportation costs, γ. First, estimating γ respecting

only price differential equation (6) might lead to an under-biased inference. To see this, taking the

conditional expectation of price differential equation (6) on Tij(l) = 1 and other observable yields

E[qij(l)|., Tij(l) = 1] = µ + γdij + E[uij |., Tij(l) = 1] where . represents other observable. Notice

that the term E[uij |., Tij(l) = 1] is related to the conditional expectation η̄ij ≡ E[ηij |., Tij(l) = 1]

by E[uij |., Tij(l) = 1] = ρσu
ση
η̄ij , where ρ is the correlation coefficient between uij and ηij and

ση = (1 − ϵ)2σ2
u + σ2

v . A consistent estimate of η̄ij is obtained by the inverse Mills ratio ˆ̄ηij(l) =

ϕ[ẑij(l)]/Φ[ẑij(l)] where ϕ(.) and Φ(.) are the standard normal density and cumulative distribution

functions, respectively. Therefore, we can rewrite price differential equation (6) as

qij(l) = µ+ γdij + βuη ˆ̄ηij(l) + eij(l), (8)

where βuη = ρσu
ση
, and eij(l) is an i.i.d. error term satisfying E[eij(l)|., Tij(l) = 1] = 0. Our model

implies that given ϵ > 1, the error term in the selection equation, ηij , could be correlated negatively

with that in the price differential equation, uij : ρ < 0.9 Moreover, the inverse Mills ratio ˆ̄ηij(l) is

increasing in distance because ˆ̄ηij(l) is a decreasing function of the predicted latent variable ẑij(l)

that then depends negatively on distance through selection equation (7). Hence if we ignore the

third term of the RHS of equation (8) when estimating distance elasticity γ only through the price

differential equation, the resulting estimate could be biased downwards.

Second, the size of the under bias depends crucially on the price elasticity of demand, ϵ,

This is because, given the optimal markup price set in a consuming region, selection equation (7)

implies that a larger price elasticity leads to a smaller demand for the corresponding product sold

in the consuming region and, as a result, lesser profitability of the delivery of the product from the

source to the consuming regions. Therefore, the under bias due to the sample selection becomes

worse with a larger price elasticity of demand. Moreover, the effect of distance on the delivery

choice depends on the distance elasticity of transportation costs as well as the price elasticity of

demand in a consuming region in a nonlinear way. This is because given the two elasticities, longer

distance of delivery raises the markup price in the consumer region, reduces the regional demand

for the product, and, as a result, depresses the profitability of delivery from the producing region.

The sensitivity of the choice of delivery with respect to distance is then nonlinearly associated with

the two elasticities: if the price elasticity of demand is small, the marginal effect of the distance

elasticity of transportation costs on the sensitivity of the delivery choice against distance, i.e.,

(ϵ− 1)dij , is small, and vice versa.

The above empirical implications of our model require that to identify the distance elasticity

correctly, we jointly estimate the distance elasticity of transportation costs and the price elasticity

of demand within a sample-selection model that consists of equations (6) and (7). For this purpose,

9Because ηij = (1− ϵ)uij + vij and uij and vij are orthogonal, ρ = (1−ϵ)σu√
(1−ϵ)2σ2

u+σ2
v

< 0, given ϵ > 1.
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we conduct a full information maximum likelihood (FIML) estimation of a sample-selection model

on which we impose nonlinear constraints. A concern when implementing the FIML estimation,

however, is that the disturbance of the selection equation, ηij , might be correlated with endogenous

variables pi(l) and xi(l) in the RHS of the selection equation. If this is the case, our point estimates

of the structural parameters will be biased due to the endogeneity. To take into account the

potential endogeneity bias, we further incorporate instrumental variables (IVs) into the FIML

estimation as follows.10 Let yi denote a bivariate vector that contains ln pi(l) and lnxi(l) as its

elements: yi ≡ [ln pi(l) lnxi(l)]
′. We assume that vector yi is linearly related to vector of exogenous

IVs, si, up to i.i.d. 2× 1 mean zero random vector ei:

yi = Γsi + ei. (9)

Endogeneity bias is the case if the error of the selection equation (7), ηij , is correlated with the

errors in equation (9), ei. More specifically, we assume that the 4×1 random vector of disturbances,

[e′i uij ηij ]
′, is stochastically governed by a joint normal density with the mean of zero and the 4×4

symmetric positive-definite variance-covariance matrix Ω

Ω =

Ω11 φ′
u φ′

η

φu σ2
u σuη

φη σuη σ2
η

 , (10)

where Ω11 is an 2 × 2 matrix, φu and φη are 1 × 2 row vectors, respectively. Non-zero vector φη

characterizes the covariances between the disturbances of selection equation (7) and instrument

equation (9) that would lead to potential endogeneity bias. Through our analysis, we presume that

there is no correlation between the disturbances of price differential equation (6) and instrument

equation (9): φu = [0 0].11

10Maximum likelihood methods of limited dependent variable models with endogenous explanatory variables are

proposed by, for example, Newey (1987), Rivers and Vuong (1988), and Vella and Verbeek (1999) among past studies.
11To understand potential endogeneity bias in our inference of γ, observe as in appendix A that the normality of

the disturbances implies that the disturbance of the selection equation ηij is given as a linear projection onto the

disturbance of the price differential equation and those of the instrument equation, uij and ei

ηij = φηΩ
−1
11 ei + ρσ−1

u uij + η̃ij ,

where η̃ij is an i.i.d. disturbance with the mean of zero and the variance of 1 − φηΩ
−1
11 φ

′
η − ρ2 and correlated with

neither of uij or ei. The selection equation then can be rewritten as

zij(l) = β − (ϵ− 1)γdij + [ϵ 1]yi + ξj + λi + ωl − ϱijl + φηΩ
−1
11 (yi − Γsi) + ρσ−1

u uij + η̃ij .

Notice that if φη = [0 0], the above selection equation turns back to the standard one (7).

Suppose then that we mistakenly ignore the true correlation between ηij and ei, i.e., φη = [0 0]. There are two

ways in which this ignorance affects estimates of structural parameters. First, since the true coefficient on endogenous

vector yi is [ϵ 1] + φηΩ
−1
11 in the above selection equation, the estimate of parameter vector [ϵ 1] could be biased

and so could be the estimate of γ. Second, given the true variance of η̃ij , 1 − φηΩ
−1
11 φ

′
η − ρ2, we overestimate ρ2

because the quadratic form φηΩ
−1
11 φ

′
η always takes a strictly positive value for the true non-zero φη due to the positive

definiteness of covariance matrix Ω11. This means that our estimate of a negative correlation between ηij and uij

could be biased upwards and so could be the estimated degree of the sample selection bias. This upper biased degree

of the sample selection then might lead to an upper biased estimate of γ.
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Appendix A shows in detail that our structural sample-selection model consisting of equa-

tions (6), (7), (9), and (10) provides the log likelihood function∑
i,j

(1− Tij(l)) ln [Φ (λij)] +
∑
i,j

Tij(l) ln [Φ (κij)]

+
∑
i,j

Tij(l) ln [ϕ (ωij)]−
∑
i,j

Tij(l) lnσu +
∑
i,j

ln [f(yi|si)] , (11)

where

κij =
β − (ϵ− 1)γdij + [ϵ 1]yi + bsij + φηΩ

−1
11 (yi − Γsi) + ρσ−1

u (qij − µ− γdij − bpij)

(1− φηΩ
−1
11 φ

′
η − ρ2)

1
2

,

ϖij =
qij − µ− γdij − bpij

σu
,

λij =
β − (ϵ− 1)γdij + [ϵ 1]yi + bsij + φηΩ

−1
11 (yi − Γsi)

(1− φηΩ
−1
11 φ

′
η)

1
2

,

f(yi|si) = (2π)−1|Ω11|−1/2 exp

{
−1

2
(yi − Γsi)

′Ω−1
11 (yi − Γsi)

}
,

Here, constant bpij and bsij control for regional fixed effects in price differential and selection equations

(6) and (7), respectively, and ρ is the correlation coefficient between uij and ηij : ρ = (1−ϵ)σu.
12 We

also normalize the selection equation (7) setting the standard deviation of its error term, ση, equal

to 1.13 To maximize the log likelihood function (11) conditional on the observations of the delivery

index {Tij(l)}, the price differential {qij(l)}Tij(l)=1, the log of distance {dij}, the average price and

aggregate transaction of product l in consuming regions {pi(l)} and {xi(l)}, and instruments {si},
we take a two-step approach for the computational purpose. In the first step, we regress endogenous

variable vector yi on IV vector si by OLS and keep the estimates of Γ and Ω11. In the second step,

we then insert the OLS estimates of Γ and Ω11 into the log likelihood function (11) and maximize

the resulting log likelihood function with respect to the rest of the parameters.

3. Monte Carlo experiments with a linear economy

In this section, we conduct Monte Carlo experiments based on our model in the last section

to understand the following two questions: (i) what bias does the conventional regression exercise

without identifying producing regions and ignoring the sample-selection mechanism introduce into

our inference on the distance elasticity γ, and (ii) how much can our FIML estimator correct the

bias successfully. To implement the experiments, we assign hypothetical values to the structural

parameters of our model as follows.

12We also include into price differential and selection equations monthly dummies to control for seasonality.
13This standard normalization in a sample-selection model makes the correlation between uij and ηij equal to

(1− ϵ)σu. During estimation, we further impose a restriction that the correlation coefficient (1− ϵ)σu is always less

than or equal to 1 in the absolute value.
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Consider an economy that is geographically separated into 47 regions. Each region is indexed

by an integer between 1 and 47, respectively.14 The distance between regions i and j, Dij , is equal to

100|i− j| with the minimum distance of 100 and the maximum of 4600. Each region yields product

l under productivity level a(l) that is set equal to 1.00. The parameter of demand function (1), α,

is common across the regions and equal to 0.75. This number of α means that the price elasticity of

demand is 4.00 and the wholesale price is 33.33 % marked up over the corresponding marginal cost.

All the producing regions share the same factor cost cj of 0.55. Each region is also characterized by

the aggregate price and transaction, pi(l) and xi(l), respectively, both of which we set to 20.00. For

simplicity, we ignore the cross-regional variations in the productivity-regional bias ratio θi(j, l) by

setting δi(j, l) = 1.00 for all pairs of regions i and j. The fixed cost fij = exp(λi+λj−vij) is specified

as follows. We calibrate the sum of the producing and consuming regional fixed effects, λi + λj , so

that, when γ = 0.00, the probability of product delivery from source to consuming regions is always

equal to 0.50. The resulting fixed effect term λi + λj then is (1− α)αϵ−1c−ϵ
j pϵixi for all (i, j) pairs.

The Gaussian random component in the fixed cost, vij , has the standard deviation of σv = 0.30.

We set the constant term of the transportation cost µ to 1.50 and allow for idiosyncratic random

variations in the transportation cost setting the standard deviations of the random component

of the transportation cost, σu, to 0.30. Finally, in our experiments, we admit no possibility of

endogeneity bias simply setting φη = [0 0].

In our Monte Carlo experiments, we first draw 1000 sets of Gaussian random variables

uij and vij independently from their distributions. We then calculate price differential qij(l) and

latent variable zij(l) following equations (6) and (7) under one of the three hypothetical values of

γ, 0.00, 0.15, and 0.50. In each Monte Carlo draw with each true value of γ, we then implement

four different estimations of γ. The first one is the simple OLS regression of price differential qij(l)

on the log of the distance ln dij using the whole synthetic samples regardless of Tij = 0 or 1. By

construction, this OLS estimator, denoted by γ̂whole, is consistent and, hence, should be distributed

around the hypothetical true value. The second one is the OLS regression of the price differential

qij(l) on the log of the distance ln dij using only the samples that are selected with Tij(l) = 1. This

second OLS estimator, denoted by γ̂OLS, suffers from sample-selection bias. Therefore, we expect

to observe that the distribution of γ̂OLS is biased against the true value. The third estimation

is with the FIML estimator we introduce in section 3. This estimator, denoted by γ̂FIML, should

correct potential bias due to sample selection. Finally, to explain the fourth estimator, consider

the price differential between two consuming regions without identifying producing regions, i.e.,

ln p̃i(l)− ln p̃k(l) for any two consuming regions i and k, where p̃i(l) denotes the price of product l

in consuming region i. The OLS estimator conventional in the literature of the absolute LOP, which

is denoted by γ̂conv, then is constructed by regressing the absolute value of the price differential

between consuming regions i and k, | ln p̃i(l) − ln p̃k(l)|, on the log of the corresponding distance

ln dik.
15 Comparing the distribution of γ̂conv with that of γ̂whole, we can understand the degree of

14This assumption of the linear economy might be the most relevant for an island country with a long-narrow arc

shape like Japan that consists of 47 prefectures.
15For each Monte Carlo draw, the price of product l that is sampled in consuming region i, p̃i(l), is constructed

as follows. For each consuming region i, we obtain the set of the truncated prices that are delivered from producing

regions Si(l) = {pi(j, l)|j ∈ Bi(l)}. This set Si(l) includes the prices of product l that can be sampled as the
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bias the conventional regression exercise suffers from on the inference of γ.

We first observe how the size of γ affects delivery choice. The left, middle, and right

windows of Figure 1 depict the contour plots of the probabilities of delivery from producing regions

to consumption regions for the cases of γ = 0.50, 0.15, and 0.00, respectively. In each window,

the contour lines represent the combinations of the producing and consuming regions that have

an identical delivery probability. The left window shows that with the large distance elasticity of

γ = 0.50, the product delivery is profitable only locally. This is obvious from the fact that all contour

lines are parallel to the 45 degree line and the equiprobability bands, which are constructed by two

contour lines with the same probability, are very narrow and always include the 45 degree line.

This shape of the contour plot implies that the product delivery occurs only to consuming regions

neighboring source regions closely. The middle window then exhibits that the equiprobability bands

become much wider with the smaller distance elasticity of γ = 0.15. Hence, in this model, a larger

distance elasticity creates geographical clustering of products based on different source regions.

This is clearer if we set γ = 0.00. As displayed in the right window, the equiprobability lines with

the delivery probability of 0.50 are almost randomly placed over the whole window: the product

delivery occurs with the 50 % chance even between the producing and consuming regions that are

farthest apart each other.

Figure 2 depicts simulated price differentials against the corresponding logs of distances.

The first, second, and third rows of the figure are for the cases with γ = 0.50, 0.15, and 0.00,

respectively. In each row, the first column reports the simulated samples conditional on the choice

of delivery Tij = 1, while the second column plots the whole samples regardless of delivery choice

Tij = 0, or 1. The two windows in the first row reveal severe data truncation under γ = 0.50.

Although the whole samples of the simulated price differentials have a clear positive association

with the logs of distances, the underlying selection mechanism is so strong that the observed

samples are concentrated only on local areas surrounding source regions with short range delivery.

The association of the observed price differentials with the logs of distances then becomes quite

vague. The second and third rows prove that the sample selection turns out to be weaker when γ

becomes smaller to 0.15 and 0.00.

Figure 3 reports the densities of the four different estimators of γ that are nonparametrically

smoothed with the Epanechnikov kernel. The first row corresponds to the case with γ = 0.50; the

second the case with γ = 0.15; and the third the case with γ = 0.00. The first column plots the

smoothed densities of γ̂whole; the second γ̂OLS; the third γ̂FIML; and the fourth γ̂conv. The three

windows in the first column show that γ̂whole is consistent and distributed around the underlying

true value. The three windows in the second column, however, uncover that γ̂OLS is subject to

severe downward bias. On the one hand, as displayed in the first and second rows in the second

column, γ̂OLS is distributed far left from the corresponding true value when γ is set to either 0.50

or 0.15. On the other hand, as shown in the third row of the second column, γ̂OLS is consistent and

distributed around the true value if γ = 0.00. Therefore, a positive distance elasticity generates

representative price in consuming region i, p̃i(l). We uniformly draw 100 prices from this set Si(l) and take the

average over them to construct p̃i(l).
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the data truncation that causes the OLS estimates to be biased downwards. The three windows in

the third column clearly reveal that γ̂FIML is consistent and distributed around the underlying true

value. The most striking fact from the three windows in the fourth column is that γ̂conv performs

the worst among the other estimators. In the first and second rows for the cases of γ = 0.50 and

0.15, γ̂conv is distributed with the means of 0.019 and 0.003, respectively, and even far left from

the corresponding density of γ̂OLS. This is the evidence that the conventional regression exercise

without identifying producing regions suffers from the worst under-bias toward an inference on γ

among all the other estimators.

The Monte Carlo experiments of this section, therefore, confirm the necessity of identifying

producing regions and taking into account the sample-selection mechanism to draw a correct infer-

ence on the distance elasticity of transportation costs. The proposed FIML estimator can correctly

identify the true values of the distance elasticity with synthetic data generated from our structural

model.

4. Data and descriptive statistics

In this paper, we investigate a daily data set of the wholesale prices of agricultural products

in Japan — the Daily Wholesale Market Information of Fresh Vegetables and Fruits. The details

of our data set are provided in appendix B. This daily market survey covers the wholesale prices of

120 different fruits and vegetables. Each agricultural product is further categorized by different va-

rieties, sizes, grades, as well as producing prefectures. Hence, for example, the data set reports the

wholesale prices at 6 different wholesale markets of the “Dansyaku (Irish Cobbler equivalent)” vari-

ety of potato of size “L” with grade “Syu (excellent)” that was produced in “Hokkaido” prefecture

on September 7, 2007. This high degree of categorization is ideal for our purpose of approaching

the absolute LOP rigorously and inferring transportation costs precisely because the LOP requires

to identify identical goods as its theoretical premise at the first place. This daily market survey

has been recorded since 1976. In this paper, we scrutinize the 2007 survey that reports the market

transactions on 274 market opening days.

Price differential qij(l) is constructed by subtracting the wholesale price in producing pre-

fecture j, pj(j, l), from that in consuming prefecture i, pi(j, l).
16 We set Tij(l) = 1 for pair (i, j)

if the sample of qij(l) is available.17 The geographical distance between prefectural pair (i, j) is

approximated by that between the prefectural head offices placed in the prefectural capital cities.

Taking the log of the geographical distance yields variable dij . Our data set provides the daily

16For some products, we cannot find the wholesale prices in producing prefectures, although we can observe those

prices in consuming prefectures. In this case, because we cannot construct the price differentials between producing

and consuming prefectures, we drop the data of these product entries from our investigation.
17We also set Tjj(l) = 1 whenever we can observe pj(j, l). We consider this case that product l is delivered from

the producer to the wholesale market in the producing prefecture. We attach the minimum distance of 10.00km to

the samples with Tjj(l) = 1 to avoid taking the log of zero distance.
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aggregate transaction level of product l in consuming region i, xi(l).
18 We are unable to obtain

daily data of the aggregate price of product l in the consuming region i, pi(l). Hence, we use as

a proxy of pi(l) the monthly data of the retail price of product l. Moreover, to control for daily

variations in producing and consuming prefectures, we include into selection equation (7) daily

temperature data in both of the two prefectures as other explanatory variables. This inclusion of

the regional temperatures as determinants of delivery choice comes from our prior belief that the

temperatures in producing and consuming regions are important factors for productions of and

demands for agricultural products. Finally, as valid IVs, we use the monthly variations of the

numbers of regular employees and scheduled cash earnings in each prefecture besides the monthly

and consuming-region dummies as well.

We focus our exercise on eight selected vegetables: cabbage, carrot, Chinese cabbage (c-

cabbage, hereafter), lettuce, shiitake-mushroom (s-mushroom, hereafter), spinach, potato, and

welsh onion. Table 1 summarizes several descriptive statistics for these products. Panel (a) of

the table shows that each product is highly categorized by product varieties, sizes, and grades.

The number of distinct product entries is quite large; 1,207 for cabbage; 1,186 for carrot; 1,001 for

c-cabbage; 903 for lettuce; 1,423 for potato; 909 for s-mushroom; 551 for spinach; and 1,115 for

welsh onion.

For each product entry l, we count the number of delivery Tij(l) = 1 and non-delivery

Tij = 0 only for the dates on which the product entry is indeed traded at the wholesale market

in producing prefecture j. We identify product delivery Tij(l) = 1 if the data reports that the

source prefecture of product entry l sold in consuming region i is region j.19 The first row of panel

(b) of the table reports that the total number of both delivery and non-delivery cases all over the

product entries is almost beyond 180,000 for each vegetable. This is the number of observations

for our FIML estimation. Out of the total number of delivery and non-delivery cases, the number

of delivery cases is relatively small, as exhibited in the second row of panel (b): it is about 10,000

for each vegetable. Our data set, hence, indicates that product delivery is quite limited.20 The

third row of panel (b) shows that the mean distance from producing to consuming prefectures

over all delivery and non-delivery cases is about 6.00 in the logarithmic term (or 403.428 km) and

almost identical across the vegetables. The fourth row of panel (b), on the other hand, conveys

that the mean distance over delivery cases only is much shorter depending on vegetables with the

18Whenever the data set reports that xi(l) = 0, we interpolate xi(l) by a very small number of 0.00001 to avoid

taking the log of zero.
19A problem of this identification would be that we cannot eliminate the possibility of product transfer: a product

yielded in a source region is once delivered to a consuming region and then transferred to another consuming region.

If this is the dominant case in our data set, our inference on distance effects might be biased. However, according to

the Ministry of Agriculture, Forestry, and Fishery, the amount of product transfers across the wholesale markets is

very small relative to the total amount of wholesale transactions in Japan. For example, in 2007, the ratio of product

transfers to the total wholesale transactions is 4.8 % for cabbage; 6.5 % for carrot; 4.9 % for c-cabbage; 6.3 % for

lettuce; 6.0 % for potato; 3.3 % for s-mushroom; 4.1 % for spinach; and 3.9 % for welsh onion. This means that

almost all products in our data are directly delivered from source regions to consuming regions as final destinations.
20This observation echoes the findings of recent researches on the extent of firms’ participation to export. For

instance, Bernard and Jensen (2004) report that only a small portion of the U.S. manufacturing plants export their

products.
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minimum number of 2.691 (14.746km) for s-mushroom and the maximum of 4.339 (76.630km) for

potato. Product delivery, therefore, is localized and concentrated on local areas neighboring around

producing prefectures.

Figure 4 also confirms the locality of product delivery graphically. As in those of Figure 1,

each window of Figure 4 depicts as a contour plot the data frequencies of product delivery from

producing to consuming prefectures that are calculated over all product entries on all traded dates.

The horizontal axis represents producing prefectures and the vertical axis consuming prefectures.

The order of prefectures reflects the geographical positions of the prefectures from the most north

prefecture, Hokkaido, to the most south one, Okinawa. Therefore, two prefectures that are indexed

by close integers are indeed geographically close to each other. Then, the brighter the contour line is,

the higher the probability of product delivery is. The figure then uncovers three facts. First, each

vegetable has several dominant producing prefectures that are characterized by vertical contour

lines. This means that these main producing prefectures deliver their products to not only nearby

prefectures but also other remote prefectures. Second, the data frequencies of product delivery of

the main producing prefectures are decreasing in distance. Therefore, even dominant producers do

not deliver their products to consuming prefectures farthest away.21 Third, the contour lines for

other minor producing prefectures are concentrated on the 45 degree line. The product delivery of

these relatively minor producing prefectures, thus, is highly localized.

The locality of product delivery that Table 1 and Figure 4 unmask together brings us two

important implications. First, as observed by Broda and Weinstein (2008) in their barcode data of

retail products, agricultural products in our data set are segmented and clustered geographically.

Even in the same vegetable category, products that are sold in two distinct prefectures far away

from one another come from different sources and the corresponding wholesale prices might be

affected by regional factors idiosyncratic to the product origins. Price differentials across consuming

regions that are generated by such idiosyncratic factors cannot be attributed to transportation costs.

Hence, given the observed high degree of regional product clustering, it is crucial to scrutinize price

differentials of a product that shares a source region in order to infer the role transportation costs

play in absolute LOP violations correctly. Second, drawing an inference on transportation costs

only from observed price differentials might be subject to a serious sample-selection bias, as we

repeatedly claim in this paper.

The mean of the observed log price differential is reported on the first row of panel (c) of

Table 1. The positive numbers reported in the first row imply that wholesale prices in consuming

prefectures are on average higher by between 0.3 % and 8.1 % than those of producing prefectures.

This observation is suggestive for an important role of transportation costs in price differentials,

as predicted by equation (6). The corresponding standard deviation of the observed log price

differential, which is displayed on the second row of panel (c), is around 20 %. Our data set, thus,

shows the almost same degree of absolute LOP violations as observed in past studies (e.g., Crucini

et al. 2005, and Broda and Weinstein 2008), even after identifying source regions of products. We

also conduct an OLS regression of the observed price differential on the corresponding log distance

21Exception is observed in the first producing prefecture, Hokkaido, in the cases of carrot and potato.
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and constant for each vegetable. The resulting OLS estimates of the coefficient on the log distance,

γ̂OLS, are shown in the third row of panel (c), which are accompanied by the standard errors. All the

point estimates are positive with values between the minimum of 0.007 and the maximum of 0.051

at any conventional statistical significance levels. This range of the estimated distance elasticity of

price differential is consistent with the estimates past studies commonly find using different data

sets such as in Engel et al. (2005), Broda and Weinstein (2008), and Inanc and Zachariadis (2009).

5. Results

5.1. Results of FIML estimation

Table 2 summarizes the results of the FIML estimation based on the log likelihood (11). The

first and second rows of panel(a) of the table shows that the distance elasticity of transportation

costs, γ̂FIML, is estimated positive and statistically significant for each vegetable. The outstanding

fact this row tells us is the large size of the FIML estimates: the mean (over the eight vegetables) of

the estimated distance elasticity is 0.238 with the minimum of 0.210 for cabbage and the maximum

of 0.325 for lettuce. According to equation (6), the price differential of a product between consuming

and producing regions rises by about 24 % in response to the 100 % stretch in delivery distance

when ignoring selection mechanism (7). Compared with the small size of the OLS estimate of the

distance elasticity, which is reported between 0.008 and 0.051 in the last row of Table 1, this large

size of the FIML estimate implies that the OLS estimate is biased downwards seriously due to the

underlying data truncation.

As discussed in section 2, the strength of the observed under bias tightly connects with

the price elasticity of demand, ϵ. As reported in the third and fourth rows of panel (a) of Table

2, ϵ is estimated sensibly and significantly: the mean of the point estimate of ϵ is 3.132 over the

eight vegetables. Combining with the large estimate of the distance elasticity of transportation

costs, the estimated price elasticity of demand implies that the probability of product delivery

from producing to consuming prefectures depends negatively as well as sensitively on delivery

distance. The point estimate of the correlation coefficient between the unobserved disturbances of

price differential equation (6) and selection equation (7), ρ, then provides empirical evidence that

sample-selection bias does matter. As displayed in the fifth and sixth rows of panel(a) of Table 2, ρ

is estimated negative with high statistical significance: the mean of the estimates of ρ over the eight

vegetables is -0.536 with the minimum of -0.684 for welsh onion and the maximum of -0.278 for

potato. This highly negative correlation between the unobserved disturbances in the two equations

is the fundamental source for the under bias in the OLS estimate of the distance elasticity in the

price differential equation, as shown in equation (8).

In summary, our FIML estimates of the sample-selection model reveal dual roles geograph-

ical distance plays in regional price differentials. Distance creates a large price gap between con-

suming and producing regions. At the same time, distance significantly affects choice of product

delivery from the latter to the former regions. As a result, price differentials are not randomly
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sampled and, especially, their observations are concentrated on local areas neighboring producing

regions. This concentration of the observations within relatively short distance conceals the ac-

tual size of the underlying distance elasticity of transportation costs and makes the OLS estimates

biased downwards.

5.2. Model validation through diagnosis checks

The above FIML estimates of the three structural parameters depend on the identification

provided by our structural sample-selection model. Therefore, the relevance of the estimates relies

on the empirical validity of our model. As model validation, we conduct diagnosis checks of our

model with respect to two important aspects of the actual data: the pattern of product delivery

and the association of price differentials with delivery distances.

If our sample-selection model is reliable, it should explain the pattern of product delivery,

Tij(l), that is actually observed in our data. To check the ability of our model to mimic the product

delivery pattern in the data, we calculate the percents correctly predicted (PCPs) measures for

Tij(l) = 0 or 1.22 To construct the PCPs, we calculate the predicted conditional probabilities of

Tij(l) = 0 and Tij(l) = 1 on the observables, P̂ (Tij(l) = 0|.) and P̂ (Tij(l) = 1|.), respectively. Then
if P̂ (Tij(l) = 0|.) > 0.5, we recognize that our model predicts Tij(l) = 0, while if P̂ (Tij(l) = 1|.) >
0.5, it predicts Tij(l) = 1. The PCP for Tij(l) = 0 (or 1) then is calculated as the percentage of the

total number of the observations of Tij(l) = 0 (or 1) that are accompanied by P̂ (Tij(l) = 0|.) > 0.5

(or P̂ (Tij(l) = 1|.) > 0.5). The PCP for either Tij(l) = 0 or 1 is simply derived as a weighted

average of the PCPs for Tij(l) = 0 and 1.

The results of the PCPs are summarized in the first, second, and third rows of panel (b)

of Table 2. As shown in the first row, our sample-selection model yields high PCPs around 0.990

for either Tij(l) = 0 or 1 for all the vegetables. This means that the model is fairly successful in

replicating the observed pattern of product delivery overall. In particular, as implied by the PCPs

reported in the second and third rows of panel (b), the model’s ability to replicate no delivery choice

Tij(l) = 0 is better than that to replicate delivery choice Tij(l) = 1. On the one hand, the high

PCPs for Tij(l) = 0 around 0.990 suggest the model’s outstanding predictive ability of no delivery

choice. On the other hand, the PCPs for Tij(l) = 1 are lower than those of no delivery choice with

the mean of 0.820. The model does a good job in predicting the delivery choice especially for some

vegetables such as s-mushroom, spinach, and welsh onion.23 We confirm through this diagnosis

criterion that the model’s predictive ability for the pattern of product delivery is remarkable.

The second diagnosis criterion is data association of price differentials with delivery dis-

tances. As observed in the last row of Table 1, the OLS regression of the former on the latter in

actual data yields the estimate of the distance elasticity, γ̂OLS, around 3% on average. The question

we ask here is if our sample-selection model predicts this size of the OLS estimate or not.

22Wooldridge (2002) discusses the PCP for model validation of probit models.
23The main reason for the model’s slightly lower predictive performance for carrot and potato is understandable.

As observed in Figure 4, the main producing prefecture of these two vegetables, Hokkaido, delivers its products to all

other prefecture regardless of delivery distance. This data aspect is hard to explain by our simple structural model.
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To do this diagnosis check, we derive the prediction of the model on price differentials

following equation (8). Each window of Figure 5 plots the resulting predicted price differentials

(blue dots) as well as the data counterparts (gray crosses) against the corresponding log distances

for each vegetable. The blue dots are distributed inside the cloud made of the gray crosses in all

the windows except the case of carrot. This means that our model successfully predicts the data

association of price differentials with distances overall, although the actual data show us a much

sparse joint distribution between the two variables. The fourth row of panel (b) of Table 2 reports

the OLS estimate of regressing the predicted price differentials on the corresponding distances. For

comparison, we also display in the last row of the panel the OLS estimate with the actual data that

has been already reported in Table 1. The model’s prediction on the OLS estimate is close to but

slightly larger than its actual data counterpart: the cross-vegetable average of the predicted OLS

estimate is 0.063 whereas that with the actual data is 0.033. It is important, however, to remember

that the distance elasticity of transportation costs of our model is estimated 0.238 by FIML. What

is striking is that the sample-selection model with such a large distance elasticity of transportation

costs indeed mimics such a small size of the OLS estimate. In this sense, we conclude that our

model successfully passes the second diagnosis check, although we fully understand that there is

still an unexplained gap between the model’s prediction and the actual data with respect to the

observed joint distribution of price differentials and distances.

6. Conclusion

As claimed by Anderson and van Wincoop (2004) in their introduction, the “death of

distance” is indeed exaggerated even in the literature of regional price dispersions. In this paper,

we try to revive and rejuvenate transportation costs, which are measured by geographical distance,

as a main driving force of absolute LOP violations. To do so, we identify producing regions and

take into account sample selectivity due to the underlying choice of product delivery in our data set

of daily wholesale prices of agricultural products in Japan. After estimating our structural sample-

selection model by FIML using data of price differentials and delivery patterns, we find that the

estimated distance elasticity of transportation costs is so large that this paper successfully fills the

reported huge gap between the two fields of international economics — international finance and

trade — with respect to inferences on distance effects.

Although this paper intensively scrutinizes data aspects of agricultural products, the main

arguments in this paper are also applicable to other products. For instance, identifying in which

plant products are manufactured and taking into account the underlying location choice of plants

could be crucial for correct inferences on the role of transportation costs in regional price dispersions

for manufactured non-perishable products. This is because, if transportation costs are expensive,

firms might decide to locate their plants close to consuming markets to economize transportation

costs. In this case, because product delivery becomes limited around local areas neighboring plants,

observations of the price of a product sharing an identical plant will be truncated. The resulting

sample selectivity then leads to a biased inference on the role of transportation costs in regional
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price dispersions as in our exercise. This conjecture suggests more intensive use of plant level data

in the absolute LOP literature.

Finally, it is worth noting a caveat against our inferences that depend on the implications of

the highly stylized structural model. An obvious limitation of our structural inferences stems from

the model’s assumption of monopolistically competitive firms facing regional demand functions

with a constant elasticity. To figure out historical movements of the relative PPP of the United

States, a recent paper by Atkeson and Burstein (2008) emphasizes the importance of richer market

structures that make price elasticity of demand and markup variable in market shares. If this is

the case, the delivery choice of a source region to its wholesale market should have a non-negligible

impact on the price elasticities of demand for products from other source regions because the market

shares of other source regions change. Given transportation costs, this change in the sensitivity of

demand then might affect the product delivery choices of the other source regions. This mechanism

potentially makes our inferences on distance effects biased. We want to leave this extension to

future research.

Appendix A. Derivation of log likelihood function (11)

Given the sample-selection model with IVs that consists of equations (6), (7), (9), and (10), we
derive the corresponding likelihood f(qij , Tij ,yi|dij , si). Since qij is observable only when Tij = 1, we can
factorize the likelihood as follows:

f(qij , Tij = 0,yi|dij , si) = f(Tij = 0,yi|dij , si),
= P(Tij = 0|yidij , si)f(yi|dij , si),

and

f(qij , Tij = 1,yi|dij , si) = f(qij |Tij = 1,yi, dij , si)f(Tij = 1,yi|dij , si),

=
P (Tij = 1|qij ,yi, dij , si)f(qij |yi, dij , si)

P(Tij = 1|yi, dij , si)
f(Tij = 1,yi|dij , si),

= P(Tij = 1|qij ,yi, dij , si)f(qij |yi, dij , si)f(yi|dij , si).

Hence, our task is to characterize conditional densities f(yi|dij , si), f(qij |yi, dij , si), P(Tij = 0|yi, dij , si),
and P(Tij = 1|qij ,yi, dij , si).

Since endogenous explanatory vector yi is always observable regardless of the value of Tij , conditional
distribution f(yi|dij , si) is simply characterized by equation (9) as a Gaussian joint density with the mean
of Γsi and the variance-covariance matrix of Ω11:

f(yi|dij , si) = f(yi|si) = (2π)−1|Ω11|−1/2 exp

{
−1

2
(yi − Γsi)

′Ω−1
11 (yi − Γsi)

}
.

Characterizing the rest of the conditional densities requires us to figure out the conditional densities
f(ηij |ei), f(ηij |ei, uij), and f(uij |ei), respectively. To do so, we conduct the triangular factorization of the
variance-covariance matrix Ω to obtain Ω = ADA′, in which

A =

 In 0 0
φuΩ

−1
11 1 0

φηΩ
−1
11 H32H

−1
22 1

 , and D =

Ω11 02,1 02,1

01,2 H22 0
01,2 0 H33 −H32H

−1
22 H23

 ,
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where H22 = σ2
u − φuΩ

−1
11 φ

′
u, H32 = σuη − φuΩ

−1
11 φ

′
η, H33 = σ2

η − φηΩ
−1
11 φ

′
η, and H32 = H23, as shown

in Hamilton (1994). Define a new random vector ϵ̃ij = [ẽi
′ ũij η̃ij ]

′ = A−1ϵij . The above triangular
factorization implies that new vector ϵ̃ij is normally distributed with the mean of zero and the diagonal
variance-covariance matrix of D. Then, by construction, we can obtain the following system of equations.

ei = ẽi,

uij = φuΩ
−1
11 ẽi + ũij ,

ηij = φηΩ
−1
11 ẽi +H32H

−1
22 ũij + η̃ij .

To derive the conditional density f(ηij |ei), define a new random variable ãij = H32H
−1
22 ũij + η̃ij .

Notice that random variable ãij is normally distributed with the mean of zero and the variance of H33.
24

We can obtain
ηij = φηΩ

−1
11 ei + ãij

Since ãij is orthogonal to ei = ẽi, the above equation implies that the conditional distribution of ηij on ei
is normal with the mean of φηΩ

−1
11 ei and the variance of H33: ηij ∼ N(φηΩ

−1
11 ei,H33). Similarly, we can

characterize conditional densities f(ηij |ei, uij) and f(uij |ei) by the corresponding conditional distributions
ηij ∼ N(φηΩ

−1
11 ei+H32H

−1
22 (uij−φuΩ

−1
11 ei), H33−H32H

−1
22 H23) and uij ∼ N(φuΩ

−1
11 ei, H22), respectively.

Conditional mass probability P(Tij = 0|yi, dij , si), then, is

P(Tij = 0|yi, dij , si)

= P(ηij ≤ −β + (ϵ− 1)γdij − [ϵ 1]yi − bij |yi, dij , si),

= P(ãij ≤ −β + (ϵ− 1)γdij − [ϵ 1]yi − bij − φηΩ
−1
11 ei|yi, dij , si),

= 1− Φ(λij)

where λij =
β−(ϵ−1)γdij+[ϵ 1]yi+bij+φηΩ

−1
11 (yi−Γsi)

(σ2
η−φηΩ

−1
11 φ′

η)
1
2

. Conditional mass probability P(Tij = 1|qij ,yi, dij , si) is

P(Tij = 1|qij ,yi, dij , si)

= P(ηij > −β + (ϵ− 1)γdij − [ϵ 1]yi − bij |qij ,yi, dij , si),

= P(η̃ij > −β + (ϵ− 1)γdij − [ϵ 1]yi − bij − φηΩ
−1
11 ei −H32H

−1
22 (uij − φuΩ

−1
11 ei)|qij ,yi, dij , si),

= Φ(κij),

where κij =
β−(ϵ−1)γdij+[ϵ 1]yi+bij+(φη−H32H

−1
22 φu)Ω

−1
11 (yi−Γsi)+H32H

−1
22 (qij−µ−γdij)

(H33−H32H
−1
22 H23)

1
2

. Finally, to characterize

conditional density f(qij |yi, dij , si), consider the conditional distribution

Fqij |yi,dij ,si(q
∗) = P(qij < q∗|yi, dij , si),

= P(uij < q∗ − µ− γdij |yi, dij , si),

= P(ũij < q∗ − µ− γdij − φuΩ
−1
11 ei|yi, dij , si),

= Φ(ϖij)

where ϖij =
q∗−µ−γdij−φuΩ

−1
11 (yi−Γsi)

H
1
2
22

. Therefore, we can obtain conditional density f(qij |yi, dij , si) by

taking the derivative of Fqij |yi,dij ,si(q
∗) with respect to q∗: f(q∗|yi, dij , si) = H

− 1
2

22 ϕ(ϖij).

Summarizing the above characterization of the conditional densities, we can derive the likelihood
f(qij , Tij ,yi|dij , si) as

f(qij , Tij ,yi|dij , si) = [Φ(κij)H
− 1

2
22 ϕ(ϖij)]

Tij [1− Φ(λij)]
1−Tijf(yi|dij , si).

24The variance of ãij is (H32H
−1
22 )2σ2

ũ + σ2
η̃ = (H32H

−1
22 )2H22 +H33 −H32H

−1
22 H23 = H33.
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We normalize the standard deviation of the disturbance of the selection equation to one: ση = 1. Under
the case that φu = [0, 0], i.e, uij is orthogonal to each of the elements of ei, the likelihood turns out to be
equation (11) in the log form.

Appendix B. Data sources

Wholesale prices:

The data source of wholesale prices is the Daily Wholesale Market Information of Fresh Vegetables
and Fruits (“Seikabutsu Hinmokubetsu Shikyo Joho” in Japanese). The data set is distributed by the Center
of Fresh Food Market Information Service (“Zenkoku Seisen Syokuryohin Ryutsu Joho Senta” with the URL:
http://www2s.biglobe.ne.jp/ fains/index.html). All contents in the data set are surveyed by the Ministry
of Agriculture, Forestry, and Fishery (MAFF) for almost all transactions at 55 wholesale markets officially
opened and operated in the 47 prefectures in Japan on a daily basis.

The data file contains information on name of product, market prices, name of production cite,
name of market place, and product characteristics. The price reported has three forms: the highest price,
the mode price, and the lowest price. Most markets record all three prices, but several markets report only
the highest and the lowest prices or only the mode price. Thus, we construct our price variable by averaging
these price variables. We use the mode price when only the mode price is available. The transaction unit of
each product is also reported. To obtain same unit for each product, we divide the price by the number of
unit.

We need to control for product characteristics to examine prices between production cite and market
place. Thus, we construct same category product by using product characteristics and production cite. The
product characteristics are: brand name, size of products, and grade of products. The size is coded by
categorical variables, such as large, medium, and small. The grade is also measured by the categorical
variables, such as A, B or superior.25 Because prices depend on detailed characteristics, we take each
combination of characteristics to have the same product.

The coverage of vegetables traded through the central wholesale markets is substantial in Japan.
While nowadays large supermarket and restaurant chains can not only directly purchase agricultural products
from producers but also directly import from foreign producers, the share of agricultural products covered
by these markets in the whole vegetable transactions is still more than 75 % in Japan in 2006, according to
MAFF. Thus, our data set enable us to approach the population moments of transportation costs.

Geographical distance:

The data of distance is provided by the Geographical Survey Institute (GSI) of the Government of
Japan. The data is publicly available in the GSI website (http://www.gsi.go.jp/kokujyoho/kenchokan.html).

Retail prices :

The monthly data of the retail price of product l is reported in the Retail Price Survey (“Kouri
Bukka Tokei Chosa” with the URL: http://www.stat.go.jp/data/kouri/index.htm) the Ministry of Internal
Affairs and Communication conducts.

Daily temperatures:

The daily temperature data are reported by the Japan Meteorological Agency. We download the
data from the website: http://www.data.jma.go.jp/obd/stats/etrn/index.php.

Regular employees and scheduled cash earnings:

25For example, according to the guideline document of Yamanashi prefecture, spinach is classified as grade A under
the following conditions: it is of one type and no mixture of types affects the appearance; it is clean, trimmed, and
free from decay and damages by insects. Otherwise, it is ranked as B.
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The monthly data of the numbers of regular employees and scheduled cash earnings are reported in
the Monthly Labour Survey (“Maitsuki Kinrou Tokei Chosa”) the Ministry of Health, Labour, and Welfare
conducts. The data is available at the URL: http://www.mhlw.go.jp/toukei/list/30-1.html.
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