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Abstract

This paper constructs a theoretical model, in which transportation costs between two

locations depend on cumulative infrastructure investment and governments allocate infras-

tructure spending over continuous space, thereby affecting the geographical pattern of trans-

portation costs. Modelling international trade, we assume that governments set their in-

frastructure investment schedules in a non-cooperative fashion. We find that governments

provide too little infrastructure investment because they ignore the benefits from reductions

in domestic transportation costs that accrue to foreign consumers. Moreover, the distribu-

tion of infrastructure chosen by local governments is skewed towards central regions, which

magnifies small discrete border frictions and creates ‘border regions’ within countries. French

data on transportation costs are consistent with our theory.
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1 Introduction

Transportation costs feature prominently in modern theories of international trade and regional

development. They have been shown to matter greatly for the volume of bilateral economic

exchange between two places, and ease of access to markets is an important determinant of

regional per capita income. A large empirical literature makes massive efforts to address the

suspected endogeneity of transportation costs to economic outcomes. Yet, next to nothing

is known about the processes that determine these costs. So, in their authoritative handbook

chapter, Redding and Turner (2014) ask for “further research ... examining the political economy

of transport infrastructure investments”. The present paper is a first step towards filling this

gap of knowledge.

The provision of transport infrastructure is one of the oldest activities that governments of

all sorts have always been engaged in. The roads built by the Inca in South America or by

the Romans in Europe bear testimony to this fact. Indeed, any known civilization has devoted

resources to the construction of roads presumably with the objective to tap into the welfare

gains from regional specialization and trade. On average, OECD countries spend about 1%

of GDP on inland transportation infrastructure and maintenance; this amounts on average to

about 3% of countries’ public budgets. Emerging or transition economies can spend up to 10%

of the budgets on.1

In this paper we focus on land-borne means of transportation, by far the most important

mode in the EU or in NAFTA. We set up a theoretical model, in which governments allocate

infrastructure spending over space, thereby affecting the geographical pattern of transportation

costs. We find that the optimal infrastructure investment at some point in space is not only

determined by local conditions at that point, but also – and predominantly – by the situation

in other locations that produce and demand goods which transit through that point.

When we model international trade, we assume that two governments set their infrastruc-

ture investment schedules in a non-cooperative fashion. This reflects the fact that despite some

international cooperation, the construction and maintenance of roads is decided by national

governments. Even in Europe, in which there is some central coordination of infrastructure in-

vestment plans, member states need to cofinance all projects and they have substantial influence

over the spatial allocation of spending, or the prioritization of projects.

As an outcome, governments provide too little infrastructure investment because they ignore

the benefits from reductions in domestic transportation costs that accrue to foreign consumers.

1ITF-OECD (2012), p. 4.
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More interestingly, however, the extent of underinvestment varies over space. In particular,

regions close to the political border of jurisdictions suffer more strongly from underinvestment

while in more central regions there can be overinvestment relative to the efficient benchmark.

Therefore, trade across national borders entails higher transportation costs than trade within

countries, holding distance constant.

We show analytically that investment profiles exhibit more spatial variation the larger the

elasticity of substitution between investment at different points in space is, the lower the elasticity

of substitution between varieties from different addresses is, and the lower the elasticity of trade

costs with respect to geographical distance is.

Moreover, we show that a small border cost (say a tariff) makes the border zone wider by

drawing even more investment into central locations. This mechanism may contribute towards

explaining the empirical fact that international borders tend to restrict international trade more

severely than what observable border costs together with plausible trade elasticities would sug-

gest (Anderson and van Wincoop, 2003). Empirical gravity models, which proxy transportation

costs by geographical distance, would therefore diagnose large border effects even if the true

border costs are small.2 We use our model to generate data on trade flows and trade costs,

and apply a conventional gravity model to these data. We find that the obtained border effect

overestimates the true border costs by about 20%. Hence, endogenous infrastructure investment

can explain part of the border effect puzzle that has received so much attention in the literature.

Our analysis has an important policy implication: Interregional coordination, which merely aims

at removing the global underinvestment problem, could exacerbate underinvestment in border

regions.

We extend our analysis by adding a non-contiguous country which supplies and demands

goods from the contiguous two countries connected by a land-borne transportation network. We

find that an increase in the economic mass of this overseas trading partner induces a reallocation

of spending towards coastal regions and away from the hinterland and the landlocked country.

Our main result – the endogenous emergence of border regions and their amplification by

discrete border frictions – is robust to a number of model variations. First, governments may

outsource the design and operation of roads to monopolistic firms who care only about profits

and not about welfare. However, the central issue leading to inefficient investment variation

persists: the monopolists underinvest more in locations close to the border where the positive

externality on the foreign monopolist’s profits is largest. Second, we argue that allowing for

2In fact, they would find border effects even if true border costs were zero.
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labor mobility within countries would strengthen our results

Our paper is related to at least four important strands of literature. First, it connects with

papers that study the importance of geographical frictions and transportation costs for economic

outcomes: trade, migration, and welfare. Typically, the literature has treated those costs as

exogenous. Limao and Venables (2001) find that up to 60 percent of the cross-country variation

in transport costs is due to differences in the quality and quantity of transport infrastructure

and that high cost of land-borne transportation is a more relevant trade barrier than the costs of

maritime transportation in many countries. Venables (2005) argues that infrastructure explains

a larger share of spatial income inequality than sheer geography, while the latter certainly is a

determinant of the former. Behar and Venables (2011) and Redding and Turner (2014) provide

excellent surveys. While they cite empirical work on the determinants of transportation costs,

they do not provide theoretical references on their endogenous emergence.

Many existing papers assume that countries (or regions) do not have a geographical ex-

tension. Recent work provides more spatial detail, but continuous to treat infrastructure as

exogenous. Cosar and Demir (2014) show that the upgrading of motorways in Turkey signifi-

cantly increases exports of transport-intensive goods of landlocked cities. Allen and Arkolakis

(2013) incorporate realistic topographical features of geography into a spatial model of trade.

They find the introduction of the US interstate highway system has reduced the costs of a coast-

to-coast shipment by about a third. Duranton et al. (2013) use data on US interstate highways

to show that highways within cities cause them to specialize in sectors that have high weight

to value ratios. Using a multiregion general equilibrium model of trade, Donaldson (2012) and

Donaldson and Hornbeck (2013) analyze the welfare gains from railroads in India and the United

States, respectively. They find that improved market access through reduced transport costs

creates trade and generates welfare gains, but that it also leads to trade diversion.

Second, our paper is related to a small literature that endogenizes transportation costs,

usually by introducing a proper transportation sector. Using an economic geography model,

Behrens and Picard (2011) show that the prices for transporting differentiated goods increase in

the degree of spatial specialization of the economy and that this channel dampens core-periphery

patterns. While their model has a competitive transport sector, Hummels et al. (2009) provides

evidence that monopolistic market structure in the transport sector restrict trade. These papers,

in contrast to ours, do not analyze the endogenous emergence of road infrastructure.

Third, our paper is related to literature that jointly considers international and intranational

aspects of trade. Courant and Deardorff (1992) emphasize the importance of trade within

countries for trade patterns across countries. Rossi-Hansberg (2005) studies the effects of small
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border costs on the regional distribution of workers within a country and assesses the implications

of the equilibrium population distribution on intra- versus international trade flows. However,

his focus is not on infrastructure investment. Another close cousin of the present paper is the

racetrack model of Fujita et al. (2001, ch. 6 and 17).3 In that model, space is continuous, just

as in the proposed setup. However, the two approaches differ in focus. The racetrack model

endogenizes the distribution of manufacturing labor across space under conditions of increasing

economies of scale. It does not say anything on the endogenous spatial distribution of the stock of

transport infrastructure, nor does it shed light on how that stock shapes transport costs. In the

proposed setup, production technologies exhibit constant returns to scale, and the distribution

of workers is exogenous. In turn, transport costs are endogenous. While the proposed model

can be generalized to allow for increasing returns to scale and worker mobility, excluding these

elements makes the model straightforward to analyze.

Fourth, our paper relates to work on the border puzzle. Transport costs are usually related to

geographical distance while the border effect is attributed to some lumpy cost that materializes

when crossing a border. This dichotomy of variable and fixed costs enjoys empirical support, see

Anderson and van Wincoop (2003). The latter authors estimate that the US-Canadian border

reduces international trade relative to intranational trade by a factor of 4.7.4 Explanations

for fixed border costs abound. Among other things, they are related to informational costs

(Casella and Rauch, 2003), contract enforcement costs (Anderson, 2003), exchange rates (Rose

and van Wincoop, 2001). Surprisingly, border effects exist also within countries, where the above

explanations do not help.5 Our setup shows that border effects can arise even in the absence of

explicit costs at the border.

3The racetrack model is discussed also as the ‘seamless world model’ (Krugman and Venables, 1997).
4Prior to Anderson and van Wincoop (2003), McCallum (1995) compares trade flows within Canada to flows

between Canadian provinces and U.S. states, controlling for distance and regional GDPs. Everything else equal,

crossing the border reduces trade by a factor as high as 22. For Europe, Nitsch (2000) finds that on average

intranational trade is about 10 times higher than international one. Nitsch arrives at his results after controlling

for cultural proximity (language), along other conventional gravity covariates. Wei (1996) constructs measures for

imports of countries to themselves and compares this with imports from a statistically identical foreign country.

He finds that the former magnitude is 2.5 times larger than the latter. Helliwell (1998) offers a comprehensive

overview of the pre Anderson and van Wincoop state of the econometric literature. Evans (2003) decomposes

cross-country price differences of traded goods into a component due to distortions and a component driven by

consumer preferences. She demonstrates that the preferences effect is relatively important quantitatively. Obstfeld

and Rogoff (2000) have cited this fact as a major puzzle in international macroeconomics.
5Okubo (2004) shows a border effect for trade between Japanese regions, Wolf (2004) for the US, and Combes

et al. (2005) for their sample of French departments.
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The structure of the paper is as follows. Section 2 presents some stylized facts on the

transportation sector that inform our modeling choices. Section 3 presents and defends our

formulation of the mapping between the spatial distribution of infrastructure investment and

transport costs. Section 4 sets up the general equilibrium environment which motivates intra-

and international trade and analyzes the optimal infrastructure investment schedule in a closed

economy. Section 5 moves to a setting of two symmetric open economies and derives our core

results on the endogenous emergence of border regions. Section 6 discusses tentative evidence.

Finally, section 7 discusses several extensions while section 8 concludes.

2 Stylized facts

The world is not flat. Geographical obstacles such as mountains, rivers or swamps, affect the ease

at which goods and people move across space. Since the most ancient civilizations, states have

invested heavily in infrastructure projects to overcome geographical distance more efficiently.

While military objectives have often been looming large, interregional exchange of goods always

played an important role, too. Hence, there is little doubt that–along obvious geographical

factors–government actions have a bearing on the spatial distribution of infrastructure, too.

The stock of transport infrastructure investment is very difficult to measure, and there

are virtually no data to carry out spatial comparisons. Hence, a more indirect approach is

required. For instance, one can see to what extent geographical variables explain variation in

variable transportation costs across regions and interpret the residual as shaped by the quality

of transport infrastructure investment. This section briefly discusses established stylized facts

on the provision of public transport infrastructure and how those can be used in explaining

spatial patterns in infrastructure investment.

Fact 1: Infrastructure investment and transportation costs. Limao and Venables (2001) use

regression analysis to explain measured transportation costs as a function of infrastructure in-

vestment and other determinants. They find that about 60% of the variation in transportation

costs can be explained by cross-country differences in the quantity and quality of infrastruc-

ture. They conclude that transport infrastructure is quantitatively more important in explaining

transportation costs than sheer geography. More recently, Allen and Arkolakis (2013) show that

transportation costs vary dramatically over the surface of the US. Moreover, the construction

of interstate highways has cut transport costs in the US by two thirds.

Fact 2: Intracontinental trade flows are mostly land-borne. Since the border puzzle appears

in trade within the European Union, NAFTA, or Japan, it is natural to take a brief look at the
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Table 1: Value and tonnage of U.S. merchandise trade with Canada and Mexico by transporta-

tion mode

Mode

Truck 491 62% 191 28% 557 61% 187 29%

Rail 116 15% 141 21% 131 14% 134 21%

Air 33 4% 1 0% 45 5% 1 0%

Water 58 7% 256 38% 81 9% 210 32%

Pipeline 52 7% 86 13% 63 7% 106 16%

Other 39 5% 5 1% 40 4% 9 1%

Total 790 100% 679 100% 918 100% 646 100%

20102005

Value
a)

Weight 
b)

Value
a)

Notes. a) current US$ billions, b) millions of tons. Source: US department of transportation, Freight 

Facts and Figures 2011, Table 2.8. 

http://www.ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/11factsfigures/index.htm

Weight 
b)

Value and tonnage of U.S. merchandise trade with Canada and Mexico by 

transportation mode

relative prevalence of intercontinental transport modes. Table 1 reports data for merchandise

trade within NAFTA. It appears that about 60% of the value of total trade flows between

NAFTA member states is transported by truck. Total land-borne traffic amounts to about

three quarters of the total value of trade. Hence, while the share of air-borne traffic is certainly

increasing, it is not prevalent. Not surprisingly, in terms of weight, water-borne traffic appears

relatively important, reflecting the low unit-value of bulky goods transported by that mode.

Transcontinental trade, in contrast, is dominated by maritime transport (about 75% of value in

both the EU and the US).6

Fact 3: The public input into the provision of transportation services is important. Accord-

ing to the Bureau of Economic Analysis, in the US, public gross investment plus government

consumption spending on transportation goods amount to about 9.4 percent of total government

spending (across all levels of government) or 1.8 percent of GDP in 2004. Private gross fixed

investment in transport equipment (this excludes cars used for private use) is 1.3 percent of

GDP.7 Table 2, Panel B, shows that, in 2010, about 5% of total government spending fell on

the construction and maintenance of transport infrastructure. Data collected by the Bureau

of Transport Statistics indicates that toll revenue finances only a small fraction of total public

transport infrastructure spending in the US.

Fact 4: Regional governments influence interregional infrastructure projects substantially.

6Combes and Lafourcade (2005) note that, ”in Europe, around 72% of trade volumes are shipped through the

road network (against around 15% for rail, 8% for pipers and 5% for rivers)” (p. 324), which roughly corresponds

to the North American pattern.
7NIPA tables 1.15 and 3.155.
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Table 2: On the role of transportation (construction and maintenance) in public finances, USA

1900 1950 2000 2010

Federal 0% 22% 28% 33%

State 2% 41% 43% 39%

Local 98% 46% 48% 50%

Federal transfersa) 0% ‐8% ‐19% ‐22%

Federal 0% 3% 3% 3%

State 2% 19% 9% 7%

Local 18% 14% 5% 8%

Total 10% 7% 5% 5%

Source: www.governmentspending.com, own calculations.

a) Grants and aids by federal government to state or local governments.

A) Shares in total government spending on transportation in the USA

B) Shares of transportation in spending at different levels of government in the USA

On the role of transportation in public finances, USA

Panel A in Table 2 shows for the US that all levels of government contribute towards spending

on transport infrastructure and equipment. About 90% fall on the local or state level, but federal

transfers have become quite important over time. Clearly, financial and planning authority need

not coincide, but the data does suggest that local governments must have important roles in the

investment allocation process. In Europe, member states decide almost exclusively on transport

infrastructure investment projects. There is some coordination at the Union level through the

so called Trans-European Transport Network, but the budget is limited to about 1 billion Euro

per year over the 2007-2013 spending period. Total spending on construction and maintenance

in the EU member states to about 0.9% of EU GDP (i.e., 120 billion Euro) per year, so that

the EU contribution to total spending is less than 1%.8

8http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/site/en/abouttent.htm
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3 Modeling transportation costs

Economic geography models, pioneered amongst others by Krugman (1991), bring together

monopolistic competition with Samuelson’s (1952) iceberg trade costs assumption.9 The iceberg

assumption has proved convenient, because it makes the introduction of a specific transportation

sector redundant: during transportation, a distance-dependent share of the output shipped

from the location of production gets lost, i.e. melts away. The implicit transportation sector

production function uses the good being transported as the only input. Formally, assume that

economic space S is unidimensional and continuous (e.g., the real line, or the circumference

of a circle). For two arbitrary addresses x and z in S, a Krugman-type transportation costs

specification would be

T (x, z) = ea|x−z| ≥ 1, (1)

where the coefficient a > 0 is the iceberg decay parameter. T (x, z) models the cost of delivering

a good over the distance |x− z| as an ad-valorem tax equivalent, where the tax income is lost

in transit. In order to receive one unit of the good at x, T (x, z) units of that good have to leave

the factory at z. A share 1 − T (x, z)−1 of the good ‘melts’ in transport; the share T (x, z)−1

arrives at x when one unit of the good is shipped at z.

The iceberg formulation amounts to introducing a shadow transport sector, which uses the

share 1 − T (x, z)−1 of a good to be shipped from z to x as an input. The transport service

is produced at the location of the producer, using the same input mix than the good to be

shipped. Given the continuous space nature of our setup, one could more generally posit that

transportation services are produced in some sub-interval in [x, z]. In the specific economic

environment proposed below, these differences do not matter, as f.o.b. prices in any location are

independent of demand for the variety produced at those locations.

In this paper, transportation costs are modeled as a function of cumulative infrastructure

investment. Public infrastructure investment refers to the process of investing some resource at

specific locations s ∈ S with the aim of reducing transportation costs.10 We assume that the set

of geographic locations, S, is given by an interval, [0, s̄], where s̄ characterizes the geographical

size of the economy. Note that an alternative way to formulate the geographic space in the

9Note that much of the new trade theory literature that discusses trade in differentiated goods under increasing

returns to scale and monopolistic competition uses an essentially discrete formalization of trade costs. Associated

empirical papers using the gravity equation do, however, resort to Krugman’s specification. For a model of trade

in continuous space see Krugman and Venables (1997).
10Since the model proposed is static, we use the term infrastructure investment and stock of infrastructure

interchangeably.
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economy is to assume that S is a circle. However, in contrast to the linear case, the circle

geography does not exhibits a natural periphery, implying that the geography does not affect the

infrastructure investment. Indeed, if all the locations on a unit circle are symmetric (in terms of

endowments, available technologies, etc.), the infrastructure investment is also symmetric across

the locations, implying the symmetric transportation infrastructure. In contrast, in the below

analysis we show that, in the case of a linear space, the symmetry of locations does not imply the

symmetry of investment decisions and, therefore, the symmetry of the transport infrastructure:

i.e. geography matters.

We model the effectively available stock of infrastructure over some interval [x, z] ∈ S as a

constant elasticity of substitution aggregator function

I (x, z) =

[∫ z

x
i (s)1−δ ds

] 1
1−δ

, δ > 1, x ≤ z, (2)

where i (s) is the level/stock of infrastructure at location s ∈ [x, z] and δ > 1 is a constant tech-

nological parameter (which will have a precise economic interpretation later). I (x, z) increases

in distance. This formulation has the natural implication that spreading a constant investment

budget B over increasing distance z − x lowers the available stock of I (x, z) . Note also that if

i(s) is equal to zero on some subset (with a positive measure) of [x, z], then the available stock

of infrastructure over the whole interval [x, z] is zero.

The costs of transportation a product from z to x, where x ≤ z, are linked with the infras-

tructure stock as follows:11

T (x, z) =

(
1 +

1

δ − 1
I (x, z)1−δ

)γ
, δ > 1, γ > 0, x ≤ z. (3)

A more general definition, where x and z are not ordered, implies that

T (x, z) =

(
1 +

1

δ − 1
|I (x, z)1−δ |

)γ
=

(
1 +

1

δ − 1

∣∣∣∣∫ z

x
i (s)1−δ ds

∣∣∣∣)γ ,
where | · | means the absolute value. As can be seen, the transportation costs are symmetric in

the sense that delivering a product from x to z costs the same as delivering a product from z to x.

Here, parameter γ represents the effect of the total stock of infrastructure on the transportation

costs, while δ stands for the elasticity of substitution between infrastructure investments at

different locations (see the Lemma below). Note that for any locations x, y, and z, the triangle

11In Section 4.5, we discuss the robustness of the results in the paper to changes in the functional form of the

transportation costs.
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inequality holds: T (x, y)T (y, z) ≥ T (x, z) (the strict inequality holds, if x, y, and z represent

different locations).12 That is, it is cheaper to transport products directly to a destination

address, rather than through some intermediate address.

The choice of functional forms (2) and (3) proofs convenient as the problem of optimally

allocating i (s) over space resembles the problem of optimally allocating consumption spending

over time. Moreover, the formulation (3) has properties long discussed (but rarely modelled) by

transport economists (Winston, 1985, and Gramlich, 1994).

Lemma 1 Generalized iceberg trade costs T (x, z) have the following properties:

(i) T (x, z) ≥ 1 with T (x, x) = 1 and T (x, y)T (y, z) ≥ T (x, z).

(ii) T (x, z) = (1 + a|z − x|)γ , if i (s) is a constant ı̄ over the interval [x, z], and a = ı̄1−δ/ (δ − 1).

(iii) T (x, z) =∞, if i (s) = 0 on some subset (with a positive measure) of [x, z].

(iv) T (x, z) is increasing in distance: i.e. for fixed x a more distant location z results in higher

transportation costs. Moreover, if i(s) is a differentiable function on S, T (x, z) is convex

in distance if the distance-induced increment to Tz (x, z) in trade costs is not outweighed by

an improvement in infrastructure. That is, if (γ − 1) [a (z)]2 / (T (x, z))1/γ > i′ (z) i (z)−δ

where a (z) = i (z)1−δ / (δ − 1).

(v) The (interregional) elasticity of substitution between infrastructure investment at different

locations is 0 < 1/δ < 1, so that investments at different places are gross complements.

(vi) Investment smoothing property: if investment costs do not vary across locations, then the

cost-efficient way to achieve some exogenous target level of transportation costs involves a

flat spatial investment profile

i (s) =
{

(z − x) /
[
(δ − 1)

(
T̄ 1/γ − 1

)]}1/(δ−1)
.

where T̄ > 1 is the target level of iceberg transportation costs.

12Indeed, it is straightforward to see that for three different locations x, y, and z such that x < y < z,

T (x, y)T (y, z) =

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds

)γ (
1 +

1

δ − 1

∫ z

y

i (s)1−δ ds

)γ
=

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds+
1

δ − 1

∫ z

y

i (s)1−δ ds+
1

(δ − 1)2

∫ y

x

i (s)1−δ ds

∫ z

y

i (s)1−δ ds

)γ
>

(
1 +

1

δ − 1

∫ y

x

i (s)1−δ ds+
1

δ − 1

∫ z

y

i (s)1−δ ds

)γ
=

(
1 +

1

δ − 1

∫ z

x

i (s)1−δ ds

)γ
= T (x, z).
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Figure 1: Transportation costs and distance: a concave relationship
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Notes. Generalized transportation costs between capitals of French departements in French Francs (1993) as a

function of geographical distance in km. See Section 6 and Appendix B for more details.

Proof The first three properties directly follow from the definition of the trade costs in

(3). The last three properties are proved in the Appendix.

One of the critiques of the Krugman specification of transportation costs (see McCann, 2005)

is that, according to (1), the delivered price of a good transported from a producer to a consumer

over some distance is convex with respect to distance, which is at least partly counterfactual.

In particular, regressing the log of transportation costs between capitals of French départements

on the log of geographical distance reveals an elasticity of 0.90 with a robust standard error of

0.02 (see Figure 1). The hypothesis of the elasticity being equal to unity is rejected at the 1%

level.13

In the present framework, iceberg transportation costs are convex in distance, as long as the

component of dT (x, z) /dz driven by variation in infrastructure investment does not outweigh

the pure distance component of dT (x, z) /dz (see property (iv) in the above lemma). Hence, in

general, whether T (x, z) is convex in distance depends on the spatial allocation of infrastructure

investment. Moreover, if γ is assumed to be less than or equal to one, the transportation cost

13Using robust regression methods to punish outliers leads to an elasticity of 0.92, still different from 1.00 at

the 1% level. The same holds true if one restricts the sample to distances below 200, 150 or 100 km.
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function is concave in distance.

Properties (v) and (vi) exploit the isomorphism between (3) and the usual representation of

utility in an optimal growth model. The parameter δ measures the ease with which infrastructure

investment at some address can substitute for investment at another place. The restriction δ > 1

ensures that investments at different places are gross complements: investment at some address

makes investment at some other place more worthwhile, which seems realistic.14

4 Infrastructure investment in a closed economy

This section embeds the transport technology described in (3) into a specific model of inter and

intra-regional trade. The model is static and features a single factor of production, labor. The

economic environment combines spatial product differentiation with constant returns to scale

production functions and perfect competition.15

4.1 Geographical space and goods space

As discussed above, the geographic space S that constitutes the economy is understood as a

continuum of locations (or: addresses) s ∈ S organized along an interval, [0, s̄]. At each location

s there is a representative household who inelastically supplies m (s) units of labor. Households

are immobile across space, so m (s) is exogenous. We can leave the form of m (s) open as long as

m (s) > 0 for all s ∈ S (no inhabited locations). The total endowment of labor in the economy

is then equal to
∫
s∈Sm(s)ds, which we define as L.

At each location, a homogeneous agricultural and a spatially differentiated industrial good

can be produced. Consumers consume both types, perceiving industrial goods produced at

specific locations as imperfect substitutes. There are no costs of transporting the agricultural

good. Moreover, the agricultural good serves as an input into infrastructure provision. Each

location s is home of consumers and producers. We denote addresses of consumers by x and

addresses of producers by z.

We assume that locations may differ with respect to the topological circumstances. In other

words, we have a distribution of productivities q (s) which gives the rate at which resources

14We do not allow for incremental transport costs incurred at address s to depend on the volume of traffic

transiting through s. Actually, in equilibrium, the contrary will hold: more traffic at s will encourage the planner

to invest more in infrastructure, thereby driving down the gradient of T. This lowers the incremental trade costs

at s for all units of goods that transit through s.
15It is, therefore, of the Armington (1969) type; see also Anderson and van Wincoop (2003).
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are transformed into infrastructure investment goods. Specifically, infrastructure at address s is

produced according to a linear production function i (s) = b (s) /q (s), where b (s) denotes the

input of the agricultural good used for infrastructure investment, and 1/q (s) > 0 measures the

rate at which that resource is transformed into infrastructure. We restrict q (s) to be continuously

differentiable. Feasibility of an investment policy i (s) implies that∫
s∈S

q (s) i (s) ≤ B, (4)

where B is the amount of agricultural good invested in the economy infrastructure and will be

endogenously determined by government policy.

The assumption that the agricultural good can be transported freely across space can be

relaxed only at the price of considerable complication. It is similar to the assumption of a

costlessly tradable agricultural good in much of the economic geography literature and delivers

factor price equalization across space (in nominal terms) as long as all locations produce both

types of goods (which we assume). Moreover, the existence of the agricultural good as an input

in infrastructure production makes thinking about a transportation technology for transferring

infrastructure production inputs from one region to the other redundant.16

4.2 Consumption

The utility function of a representative household at location x is a monotone transformation of a

Cobb-Douglas aggregate over the homogeneous agricultural good and a Dixit-Stiglitz aggregate

over industrial goods:

U (x) =
[
cA (x)

]αρ/((1−α)(1−ρ))
[u (x)]ρ/(1−ρ) , α ∈ (0, 1) , 0 < ρ < 1, (5)

where cA (x) denotes the total quantity of the agricultural good consumed at address x and u (x)

is the subutility index attributable to spatially differentiated goods. Specifically,

u (x) =

(∫
z∈S

cI (x, z)ρ dz

)1/ρ

, (6)

where cI (x, z) is the quantity of an industrial variety produced at address z and consumed at

x.17

16An alternative/equivalent way to model infrastructure provision is to assume that the only input into infras-

tructure is labor, which in turn is perfectly mobile between locations (within an economy). But consumption

takes place at the place of origin. This will equalize wages across locations (which is in the present model done

by the presence of the homogenous agricultural good) making the presence of the agricultural good redundant.
17Notice that U(x) is a positive monotonic transformation U(x) = [Ũ(x)]ρ/((1−α)(1−ρ)) of the usual Cobb-

Douglas formulation Ũ(x) =
[
cA (x)

]α
[u (x)]1−α. The transformation makes the theoretical analysis of the model

more tractable (without qualitatively changing the main conclusions).
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Let Y n (x) denote household x′s net income in terms of a numeraire to be defined below.

Then, the budget constraint of household x is

Y n (x) = cA (x) pA (x) +

∫
z∈S

cI (x, z) pI (x, z) dz, (7)

where pA (x) is the price of the agricultural good at location x and pI (x, z) is the price of a

variety imported from location z and consumed at x.

The utility maximization problem implies that the demand functions for the agricultural

good and a certain variety of the industrial good are respectively

cA (x) =
αY n (x)

pA (x)
and cI (x, z) = (1− α)Y n (x)

pI (x, z)−σ

P I (x)1−σ , (8)

where σ = 1/ (1− ρ) and

P I (x) =

[∫
z∈S

pI (x, z)1−σ dz

] 1
1−σ

(9)

is the price index for industrial goods at location x.

The indirect utility attainable at prices pA (x), pI (x, z) and income Y n (x) can be written

as

V (x) =
(
αα/(1−α) (1− α)

)ρ/(1−ρ) [
pA (x)

]−αρ/((1−α)(1−ρ)) [
P I (x)

]1−σ
(Y n (x))ρ/((1−α)(1−ρ)) .

(10)

4.3 Production

At each location z ∈ S, the agricultural and the industrial good are produced under conditions

of perfect competition. The only input of production is labor. Production functions for the two

types of goods are linear yA(z) = blA(z) where yI(z) = lI(z), where b > 0 is a productivity

parameter common for all locations. Output quantities are denoted by yA (z) and yI (z), and

labor inputs by lA (z) and lI (z) , respectively.

We assume that workers are perfectly mobile across agricultural and industrial firms. This

in turn implies that pA (z) = w (z) /b and pI (z) = w (z), where w (z) is the wage rate (expressed

in units of numeraire) at address z.

4.4 Equilibrium

Industrial goods bear transportation costs. We assume that there are no trade costs other

than transportation costs.18 Hence, the c.i.f. prices faced by consumers differ from the f.o.b.

18In section 5.3, when we consider international trade, we will introduce a discrete trade friction at the border.
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(ex-factory) prices. In particular, a household at x faces the price

pI (x, z) = pI (z)T (x, z)

for a variety of the industrial good imported from location z. In contrast, the agricultural good

can be transported freely. In the paper, we impose a non-full-specialization (NFS) assumption:

there is always a strictly positive quantity of agricultural production at each location. The NFS

assumption introduces factor price equalization in terms of the agricultural good.19 We may

therefore choose the agricultural good as the numeraire and set pA (z) = 1 for all z ∈ S. Since

pA (z) = 1 for any z, we drop the superscripts A and I in the following.

As the price of the agricultural good is normalized to unity, the wage rate at location z, w(z),

is equal to b. The gross income at location x in terms of the numeraire is then Y (x) = bm (x).

Finally, from our assumption on technology, the c.i.f. prices of industrial goods are

p (x, z) = bT (x, z) . (11)

The government imposes a lump-sum tax t, which is assumed identical across addresses

s ∈ S. Thus, the net income at location x, Y n (x), is (1− t)bm (x). The total tax income is

B = bt

∫
s∈Sc

m (s) ds = btL.

Substituting the expressions for the net household income and the price index and taking into

account that the price of the agricultural good is one, we can now rewrite the indirect utility

function in (10) as follows:

V (x) = Ω ((1− t)m (x))(σ−1)/(1−α)

[∫
z∈S

T (x, z)1−σ dz

]
, (12)

where Ω ≡
(
αα/(1−α)bα/(1−α) (1− α)

)(σ−1)
is a function of exogenous parameters only. The

latter can be rewritten as follows:

V (x) = Ω(1− t)(σ−1)/(1−α)m̃ (x)

[∫
z∈S

T (x, z)1−σ dz

]
, (13)

where

m̃ (x) = (m (x))(σ−1)/(1−α) .

Equation (13) shows that the measure of economic activity at a location, m̃(x), is exactly

proportional to indirect utility (defined over the entire household located at x). Hence, in

19Relaxing the NFS assumption would allow to study the interaction between infrastructure investment policies

and regional specialization patterns. This is an interesting issue that raises additional complications. It is therefore

left to future research.
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per capita terms (with respect to m̃(x)), indirect welfare is independent from m̃(x): Higher

endowment at a location does not trigger a negative terms of trade effect as in the standard

Armington model due to the presence of a linear outside sector that absorbs any variation in

labor endowments across locations.

4.5 The choice of infrastructure investment

In this section, we characterize optimal policies {ia(s), ta}s∈S in a closed economy. The social

planner chooses the infrastructure investment and the tax rate to maximize the total welfare in

the economy. Specifically, the planner’s objective function is an aggregate of the indirect utilities

achieved at every address. Accordingly, ignoring the irrelevant constant, the planner problem is

{ia (x) , ta}x∈S = arg max

{
(1− t)(σ−1)/(1−α)

∫
x∈S

m̃ (x) v(x)dx

∣∣∣∣∫
x∈S

q (x) i (x) dx ≤ btL
}
,

(14)

where

v(x) =

∫
z∈S

T (x, z)1−σ dz. (15)

Note that the household size at location x, represented by (m (x))(σ−1)/(1−α), plays a role of the

weight attached to the consumption utility v(x). Hence, from the social planner’s problem, we

may expect larger infrastructure investments in more densely populated regions.

The above optimization problem can be equivalently written as follows:

{ia (x) , ta}x∈S = arg max

{
(1− t)

(∫
x∈S

m̃ (x) v(x)dx

) 1−α
σ−1

∣∣∣∣∫
x∈S

q (x) i (x) dx ≤ btL

}
. (16)

To guarantee the concavity of the objective function in (14), we assume that

γ(σ − 1) (δ − 1) < 1, and (17)

1− α
σ − 1

< 1. (18)

The first inequality means that T (x, z)1−σ is concave with respect to infrastructure investments,

implying that the consumption utility, v(x), is concave in infrastructure investments as well.20

The second inequality, which would be always met if σ ≥ 2, implies that the objective function

is concave in v(x). As a result, the objective function is concave with respect to infrastructure

investments. Note that the results derived in the paper are qualitatively robust to changes in the

20In brief, the idea behind is that the function,
(

1 + 1
δ−1

x1−δ
)γ(1−σ)

is strictly concave on [0,∞) if and only if

γ(σ − 1) (δ − 1) < 1. This in turn implies that T (x, z)1−σ is concave with respect to infrastructure investments.
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functional form of the transportation costs as soon as T (x, z)1−σ is concave in i (s), s ∈ [x, z],

and has an unbounded derivative at i(s) = 0.

Next, we characterize the solution of the planner’s problem. Note that we find the solution

among continuous functions on [0, s̄]. That is, the social welfare is maximized with respect to

ia (x), where ia (x) is continuous. This limitation also holds in the subsequent analysis (see

Section 5). The following proposition holds.

Proposition 1 The optimal allocation of infrastructure spending across space and the opti-

mal tax rate chosen by a social planner under autarky are implicitly determined by the following

system of equations:

ia (x)δ =
bγ (1− α) (1− ta)L

q(x)

(
φL(x) + φR(x)

)
, (19)

ta =

∫
s∈S q (s) ia (s) ds

bL
, (20)

where

φL(x) =

∫ x
0 m̃ (s)

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s i

a (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫

s∈S m̃ (s) v(s)ds
,

φR(x) =

∫ s̄
x m̃ (s)

(∫ x
0

(
1 + 1

δ−1

∫ s
t i

a (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫

s∈S m̃ (s) v(s)ds
.

Proof In the Appendix.

The terms φL (x) and φR (x) represent the aggregate marginal welfare gains (from a rise in

ia (x)) to the left and the right of location x, respectively. The investment at location x is higher,

the larger the sum φL (x) + φR (x) or the lower the cost of infrastructure at the location, q(x).

In the next proposition, we summarize some additional properties of the optimal infrastructure

investment function, ia (x), and the consumption utility, v(x).

Proposition 2 The optimal infrastructure investment function, ia (x), and the consumption

utility, v(x), have the following properties:

(i) The infrastructure investments are zero at the borders of the region: ia (s̄) = ia (0).

(ii) If q(x) is continuously differentiable, ia (x) is increasing in the neighborhood of zero and

decreasing in the neighborhood of one: specifically, (ia (x))′x=0 =∞ and (ia (x))′x=s̄ = −∞.

(iii) If there is no variation in the cost of infrastructure investment and the household size

across the locations: q(x) = q and m(x) = m for any x ∈ S, then v(x) and ia (x) are

symmetric around x = s̄/2 and have a hump shape with maximum at x = s̄/2.
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Proof The first property immediately follows from the definitions of φL(x) and φR(x).

Specifically, we have that φL(s̄) = φL(0) = φR(s̄) = φR(0) = 0. The last two properties are

proved in the Appendix.

According to the proposition, if there is no variation in the cost of infrastructure and the

household size, the optimal infrastructure is symmetric around the middle point of the [0, s̄]-

interval. That is, to maximize the social welfare, the social planner concentrates the infras-

tructure around the middle point. This in turn implies that the transportation costs in the

middle region are lower than those at the periphery and, thereby, households located closer to

the middle point have higher indirect utility.

4.6 Comparative statics

In this section, we explore how the parameters in the model affect the infrastructure profile

chosen by the social planner. Note that the optimal infrastructure investments at location x can

be written as follows:

ia (x) =

(
γ (1− α) (bL−

∫
s∈S q (s) ia (s) ds)

q(x)

(
φL(x) + φR(x)

))1/δ

, (21)

where φL(x) and φR(x) depend on the investments at all locations x ∈ [0, s̄] (see Proposition 1).

In other words, the infrastructure investments at location x depend on that particular location,

the infrastructure profile in the whole economy, and the set of parameters in the model. That

is,

ia (x) = ia (x, Ia, ε) ,

where Ia represents the infrastructure profile in the economy and ε is the set of parameters in

the model. Thus, the changes in ia(x) due to changes in ε are implicitly determined from

∂ia (x)

∂ε
=
∂ia (x, Ia, ε)

∂ε
+
∂ia (x, Ia, ε)

∂Ia
∂Ia

∂ε
. (22)

The first term in the right-hand side of (22) captures the direct effect of ε on ia (x), while the

second term stands for the indirect effects.

As can be seen, a rise in b increases the right-hand side of (21) resulting in the positive direct

as well as overall effect of b on ia (x): there are more investments in the infrastructure in more

productive (richer) economies. It is also intuitively clear that a rise in the cost of infrastructure

investments, q(x), in some neighborhood of x reduces the investments in that neighborhood. In

particular, if we assume that q(x) = q for all x, then the impact of q on ia(x) is exactly opposite

to that of b: a rise in q decreases ia(x).
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Recall that the size of the economy, L, is given by
∫ s̄

0 m(s)ds and, therefore, depends on

the geographical size, s̄, and the population density, m(x). To examine the impact of L on the

infrastructure profile, we assume that m(x) = m for all x ∈ [0, s̄]. In this case, L is equal to ms̄.

Note that if m(x) is the same at all locations, φL(x) and φR(x) do not directly depend on m,

as it is canceled out (see Proposition 1). Hence, the impact of m on ia(x) is exactly the same

as that of b: that is, a rise in m increases ia(x) for all x. The next proposition summarizes the

above considerations.

Proposition 3 Changes in the parameters in the model have the following effects on the

optimal infrastructure profile in a closed economy:.

(i) A rise in b increases ia(x) for all x.

(ii) Assuming that m(x) = m for all x, a rise in m increases ia(x) for all x.

(iii) Assuming that q(x) = q for all x, a rise in q decreases ia(x) for all x.

Proof The proof is based on the concept of the monotone comparative static (see, for

instance, Milgrom and Shannon (1994)). The details are provided in the Appendix.

Unfortunately, the rigorous analysis of the overall effect (the direct effect plus the indirect

effect) of s̄ on the infrastructure profile is quite complex. Therefore, in this comparative static,

we focus only on the direct effect. In particular, it is possible to show that a rise in s̄ (from

s̄′ to s̄′′) increases ia(x) for x from some left neighborhood of s̄′. Indeed, when s̄ rises from s̄′

to s̄′′, s̄′ becomes an internal location of the new geography and, therefore, has some positive

infrastructure investments. This means that ia(s̄′) increases (as before the changes s̄′ was the

border location with zero infrastructure). By continuity, the infrastructure investments increase

in some left neighborhood of s̄′ as well. In addition, we find that if the cost of infrastructure is

uniform (q(x) = q for all x), then ia(x) rises in all locations x ∈ S. The results of numerical

experiments in Section 4.6.1 suggest that if we take into account the indirect effects as well, then

depending on the parameters ia(x) can decrease for x sufficiently close to the left border (even

if the cost of infrastructure is uniform). This implies that while the direct effects are of the first

order, the indirect effects should not be completely ignored in the analysis.

Proposition 4 Assuming that m(x) = m for all x, a rise in s̄ has a positive direct effect

on ia(x) for x close to the right border and has an ambiguous impact on the investments at the

other locations. If in addition q(x) = q for all x, then a rise in s̄ has a positive direct effect on

ia(x) for all x ∈ S.
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Proof In the Appendix.

The analysis of the effects of γ, δ, and σ on the infrastructure profile is complex as well, as

these parameters are included into the expressions for φL(x) and φR(x) in the non-trivial way.

At the same time, the intuition, which is behind the effects, seems straightforward. A rise in γ

makes the dependence of the transportation costs on infrastructure investments stronger. As a

result, ia (x) rises at all locations. A rise in σ makes the varieties of the differentiated product

more substitutable, shifting the consumption towards local varieties. As a result, the gains from

infrastructure investments fall and, therefore, ia(x) falls as well for all x. Finally, a rise in δ

makes infrastructure investments in different locations less substitutable (as 1/δ falls), which

in turn results in higher optimal investments at all locations. We run a number of numerical

experiments that appear to be consistent with the above intuition. In the next section, we

present some numerical experiments related to the comparative statics above.

4.6.1 Simulations

In this section, we simulate the effects of changes in the parameters on the infrastructure distri-

bution. The benchmark parameterization is as follows. We set σ to 2, δ to 1.5, γ = 0.75, and

α = 0.5. This guarantees that γ(σ− 1) (δ − 1) < 1 and (1−α)/(σ− 1) < 1. In our simulations,

we assume no variation in the cost of infrastructure q(x) and location sizes m(x). Specifically,

we consider q(x) = q = 1, m(x) = m = 1, and b = 1. Finally, as the initial value of s̄, we

consider 1. Under this parameterization, the market size L is equal to 1 as well. The solid black

curve in all panels of Figure 2 depicts the default configuration described above. In this case,

the optimal tax rate is equal to 0.08.

Next, we change the parameters in the model and examine how these changes affect the

equilibrium infrastructure profile. As can be inferred from Panel (a) in Figure 2, a rise in s̄ from

1 to 1.5 significantly increases infrastructure investments at locations that are relatively close to

the initial border and slightly decreases investment at the locations that are relatively far from

the initial border. This result is in line with the discussion in the previous section. In this case,

the tax rate rises to 0.09 (from 0.08).

Finally, a rise in γ (to 1) or δ (to 2) increases the investments at all locations (see panels (b)

and (c), respectively), whereas an increase in σ (to 3) reduces the investments at all locations

(Panel (d)).
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Figure 2: Closed economy equilibrium investment loci: comparative statics

(a) Moving s̄ from 1.0 to 1.5 (b) Moving γ from 0.75 to 1.0
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(c) Moving δ from 1.5 to 2.0 (d) Moving σ from 2 to 3
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Notes. Solid black curve: default investment distribution (σ = 2, δ = 1.5, γ = 0.75, α = 0.5). Dashed red curves:

distributions resulting from alternative parameterizations.
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5 Infrastructure investment in an open economy

In this section, we present the key results of the paper. We assume that the world economy con-

sists of two independent countries, each with its own government that decides on infrastructure

investment in a non-cooperative way. However, consumers demand goods produced all over the

world. Thus, we have a situation with ‘globalized markets, regional politics’. As in the previous

section, the world geography is linear. To simplify the analysis, we assume that countries are

symmetric. In particular, the world geography is described by the [0, 2s̄]-interval, where loca-

tions from [0, s̄] and (s̄, 2s̄] represent the home and foreign country, respectively. Alternatively,

one may think of the [0, 2s̄]-interval as a closed country, with segments representing autonomous

regions within that country. As before, the homogenous good is assumed to be produced at

all locations in both countries, resulting in the same wage rates (equal to b). We also assume

away any variation in the costs of infrastructure and the household sizes across locations: i.e.,

q(x) = q and m(x) = m for all x ∈ [0, 2s̄]. The idea behind this assumption is to isolate a pure

border effect on the equilibrium infrastructure profile.21

In the following analysis, the rationale behind many results is the discrepancy between the

political and the economic reach of countries: while infrastructure investment decisions are

limited to domestic locations, consumers demand imports from both countries and, therefore,

from all locations. Since countries decide in a non-cooperative way, they do not internalize the

positive externality that their investment decisions exert on consumers in other countries. This

leads to global underprovision of infrastructure.

In the following, we first examine the world planner problem. Then, we formulate and solve

the game between the two countries when infrastructure decisions are undertaken independently.

Finally, we compare the obtained outcomes of the game to the world-planner solution.

5.1 World planner problem

The world planner chooses the world infrastructure profile to maximize the indirect utility of

the entire world population. In this case, the space which individuals trade across and the space

which infrastructure decisions are made over coincide. In other words, we have one market and

one jurisdiction (that decides over infrastructure investments). Thus, the world planner problem

can be written as follows:

{iw (x) , tw}x∈[0,2s̄] = arg max
i(x),t

{
(1− t)

(∫ 2s̄

0
v(x)dx

) 1−α
σ−1

∣∣∣∣q ∫ 2s̄

0
i (x) dx ≤ 2bLt

}
, (23)

21The framework can be easily extended to the case when q(x) and m(x) are symmetric around x = s̄.
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where v(x) is the consumption utility at address x and L is the population size in each country.22

As can be seen, the world planner problem looks very similar to the social planner problem in

the case of a closed economy. The only difference is that the geographical space is now given

by the [0, 2s̄]-interval rather than by the [0, s̄]-interval. Hence, we can formulate the following

proposition.23

Proposition 5 The optimal allocation of infrastructure spending across the world geography

and the optimal tax rate chosen by the world planner are implicitly determined by the following

system of equations:

iw (x)δ =
2bLγ (1− α) (1− tw)

q

(
φL,w(x) + φR,w(x)

)
, (24)

tw =
q
∫ 2s̄

0 iw (s) ds

2bL
, (25)

where φL,w(x) and φR,w(x) are defined in analogy to their counterparts in Proposition 1 with

the right border equal to 2s̄ and v(s) =
∫ 2s̄

0 T (x, z)1−σ dz. The properties of the world planner

solution are the same as those for the autarky planner case; see Proposition 2.

Proof The proof is exactly the same as that for Proposition 1.

Similar to the infrastructure profile in the case of a closed economy, iw (x) is symmetric

around x = s̄ and has a hump shape, implying that the maximum of the function is achieved at

x = s̄ (this is due to the absence of variation in the costs of infrastructure and household sizes).

Thus, the first-best allocation involves the highest levels of infrastructure investment around

the border between the countries. Indeed, as the world planner cares about the entire world

population, she finds it optimal to invest more at locations closer to the “core” of the world

(as the social marginal gains at these locations are higher), which is the border. In the next

section, we explore the case when infrastructure decisions are undertaken independently by each

country.

5.2 Global economics, regional politics

In this section, we find the solution of a game between two countries that choose the infras-

tructure investments simultaneously and independently from each other. The game is defined

22Notice that the constraint in the maximization problem is

q

∫ 2s̄

0

i (x) dx ≤ bt
∫ 2s̄

0

m (x) dx = 2bs̄m = 2bL,

where L is the size of the countries.
23As in the previous section, we assume that the optimal infrastructure profile is chosen among continuous

functions.
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as Γ = (I, Ui,Θi) , where I = {H,F} represents the set of countries, Θi is the ith country’s

strategy set (i ∈ I), and Ui is the ith country’s payoff functional defined on ΘH × ΘF . In the

context of the present framework, the set of strategies of the home country, ΘH , is given by{
iH(x), tH

}
x∈[0,s̄]

, where iH(x) ≥ 0,
∫ s̄

0 i
H (x) dx ≤ bLtH/q, and tH ∈ [0, 1]. Similarly, ΘF is the

set of
{
iF (x), tF

}
x∈[s̄,2s̄]

, where iF (x) ≥ 0,
∫ 2s̄
s̄ iF (x) dx ≤ bLtF /q, and tF ∈ [0, 1]. Here, iH(x)

and iF (x) are continuous on [0, s̄] and [s̄, 2s̄], respectively. Finally, the countries’ payoffs are

represented by the corresponding countries’ total welfare functions.24

Since the countries are symmetric, in the following analysis we focus on the home country

only. Given the infrastructure profile and the tax rate in the foreign country, the social planner

at home solves the following maximization problem:

{
iH(x), tH

}
x∈[0,s̄]

= arg max
t,i(x)

{
(1− t)

(∫ s̄

0
v(x)dx

) 1−α
σ−1

∣∣∣∣q ∫ s̄

0
i (x) dx ≤ bLtH

}
, (26)

where

v(x) =

∫ 2s̄

0
T (x, z)1−σ dz.

Note that as agents consume both domestic and foreign products, the consumption utility, v(x),

depends not only on the domestic infrastructure profile, but also on the infrastructure invest-

ments undertaken abroad (through the transportation costs). As a result, the infrastructure

investments in the foreign country affect the choice of the infrastructure investments in the

24As the Nash equilibrium in the above game, we consider the limit of the Nash equilibrium in the corresponding

discrete approximation Γn = (I, Uin,Θin) (in other words, the equilibrium in game Γ is considered as the limit

(n→∞) of the equilibrium in game Γn). To formulate Γn, we consider a uniform partition of the [0, 2s̄]-interval

given by {xi}i=0..2n, where x0 = 0, xn = s̄, and x2n = 2s̄. In this case, the set of strategies of the home country,

ΘHn in country i is given by
{
iH(xi), t

H
}
i=0..n

, where iH(xi) ≥ 0,
∑n
i=0 i

H (xi)4n ≤ bLtH/q, and tH ∈ [0, 1]

(here, 4n = s̄/n is the partition size). In the same way, ΘFn is the set of
{
iF (xi), t

F
}
i=[n+1,2n]

(without loss

of generality, we assume that location n belongs to the home country), where iF (xi) ≥ 0,
∑2n
i=n+1 i

F (xi)4n ≤

bLtF /q, and tF ∈ [0, 1]. The countries’ payoffs are then the following:

UHn = (1− tH)

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

,

UFn = (1− tF )

(
2n∑

i=n+1

v(xi)4n

) 1−α
σ−1

,

where

v(xi) =

2n∑
j=0

T (xi, xj)
1−σ 4n .

It is straightforward to see that the game Γn has a Nash equilibrium in pure strategies. This is due to the fact that

the strategy sets are non-empty, convex, and compact subsets of a metric vector space and the payoff functions

are continuous on ΘHn ×ΘFn and concave in the own strategy of a player: i.e., Uin is concave on Θin.
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home country, and vice versa. The next lemma describes the best response of the home social

planner given a certain infrastructure profile in the foreign country.

Lemma 2 Given an infrastructure profile in the foreign country,
{
iF (x)

}
x∈(s̄,2s̄]

, the home

social planner chooses the infrastructure investments and the tax rate,
{
iH(x), tH

}
x∈[0,s̄]

, that

implicitly satisfy the following equations:

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃L(x) + φ̃R(x)

)
,

tH =
q
∫ s̄

0 i
H (x) dx

bL
,

where φ̃R(x) = φR(x) and

φ̃L(x) = φL(x) +

∫ x
0

(∫ 2s̄
s̄

(
1 + 1

δ−1

∫ s̄
s i

H (r)1−δ dr + 1
δ−1

∫ t
s̄ i

F (r)1−δ dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0 v(s)ds
,

with φL(x), φR(x) given in Proposition 1 (at m(x) = m).

Proof In the Appendix.

As can be seen, the optimal infrastructure profile in an open economy has a similar form

as that in the case of a closed economy. The main difference is the expression for φ̃L(x) that

represents the aggregate marginal welfare gains from a rise in iH (x) to the left of location x.

The reason behind is that infrastructure investments at location x affect the transportation

costs from all foreign locations to the locations on the left of x (as the foreign country is located

on the right of x). This in turn leads to additional welfare gains from a rise in infrastructure

investment at location x compared to the closed economy case. As a result, in contrast to the

closed economy case, iH (x) is strictly greater than zero at x = s̄ if and only if iF (x) is strictly

positive in some right neighborhood of x = s̄ (meaning that the home country is not isolated

from the foreign country). If iF (x) is equal to zero in some right neighborhood of x = s̄,

then φ̃L(x) is exactly the same function as in the case of a closed economy, as in this case the

transportation costs from foreign locations are infinitely high. Finally, as in the closed economy

case, the infrastructure investment at location x = 0 is zero: iH (0) = 0.

In the paper, we focus our analysis on the symmetric Nash equilibrium of the game. In the

symmetric equilibrium, the countries’ equilibrium infrastructure profiles are symmetric around

x = s̄, meaning that iF (x) = iH(2s̄ − x) for x ∈ [s̄, 2s̄]. Taking into account the results stated

in Lemma 2, we formulate the following proposition.

Proposition 6 In the symmetric Nash equilibrium, the equilibrium home infrastructure
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profile and tax rate are implicitly determined by the following system of equations:

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃L,N (x) + φ̃R,N (x)

)
,

tH =
q
∫ s̄

0 i
H (x) dx

bL
,

where φ̃L,N (x) = φ̃L(x) and φ̃R,N (x) = φ̃R(x) from Lemma 2 and iF (r) = iH(2s̄− r).

Proof The proof directly follows from Lemma 2 and the fact that in the symmetric equi-

librium iF (x) = iH(2s̄− x).

Next, we explore some properties of the equilibrium home infrastructure investments. Note

that in the symmetric equilibrium, there always exists some left (right) neighborhood of x = s̄

where iH (x) (iF (x)) is strictly greater than zero. Indeed, if it is not true, then iH (x) is equal

to zero around x = s̄. This in turn means that iF (x) is equal to zero around x = s̄ as well

(due to the symmetry). As a result, there is no trade with the foreign country (because of

infinitely large transportation costs) and the equilibrium infrastructure profile corresponds to

the optimal infrastructure profile in the closed economy, which is, as was shown, strictly positive

for any x ∈ (0, s̄). This constitutes the contradiction. Thus, we can conclude that, in contrast

to the closed economy case, the infrastructure investment at x = s̄ is strictly positive due to the

possibility of trade with the foreign country. Specifically,

iH (s̄)δ =
bLγ (1− α) (1− tH)

q
φ̃L,N (s̄) > 0.

We then explore the behavior of the infrastructure profile around the border. The following

proposition holds.

Proposition 7 In the symmetric Nash equilibrium,
(
iH (x)

)′
x=0

= ∞ and
(
iH (x)

)′
x=s̄

is

negative, but finite.

Proof In the Appendix.

The above proposition suggests that the presence of the foreign country skews the distribu-

tion of infrastructure investments towards the border (compared to the closed economy case),

as this increases the gains from trade with the foreign country. Nevertheless, the infrastructure

profile still has a hump shape (as
(
iH (x)

)′
x=0

> 0 and
(
iH (x)

)′
x=s̄

< 0), meaning that the in-

vestments at the border are lower than those in some internal locations. This in turn implies the

underinvestment of infrastructure at the border compared to the first best allocation (the world

planner’s solution) where the maximum of infrastructure investments is achieved at the bor-

der. Figure 3 illustrates this reasoning and compares the optimal autarky ia(x), world-planner
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iw(x), and non-cooperative (iH(x), iF (x)) infrastructure investment schedules (we consider the

parameterization used in Section 4.6.1).

Figure 3: The distribution of infrastructure investment across space
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Notes. ia(x), iw(x), and iH(x) refer to the autarky, central-planer, and non-cooperative optimal infrastructure

investment distributions. The parameterization is as follows: σ = 2, δ = 1.5, γ = 0.75, α = 0.5, q(x) = q = 1,

m(x) = m = 1, b = 1, and s̄ = 1.

5.2.1 Regional politics, global spending

We also ask the following question. What will the infrastructure profile be, if we force a social

planner in each country to spend exactly the half of the global welfare maximizing amount, but

leave them freedom to choose where to invest? Given this policy, the social planner faces the

following optimization problem:

{
iH,w(x)

}
x∈[0,s̄]

= arg max
i(x)

{(∫ s̄

0
v(x)dx

) 1−α
σ−1

∣∣∣∣q ∫ s̄

0
i (x) dx ≤ bLtw

}
,
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where tw is the tax rate that maximizes the global welfare (which is given for the social planner).

It can be shown that the solution of the maximization problem above is given by

iH,w(x)δ =
γ (1− α)

(∫
s∈S v(s)ds

) 1−α
σ−1

λ0q

(
φ̃L,N (x) + φ̃R,N (x)

)
,

where λ0 is the corresponding Lagrange multiplier that can be found from the budget constraint

q

∫ s̄

0
iH,w (x) dx = bLtw.

As a result, we have that
{
iH,w(x)

}
x∈[0,s̄]

solves

iH,w(x) =
bLtw

q

((
φ̃L,N (x) + φ̃R,N (x)

))1/δ

∫ s̄
0

((
φ̃L,N (x) + φ̃R,N (x)

))1/δ
dx

.

As can be seen, the expression for iH,w(x) is quite different compared to that for iH (x). This

is due to the fact that the social planner chooses the infrastructure profile given the tax rate tw.

In case of iH (x), the social planner chooses both infrastructure investment and the tax rate. As

a result, the first order conditions appear to be different. At the same time, it is straightforward

to see that iH,w(x) has a hump shape as well. In other words, iH,w(x) and iH (x) differ in levels:

iH,w(x) tends to be higher than iH (x), as the tax rate chosen by the global planner is higher

than that chosen by the local social planners (tw > tH); but have a very similar (hump) shape.

To assess by how much the discussed policy reduces infrastructure underinvestment around

the border (compared to the infrastructure profile iH (x)), we consider numerical simulations.

In particular, we take the parameterization used to construct Figure 3 and compute the infras-

tructure profile iH,w(x). Figure 4 illustrates the results. As can be seen from the figure, iH,w(x)

is higher than iH (x) for all x. As discussed above, this is due to the fact that tw > tH (in our

case, tw = 10% and tH = 8%). As a result, in case of iH,w(x) the local social planner spends

more on infrastructure compared to the case when she can choose the tax rate as well. At the

same tome, there is still underinvestment around the border. Having the same resources the

local planner tends to invest more at internal locations and less around the border compared to

the global social planner.

In the next section, we explore welfare losses associated with the Nash equilibrium outcomes.

5.2.2 Welfare losses

In this subsection, we illustrate how misallocation of the infrastructure investments (compared

to the first best, where the world planner chooses the infrastructure profile) affects welfare.
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Figure 4: The distribution of infrastructure investment when the total spending on infrastructure

is set to the first-best level
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Notes. iH(x), iw(x) refer to the non-cooperative and central-planer optimal infrastructure investment distri-

butions. iH,w(x) refers to the non-cooperative optimal infrastructure investment distribution when the total

spending on infrastructure is set to the first-best level. The parameterization is as follows: σ = 2, δ = 1.5,

γ = 0.75, α = 0.5, q(x) = q = 1, m(x) = m = 1, b = 1, and s̄ = 1.

Specifically, we compare the total welfare of Home under the first best allocation with that

under the Nash equilibrium. To do so, we use simulations, as the theoretical analysis is very

cumbersome. Recall that the aggregate welfare at Home is

W =

∫ s̄

0
V (x) dx,

where V (x) is given by (up to a constant)

V (x) = (1− t)(σ−1)/(1−α)m̃ (x)

[∫
z∈S

T (x, z)1−σ dz

]
.

As a measure of welfare losses from misallocation, we consider a percentage change in welfare

when moving from the Nash equilibrium to the first best.
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Table 3: Welfare Losses

Parameters Welfare Losses Compensating Variation

Benchmark: 1.6% 0.8%

m = 100 2.6% 1.3%

m = 1 4% 2%

q = 0.01 0.4% 0.2%

δ = 2.3 0.4% 0.2%

γ = 1.75 2.7% 1.4%

s̄ = 10 3.6% 1.8%

We consider the following benchmark parameterization (recall that the countries are sym-

metric): σ = 2, δ = 1.5, γ = 0.75, α = 0.5, q(x) = q = 1, m(x) = m = 1000, b = 1, and s̄ = 1.

We find that under such a parameterization the aggregate welfare in the Nash equilibrium is

lower than that under the first best allocation by 1.6%. In terms of compensating variation

(the percentage change in the nominal GDP that corresponds to the same welfare change), the

losses constitute around 0.8% of the total income.25 We then change some parameters to see

how the size of welfare losses will change. Table 3 summarizes our findings. The first column

describes a certain parameterization where we change parameters compared to the benchmark

parameterization. The second and third columns report the corresponding welfare changes.

As can be seen from the table, the larger is the country size, the lower are the welfare losses.

For instance, a decrease in m from 1000 to 1 increases the losses from 1.6% to 4%. Similar

outcomes are observed, if q falls or b rises: the welfare losses increase. The table also shows

that if infrastructure investments are less substitutable (δ rises), the welfare losses become less

substantial. In particular, a rise in δ from 1.5 to 2.3 decreases the losses from 2% to 0.4%. At

the same time, a rise in γ leads to greater welfare losses. Finally, a rise in s̄ can substantially

increase the magnitude of the welfare losses as well. Specifically, a rise in s̄ from 1 to 10 increases

the losses from 1.6% to 3.6%. Note that if we force a social planner in each country to spend

25The losses in terms of compensating variation depend on the value of (σ−1)/(1−α), which is equal to 2 under

our parameterization. In fact, the compensating variation (in percentage) is equal to 1− (1− 0.016)(1−α)/(σ−1) ≈

0.008.
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exactly the half of the global welfare maximizing amount (see the previous section), but allow

them to choose where to invest, welfare losses will be much smaller. For instance, in case of the

benchmark specification welfare losses will be around 0.04%. This suggests that welfare losses

arising in case of the Nash equilibrium are mainly due to insufficient finance (a lower tax rate),

rather than the distribution of infrastructure itself.

5.3 Infrastructure investments and other trade costs

In this subsection, we discuss how the presence of additional trade costs (different from the

transportation costs in the model) affects the equilibrium infrastructure profile. In particular,

we assume that the cost of delivering one unit of a product produced at foreign location z to

domestic location x is τT (x, z), where τ > 1 and T (x, z) is modeled as before. Here, τ can be

interpreted as some additional exogenous trade costs arising, for instance, from the presence of

tariffs or other types of trade costs different from pure transportation costs. If τ is equal to one,

then we have the framework considered above.26

Under the presence of additional exogenous trade costs, iH (x) solves the similar system of

equations (see Proposition 6):

iH (x)δ =
bLγ (1− α) (1− tH)

q

(
φ̃L,N (x, τ) + φ̃R,N (x, τ)

)
,

tH =
q
∫ s̄

0 i
H (x) dx

bL
,

where φ̃L,N (x, τ) and φ̃R,N (x, τ) depend on τ . Specifically, τ affects φ̃L,N (x, τ) and φ̃R,N (x, τ)

through the costs of transporting products from Foreign to Home and through the aggregate

consumption welfare (recall that the marginal gains from infrastructure investments are normal-

ized by the aggregate consumption welfare,
∫ s̄

0 v(x)dx). In the former case φ̃L,N (x, τ) is only

affected, while in the latter case both φ̃L,N (x, τ) and φ̃R,N (x, τ) are affected (see the Appendix

for details). Due to complexity if the analysis, we focus only on the direct effects of changes in

τ on the infrastructure investments.

One of the implications of considering only the direct effects is that we ignore the effects of

changes in the tax rate tH : that is, in the considered exercise tH is fixed. This means that to

some extent we explore the redistributive effects of τ on the infrastructure profile (as the total

spendings on infrastructure remain unchanged). The following proposition holds:

26Notice that the additional trade costs take place only if a product is imported from foreign locations (there

are no additional trade costs for transporting between domestic locations).
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Proposition 8 The direct effect of a rise in τ is a decrease in iH (x) in some left neighbor-

hood of the right border and an increase in iH (x) at locations that are relatively far from that

border.

Proof In the Appendix.

Figure 5 provides an illustration.

Figure 5: The effect of higher discrete border costs
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Notes. iH(x) and iF (x) refer to the non-cooperative (Nash) infrastructure investment distributions, and iH′(x)

and iF ′(x) show the same loci with a higher border cost.

In fact, the proposition implies that a rise in τ redistributes the infrastructure profile away

from the border. This finding does not seem surprising, as a rise in the trade costs, τ , reduces

the gains from trade with the foreign country and, therefore, decreases the marginal returns

from investing around the border, implying that iH (x) falls near the border. We believe that

controlling for the indirect effects will not substantially change the above intuition and result in

the similar redistribution of infrastructure investments. The numerical experiments we conduct

confirms this belief.
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The above results offer a natural explanation for the large border effect observed in the data.

Indeed, a rise in τ not only increases the trade costs with the foreign country, but also decreases

the stock of infrastructure around the border. As a result, the effect on the total transportation

costs from Foreign to Home can be magnified, implying a larger border effect. In the next

section, we numerically explore the role of infrastructure in explaining the border effect.

5.3.1 Numerical illustrations

To assess the magnitude of the effect of infrastructure distribution on the border effect, we

consider the following (simulated) gravity regression used in a number of empirical trade papers

to estimate the border effect:

lnXij = µ1 ln dij − µ2Bij + exi + imj + εij , (27)

where Xij represents trade volumes from location i to j generated by the model, dij is the

distance between the locations, Bij is a border dummy that equals to one if i and j belong to

different countries, exi and imj are exporter and importer fixed effects, and εij is the error term.

In the model where transportation costs depend only on distance, one would expect the

estimate of µ2 being equal to (σ − 1) ln τ (recall that τ describes the additional transportation

costs associated with crossing the border (see the previous section)). However, if not only

distance, but also infrastructure matters for transportation costs, then the estimate of the border

effect derived from a regression in (27) is upward biased. That it, one would expect the estimate

of µ2 being higher than (σ − 1) ln τ .

To examine numerically the size of the bias, we first consider the benchmark parameterization

used in Section 5.2.2 with τ equal to 1.5. Since in this case σ = 2, the estimate of µ2 using

trade volumes simulated by the model without infrastructure is ln 1.5 ≈ 0.41. In case of trade

volumes generated by the present model, we have the following outcome (the robust standard

errors are in brackets):27

lnXij = − 0.07
(0.0004)

ln dij − 0.48
(0.0005)

Bij + exi + imj + εij .

As predicted, the estimated value of µ2 is higher than 0.41. Specifically, infrastructure investment

explains 15% (1 − 0.41/0.48) of the estimated border effect. Alternatively, in the presence of

infrastructure investment, the border effect increases by 17% (0.48/0.41 − 1). If we increase σ

from 2 to 3.4 (the value used in a number of quantitative trade papers), we have that

lnXij = − 0.17
(0.001)

ln dij − 1.17
(0.001)

Bij + exi + imj + εij ,

27The R2 of the regression is around 99%.
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while in the model without infrastructure the estimate of µ2 is (σ− 1) ln τ ≈ 0.97. Thus, in this

case infrastructure investment increases the magnitude of the estimated border effect by around

21%.

To explore further how changes in the parameters in the model affect the role of infrastructure

in explaining the border effect, we consider the following exercise. As the values of the parameters

of interest we take random draws from uniform distributions. For these values we calculate the

percentage change by which the presence of infrastructure increases the border effect (given by

the estimate of µ2 minus (σ−1) ln τ). Then, we take a new draw of the parameters and calculate

a new percentage change and so on. Finally, we regress the percentage change on the values of

the parameters to explore the direction and the magnitude of the effects.

The set of the parameters in the effects of which we are interested in are γ, δ, σ, and s̄. We

assume that γ is a random draw from the uniform distribution on [0.1; 2]. To be consistent with

the constraint (σ − 1) (δ − 1) γ < 1, we take the values of δ and σ as draws from uniform distri-

butions on [1; 1.1 + 1/γ] and
[
2; min

(
1 + 1

γ(δ−1) , 8
)]

, respectively (here we limit the minimum

possible value of σ by 2 and the maximum possible value by 8). For s̄ we consider a uniform

distribution on [1; 2]. The number of draws is 5000. The rest of the parameters are the following:

α = 0.5, q(x) = q = 1, m(x) = m = 1000, and b = 1.

The following regression describes the effects of the parameters on the size of the border

effect:

4i = −62.65
(1.88)

+ 54.09
(0.56)

γi + 2
(0.21)

δi + 11.66
(0.31)

σi + 5.8
(0.8)

s̄i + νi,

where {γi, δi, σi, s̄i} is draw i ∈ 1..5000, 4i is the corresponding percentage change in the

border effect, and νi is the error term. The mean value of 4i is 37% with the minimum and the

maximum given by 0.3% and 124%, respectively. As can be seen, the parameters of interest

positively and significantly affect the magnitude of the impact of infrastructure on the border

effect. For instance, a unit rise in γ increases the impact by 54%, while a unit rise in δ increases

the magnitude only by 2%. The R2 of the above regression is 0.76.

5.4 The role of asymmetry

In this subsection, we analyze how asymmetry between countries affects the optimal distribution

of infrastructure and explore its welfare implications.
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5.4.1 Asymmetry in country size

First, as the source of asymmetry we consider differences in the size of the countries. Specifically,

in the simulations we consider the same parameterization as above, but assume that m(x) = 1000

for all domestic locations and m(x) = 900 for all foreign locations: i.e., Home is larger than

Foreign. Figure 6 depicts the infrastructure profiles under the Nash equilibrium and the first

best allocation. As can be inferred from the figure, the first best allocation of infrastructure is

slightly skewed towards domestic locations, as they have a bigger size. In case of the asymmetric

Nash equilibrium, the infrastructure profile has a hump shape in both countries with more

infrastructure investments at Home (as Home is larger and, therefore, has a higher total income).

Notice that in the case of the Nash equilibrium, the infrastructure investment profile has a

discontinuity at the border (caused by the asymmetry between the countries).

Figure 6: The distribution of infrastructure across asymmetric countries

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

iw(x)

iF (x)

iH (x)

Notes. iH(x) and iF (x) refer to the non-cooperative and iw(x) to the central-planer and optimal infrastructure

investment distributions.

The results of the simulations show that the welfare losses of the large country (Home) slightly
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Table 4: Welfare Losses

Parameters Welfare Losses of Home Welfare Losses of Foreign

Benchmark: 1.60% 1.60%

mH = 1000, mF = 900 1.59% 1.70%

mH = 1000, mF = 800 1.58% 1.78%

decrease (from 1.6% to 1.59%) compared to the benchmark case, while the losses of the small

country (Foreign) increase from 1.6% to 1.7%. This implies that small countries lose relatively

more from an inefficient distribution of infrastructure. The intuition behind is the following.

In the case of the first-best allocation the smaller country benefits from the redistribution of

resources across the countries enforced by the social planner, while in the case of the non-

cooperative equilibrium the smaller country uses only its own resources and, therefore, looses

relatively more than the large country. This intuition can be also illustrated by Figure 6. As

can be seen from the figure, in the case of the first best allocation the infrastructure investments

do not substantially differ across the countries: the distribution is almost symmetric. While in

the case of the non-cooperative equilibrium, the level of infrastructure investments at Foreign is

significantly lower than that at Home. We then further decrease the size of Foreign: m(x) = 800

for foreign locations. In this case, the welfare losses of Home are 1.58% and the losses of Foreign

are 1.78%, which is in line with the above intuition. Table 4 summarizes the above findings.

5.4.2 The emergence of a third country – China

So far, we have studied a world of two countries which are connected by land-borne (intraconti-

nental) trade. However, it is straightforward to investigate how the emergence of a third country

affects the intracontinental distribution of infrastructure investment, trade, welfare, and the size

of the border effect. We do this by assuming that there is a third country, call it China, which

supplies and demands goods to Home and Foreign via a harbor that is located at address 0 in

Home. We take China to be of the same size as Home and Foreign, but assume that its supply

and demand capacity is exogenous to the outcomes in Home and Foreign. In particular, we do

not model the spatial extension of China, and treat it as a mass point at location 0.

By construction, this constellation creates a costal country (Home) and a hinterland (For-

eign). It also breaks symmetry between Home and Foreign, as any location in Home now is
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Figure 7: Overseas trade and the distribution of intracontinental transport infrastructure in-

vestment
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more central than any region in Foreign. With constant distribution of infrastructure invest-

ment, this would be true: on average, consumer prices will be lower in Home than in Foreign.

However, with endogenous infrastructure investment, there will be additional effects that tend

to exacerbate inequality both between Home and Foreign as well as within them.

Figure 7 shows how the intracontinental infrastructure investment distribution changes with

the emergence of intercontinental trade. In Home, there will be a massive reallocation of spending

towards the coastal locations where the Chinese imports crowd out varieties from locations

within Home and Foreign. Investment falls rapidly with increasing distance to the harbor and

is lower than in the benchmark case (intracontinental trade only) in about half of all locations

in Home. In particular, Home will invest substantially less at the border with Foreign. With

a dramatically more skewed distribution of investment in Home, the distribution of real wages

will also become more skewed, so that trade with China makes Home a more unequal economy.

In Foreign, now a hinterland, incentives for investment are globally lower, except for locations

very close to the border with Home. The reason for this is that domestic goods become less
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important in the price index of consumers in Foreign, as consumers allocate spending to Chinese

imports. Thus, the marginal utility gain from improving investment at most addresses within

Foreign falls. Close to the border, the opposite is true because imported goods have become more

relevant for welfare. Interestingly, the emergence of China increases the border effect, because

it diverts investment away from it. This means that the estimated border dummy should grow

larger in a standard gravity equation despite the fact that border related trade costs have not

changed.

6 Empirical analysis

In this section we explore a data set on the spatial distribution of transportation costs in France

and confront the model to the data. Reliable data on transportation costs is difficult to ob-

tain. However, Combes and Lafourcade (2005) provide estimates of transportation costs across

French départements for the year of 1993. These data are particularly interesting, because the

authors adopt a comprehensive perspective on transportation costs. They report the total cost

of transporting a standardized container by standardized truck from one departemental capital

to another. They take account of the cost of fuel, truck depreciation, tire use, the wage bill

and accommodation costs of the truck driver(s), road tolls, taxes, and insurance costs. For the

purpose of the present paper, we look at variable costs, thereby excluding expenses related to

the loading and unloading of the truck.

Combes and Lafourcade (2005) use their data to calculate measures of average remoteness

of regions, i.e., the average cost to reach some place from the rest of France. Not surprisingly,

they document a strong core-periphery pattern. In the present context, we are more interested

in the spatial gradient of transportation costs. We use the Combes-Lafourcade data to construct

a proxy of the incremental trade costs per kilometer of transiting through a département. Ap-

pendix B contains the details on the construction of that proxy. It turns out that the spatial

variation in the variable cost of overcoming one unit of distance is not constant over space. Per

kilometer costs of overcoming one kilometer of distance are on average 4.79 French Francs. The

associated standard deviation is 2.77.

Figure 8 plots the density of population (population per square kilometer), a measure of the

geographical difficulty of territory (defined in the Appendix), and average variable transportation

costs incurred by transiting a département (also defined in the Appendix). Not surprisingly,

population density is highest in the Paris region (about 20,000 inhabitants per square kilometer

in Paris intra-muros) and somewhat lower in the closer Parisian neighborhood (̂Ile de France).
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Figure 8: Population density, difficulty of territory, and variable trade costs per km in France

Notes. Source of data is Combes and Lafourcade (2005). Left figure: population density; middle figure:

difficulty (ruggedness) of territory; right figure: variable trade costs (transit costs) per km. Shading grows

darker as respective values rise

Regions with strong urban conglomerations, such as the Lille or Lyon regions (départements

Nord and Rhône, respectively) have densities of 450. Départements in border regions have

above average values, while interior départements have densities below average.28 Our measure

of difficulty of territory is based on the difference between the highest and the lowest altitude

above sea level in a département. This measure is naturally high in départements that in the

Alps, the Pyrenees, or the Massif Central. It is low in coastal areas or along large rivers (e.g.,

the Loire valley).

The rightmost panel of 8 shows transportation costs per kilometer. There is no strong ob-

served association of transportation costs to geographical or demographic features. However,

costs tend to be low when the territory is easy or the population of density is high. Transporta-

tion costs are lowest in the Paris or Lyon region. However, they are also low in the strongly

populated North-West.29

One of the predictions in the model is that all else equal, transportation costs in the mid-

dle regions are lower than those at the periphery (due to lower investments in transportation

infrastructure). To confront this prediction to the data, we consider the following simple OLS

regression that attempts to explain the pattern of transportation costs across space:

lnTi = ∂0 + ∂1 lnDi + ∂2Xi + εi,

where Ti is the variable transportation costs per kilometer in département i, Di is the measure

28The average density is about 105 inhabitants per kilometer.
29Note that there is no transportation data for Paris intra-muros.
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of the overall remoteness of the département, and Xi is the set of controls. According to the

theory, we expect that ∂1 is greater than zero.

Table 5 reports the results of the regression. Column (1) shows that the geographical dif-

ficulty of territory explains about 16 percent of the variance in transportation costs. Column

(2) adds the total income of a département that appears to have a negative impact on trans-

portation costs: the bigger is a region, the lower are the transportation costs there. Column

(3) adds population size that allows us to control for the role of per capita income. As can be

seen, transportation costs are lower in richer départements (controlling for populations size). In

column (4) we add land surface as a control. Controlling for population size, this effectively

accounts for the role of population density. As expected, an increase in density reduces the

variable transportation costs. Moreover, the R-squared of the regression surges from 33 percent

to 58 percent.

Columns (5) and (6) include two measures of the overall remoteness of geographical units.

Depending on the variable included, the R-squared of the regression increases to up to 61 percent.

Moreover, regardless of the exact measure of remoteness, transiting in more remote regions is

significantly more costly, holding geographical and demographic factors constant. This empirical

finding is in line with our expectation of positive ∂1.

7 Extensions

In this section, we discuss some potential extensions of the framework.

7.1 The monopolist case

Here we consider an example when infrastructure investments are made by a third party. In the

analysis above, we assume that the infrastructure profile is chosen by the government. However,

it can be the case that the government ”outsources” infrastructure investments to a third party.

Below we consider a simple example of such a situation and show that the qualitative implications

of the model do not change.

We assume that there is a monopolist, who decides on the infrastructure profile. The decision

is based on the profit maximization and the profits of the monopolist are given by

π
(
iM
)

= p

∫ s̄

0
R̄(x)dx−

∫ s̄

0
q(x)iM (x)dx, (28)

where p is the price per unit of the traffic the monopolist receives, R̄(x) is the measure of the

total traffic through location x, iM (x) is infrastructure investments at location x, and q(x) is
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Table 5: Different remoteness measures and average transit costs

Dep. var.: Ln variable transport costs per km for transits through a département

(1) (2) (3) (4) (5) (6)

ln distance to Paris 0.034**
(0.015)

ln GTC to Paris 0.039**
(0.015)

ln geography 0.041*** 0.029*** 0.032*** 0.020** 0.004 0.001
(0.013) (0.011) (0.010) (0.008) (0.011) (0.011)

ln GDP -0.048*** -0.186*** -0.028 -0.019 -0.018
(0.013) (0.050) (0.052) (0.048) (0.047)

ln population 0.167*** -0.002 -0.006 -0.007
(0.056) (0.059) (0.056) (0.055)

ln area (km2) 0.087*** 0.068*** 0.067***
(0.013) (0.015) (0.014)

Constant 1.590*** 2.026*** 1.112*** 1.110*** 1.059** 0.967***
(0.009) (0.118) (0.334) (0.299) (0.285) (0.288)

N 94 94 94 94 94 94
adj.R2 0.158 0.289 0.333 0.583 0.609 0.616
F − stat. 10.06 9.443 10.66 41.91 41.25 45.17
RMSE 0.097 0.090 0.088 0.070 0.068 0.067

Robust standard errors in parentheses, ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
GTC: generalized transport cost. See the text and Appendix B for more details.
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the cost of the investments. In the above specification, we assume that the government subsidies

the transportation sector by paying the fixed price p per unit of the traffic to the monopolist

(for example, such a subsidy can be financed through an income tax), who conditional on that

invests in the transportation infrastructure. This implies that the monopolist takes the price p

as given and p does not affect the transportation costs and, therefore, the c.i.f. prices of products

(as p is paid by the government). Such an assumption removes the distortive effects of p on the

infrastructure profile.

Next, we describe the infrastructure profile chosen by the monopolist in case of closed and

open economies.

7.1.1 The closed economy

In the closed economy, the total traffic through location x is given by

R̄(x) =

∫ x

0

(∫ s̄

x
R(y, z)dz

)
dy +

∫ s̄

x

(∫ x

0
R(y, z)dz

)
dy,

where

R(y, z) = (1− α)(1− tM )
Y (z)T (y, z)1−σ∫ s̄
0 T (v, z)1−σ dv

.

Here, R(y, z) is interpreted as the traffic from y to z: the number of units of a product produced

at y and transported to z. It is determined by demand at location z and the transportation

costs from y to z. Note that in general R(y, z) is not equal to R(z, y). Finally, tM is the income

tax imposed by the government to finance the infrastructure investments and Y (z) is the gross

income at location z. We assume that the monopolist takes the income tax and the location

sizes as given.

It is possible to show that in case of the interior solution, the infrastructure profile maximizing

the monopolist’s profit is given by

iM (x)δ =
pγ(1− α)(1− tM )(σ − 1)

q(x)

(
φL,M (x) + φR,M (x)

)
, (29)

where φL,M (x) (φR,M (x)) represents the aggregate marginal profits due to a rise in traffic from

the right (the left) to the left (the right) of location x.30 The infrastructure profile chosen

by the monopolist has qualitative properties that are similar to those in the benchmark case.

Specifically, iM (0) = iM (s̄) = 0. If q(x) = q and Y (z) = Y for all x, z ∈ [0, s̄] (implying no

asymmetries in the cost of infrastructure and the distribution of income), the infrastructure

profile has a hump shape and is symmetric around s̄/2.

30The corresponding derivations and the expressions for φL,M (x) and φR,M (x) are available in the Online
Appendix.
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However, there is also a conceptual difference. Under certain parameters, it can be the case

that the monopolist finds it optimal to put zero investments into the locations that are relatively

close to the borders. As a result, there can be regions (with positive measure) that do not have

transport infrastructure at all. In contrast, the social planner chooses positive infrastructure

investments for all locations (except x = 0 and x = s̄).

The intuition behind this outcome is as follows. A rise in the infrastructure investments in a

certain region has two effects on the total traffic. On the one hand, due to better infrastructure

the traffic through the region goes up, increasing the total traffic. On the other hand, the traffic

through other regions goes down because of the corresponding changes in the price indices. This

tends to decrease the total traffic. It appears that in some cases the negative effect prevails over

the positive one in the border regions, resulting in zero infrastructure investments around the

borders.

Figure 9 (panel (a)) simulates the infrastructure distributions (in the symmetric case) chosen

by the monopolist and the social planner under the same set of the parameters in the model.

In the numerical experiment, the value of p is chosen such that the total cost of infrastructure

investments is the same in both cases: i.e., the two distributions have the same average. As can

be seen from the figure, the social planner tends to invest more around the periphery, while the

monopolist invests more around the geographical center of the economy.

Figure 9: Equilibrium investment loci: social planner vs. monopolist.
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Notes. Solid black curves (iM (x), iMH(x), and iMF (x)) refer to investment profile resulting from non-cooperative
monopolists. Dashed red curves (ia(x), iH(x), and iF (x)) refer to (non-cooperative Nash) solutions, and iw(x) is
the world planner outcome.
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7.1.2 The open economy

In the open economy, the total traffic through location x is given by

R̄(x) =

∫ x

0

(∫ 2s̄

x
R(y, z)dz

)
dy +

∫ 2s̄

x

(∫ x

0
R(y, z)dz

)
dy.

As in the benchmark case, we assume that the monopolists at Home and Foreign choose the

corresponding infrastructure investments in a non-cooperative way. In the symmetric Nash

equilibrium with no asymmetries in the cost of infrastructure and the location size, the domestic

infrastructure profile (in case of the interior solution) is given by

ı̃M (x)δ =
pγ(1− α)(1− t̃M )(σ − 1)

q

(
φ̃L,M (x) + φ̃R,M (x)

)
,

where as before φ̃L,M (x) (φ̃R,M (x)) represents the aggregate marginal profits due to a rise in

traffic from the right (the left) to the left (the right) of location x. Similar to the social planner

solution in the open economy, the infrastructure profile is skewed towards the border with the

foreign country. Moreover, numerical simulations show that the infrastructure distribution has

a hump shape.31 Finally, it is straightforward to show that the presence of costs associated with

crossing the border will redistribute the infrastructure away from the border, amplifying the

border effect.

Figure 9 (panel (b)) compares the simulated infrastructure distributions chosen by the social

planner and the monopolist in the open economy (as in the previous figure, the two distributions

have the same average) with the distribution chosen by the world social planner. As can be

inferred from the figure, the monopolist tends to invest more around the border with the foreign

country, while the social planner invests more at the periphery. This is in line with the idea

outlined in the previous section that the monopolist invests more at central locations of the

economy. However, simulations demonstrate that even though the monopolist invests more

around the border than the social planner does, there is still substantial underinvestments in

the infrastructure compared to the first best allocation.

7.2 Toll taxes

In reality, many countries operate toll taxes for freight traffic. The ratio of interregional highways

subject to decentrally administered toll systems ranges from 6 percent to 52 percent in France.

Countries such as Germany and Austria have centrally administered distance dependent road

pricing for lorries. User fees may be contingent on a wide array of factors such as the situation

31A strict proof of a hump shape of the infrastructure distribution appears to be quite complicated.
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of the environment (e.g., smog), the degree of congestion, the time at which a road is traveled

(fees may be higher for travel during night or weekends), or whether an sensible region is crossed

(e.g., some protected zone).

How a toll system affects the main argument in this paper depends very much on its specific

design. Suppose, the government decides on the infrastructure allocation across space, but rather

than taxing consumers through lump-sum taxes, it taxes road users without discriminating

between home- or foreign-bound transport. This kind of taxation is of course distortionary, since

it will affect goods prices of the regional and the world economy. Further assume that the fee may

vary continuously on the space of addresses and that it works just as our iceberg transportation

costs, albeit with the shaved transported good not lost but transferred into the governments

coffers. In that case, the government has two margins of action: it sets a distribution of fees,

f (s), where s ∈ [0, s̄], and decides on the infrastructure allocation, i (s) . Total income from fees

will be B =
∫ s̄

0 f (s)R (s) ds, where R (s) is the value of goods that are transported through the

point s. Note that R (s) depends on the domestic and foreign distribution of infrastructure. If

the government is free to spend B on whatever infrastructure distribution it prefers, and does

not impose any additional tax, it will find it optimal to make fees dependent on the distance

to the border, with higher fees the closer the border. Moreover, it will concentrate its spending

as before in the central regions of the jurisdiction. The reason for this result is identical to the

one discussed above: The government cares only about home welfare, thus taxing foreigners and

transferring the receipts to home citizens is a welcome option.

If governments are not allowed to spend toll income on places other than those were the

income has been generated, there will now be a direct link between infrastructure investment and

transit volume, f (s)R (s) /q (s) = i (s) . Governments will then set f (s) such that native welfare

is maximized. By imposing high fees in border regions, governments tax foreign consumers more

strongly than domestic ones; however, the implied high investment volumes are of little value

for domestic consumers. By imposing high fees in the center, governments affect domestic

consumers, but also achieve high utility for them. The implied distribution of infrastructure

need not exhibit excessive spatial variation, but it still can; the exact outcome depending on

underlying model parameters.

There are a number of institutional arrangements that involve the private sector into the

construction and maintenance of transport infrastructure projects. Governments could sell ex-

ploitation licenses to private firms who construct roads and set fee structures f (s).While this is

a choice of many governments, the economic modeling poses a number of problems, since one

would have to decide whether the licenses are sold to a single provider, to a consortium, or to lo-
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cal monopolists, and whether those firms can commit to certain fee schedules and infrastructure

investments when making their bids. At the same time, the example in the previous section il-

lustrates that the spatial distribution of infrastructure would not necessary qualitatevely change

if the private sector is involved.

7.3 Supranational entities

Since decentralized transport infrastructure decisions generate positive externalities leading to a

global underprovision and excessive spatial variation of infrastructure investment, there is a case

for a supranational entity, such as the European Union (EU), to intervene. Indeed, the EU is

involved in a large project, the Trans-European-Networks (TEN), that strives to coordinate and

cofinance national infrastructure provision efforts. Member states have committed themselves

to construct a number of road and rail links that link European regions. The EU, in turn,

cofinances these projects. The degree of cofinancing is higher in peripheral regions than in

central ones. Is this policy able to internalize the externalities highlighted in the present paper?

In principle, the answer is yes. In order to achieve the first-best infrastructure distribution,

the EU should be allowed to tax citizens (or member state governments on their behalf) and

subsidize the price of infrastructure. The problem with the above subsidization principle is that

it does not necessarily ensure that the overall quantity of infrastructure provision is efficient.

7.4 Internal labor mobility

In the model we assume away the effects of internal labor mobility on the infrastructure profile.

We believe that allowing m (s) to adjust endogenously will not qualitatively change the main

implications of the model. For instance, the equilibrium in a closed economy in case of internal

labor mobility (associated with some adjustment costs to avoid extreme solutions) can be con-

sidered as the outcome of the following multi-stage variation of the model. The economy starts

with the uniform distribution of population. In the absence of other asymmetries, the optimal

distribution of infrastructure in this case is symmetric around the middle location. Then, giv-

en this infrastructure profile, agents decide about their location and, since the transportation

infrastructure is better around middle locations, the distribution of population will ”squeeze”

around the middle point. Given the new distribution of population, the social planner adjusts

the distribution of infrastructure and so on till convergence. The resulting distribution of infras-

tructure will be symmetric around the middle location, but more squeezed around that point

compared to the case with no labor mobility (as around the middle point the distribution of

population will be denser). In other words, labor mobility will magnify the concentration of
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infrastructure around middle locations. In case of an open economy labor mobility will magnify

the skewness of the distribution of infrastructure towards the border. Note that in a one-stage

model where the social planner chooses the infrastructure profile taking into account population

mobility, multiple equilibria are possible.

8 Conclusions

This paper develops a model where consumers demand goods from the entire world, but the

world is fragmented into jurisdictions which set infrastructure investment schedules in a non-

cooperative way. Governments caring only for their own welfare constituency will ignore the

effects that their decisions have on foreign consumers; this basic externality leads to global

underinvestment. The externality is stronger the more foreign-bound transit flows through an

address, and the size of such transit is larger the closer national borders are to that address.

Hence, infrastructure underinvestment is stronger in peripheral regions of jurisdictions rather

than in central ones.

The local lack of infrastructure investment makes imports from other countries more expen-

sive than imports from other regions from the same country, even if geographical distance or

incomes of trading partners are the same. Our infrastructure story may therefore contribute to-

wards unpacking trade costs and explaining the border puzzle highlighted by McCallum (1995).

The model has a range of predictions that can be put to an empirical test. For instance,

the model has interesting predictions relating to the effects of preferential trade liberalization.

Infrastructure investment should be skewed towards that border which is economically perme-

able. Subsequent waves of EU enlargement could be used to check this hypothesis. The model

could also be brought to a calibration exercise. Standard new economic geography models pre-

dict economic inequality, but require the existence of natural peripheries. Our argument would

allow economic inequality across space even in circumstances where no natural periphery exists,

and borders have exclusively political significance. Calibration exercises of the standard models

often lead to simulated inequalities statistics that are too low compared to the data. Allowing

for the endogenous allocation of infrastructure across space could help improve this fit.
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Appendix A

In the Appendix, we provide all the necessary proofs for the lemmas and propositions in the paper.

Proof of Lemma 1

Property (iv)

The behavior of T (x, z) with respect to geographical distance can be checked by looking at the derivative
of T (x, z) with respect to z. Specifically, we have that

T (x, z) =

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ
,

Tz (x, z) = γ

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ−1
1

δ − 1

[
i (z)

1−δ
]
> 0,

Tzz (x, z) = γ

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ−1

(γ − 1)

(
1
δ−1

[
i (z)

1−δ
])2

1 + 1
δ−1

∫ z
x
i (s)

1−δ
ds
− i (z)

−δ
i′ (z)

 ≷ 0

⇐⇒ (γ − 1)

(T (x, z))
1/γ

(
i (z)

1−δ

δ − 1

)2

≷ i′ (z) i (z)
−δ
.

The left-hand side shows the effect of a marginal increase in distance on Tz (x, z) under the assump-
tion that i (z + dz) = i (z) . It reflects variation in trade costs due to an increase in distance, holding
infrastructure constant. The right-hand side makes the opposite assumption and reports the change in
Tz (x, z) due to the difference in infrastructure investment between z and z + dz, holding the sheer costs
of distance constant. T (x, z) is convex (as in Krugman), if the left-hand side dominates.

Property (v)

We compute the elasticity of substitution between investment at two different locations s′, s
′′ ∈ [x, z] as

follows

− d ln [i (s′) /i (s′′)]

d ln
∣∣∣∂T (x,z)
∂i(s′) /

∂T (x,z)
∂i(s′′)

∣∣∣ ,
where for any s ∈ [x, z]

∂T (x, z)

∂i (s)

d.≡ γ
(

1 +
1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ−1

i (s)
−δ
.

As a result, the elasticity of substitution is given by

− d ln [i (s′) /i (s′′)]

−dδ ln |i (s′) /i (s′′)|
=

1

δ
< 1.

Property (vi)

The Lagrangian for the cost minimizing problem can be written as follows:

Λ ({i (s)} , λ) = q

∫ z

x

i (s) ds+ λ

[
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds− T̄ 1/γ

]
,

where q is the cost of infrastructure investment at location s. It is straightforward to see that the first
order conditions imply that, for any two locations k, l ∈ [x, z],

i (k) = i (l) .
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Taking into account the budget constraint, we derive that

i (k) = i (l) =
{

(z − x) /
[
(δ − 1)

(
T̄ 1/γ − 1

)]}1/(δ−1)

.

Proof of Proposition 1

To find the optimal infrastructure investments on [0, s̄], we first formulate and analyze a discrete modi-
fication of the social planner’s maximization problem (which approximates the actual continuous maxi-
mization problem). Remember that the social planner solves

{ia (x) , ta}x∈S = arg max

{
(1− t)

(∫
x∈S

m̃ (x) v(x)dx

) 1−α
σ−1

∣∣∣∣∫
x∈S

q (x) i (x) dx ≤ btL

}
.

where

v(x) =

∫
z∈S

T (x, z)
1−σ

dz

=

∫ s̄

0

(
1 +

1

δ − 1

∣∣∣∣∫ z

x

i (s)
1−δ

ds

∣∣∣∣)γ(1−σ)

dz

=

∫ x

0

(
1 +

1

δ − 1

∫ x

z

i (s)
1−δ

ds

)γ(1−σ)

dz +

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ(1−σ)

dz.

In the discrete version of the problem, we assume that the geography of the economy consists of n
points (transportation hubs) uniformly distributed on [0, s̄]: 0 = x1 < x2.. < xn = s̄. We define the
distance between location xi and xi+1 by 4n: that is, x2−x1 = ...xn−xn−1 = 4n. We also assume that
the transportation costs between two locations, xi and xj , depend on the level of infrastructure at the
location of the producer and the intermediate locations between xi and xj (not including the location of
the consumer) and the distance between the locations determined by 4n.32 Specifically, if a product is
sent from xi to xj (xi < xj), the transportation costs are

T (xi, xj) =

(
1 +

1

δ − 1

j−1∑
k=i

i (xk)
1−δ4n

)γ
.

We then formulate the social planner’s problem in the case of the discrete geography in the following
way:

{ia (xi) , t
a}i=1..n = arg max

(1− t)

(
n∑
i=1

m̃ (xi) v(xi)4n

) 1−α
σ−1

 , (30)

subject to

n∑
i=1

q (xi) i (xi)4n ≤ btL, (31)

i(xi) ≥ 0, i = 1..n. (32)

32The fact that the transportation costs between xi and xj do not include the level of infrastructure investment
at the destination location (the location of the consumer) means non-symmetric transport costs. However, taking
the limit (n → ∞) will imply symmetric transport costs between any locations, as in this case the contribution
of the infrastructure of a single location into the total transport costs will be negligible.
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Here,

v(xi) = 4n


∑i−1
k=1

(
1 + 1

δ−1

i−1∑
j=k

i (xj)
1−δ4n

)γ(1−σ)

+

∑n
k=i+1

(
1 + 1

δ−1

k∑
j=i+1

i (xj)
1−δ4n

)γ(1−σ)

+ 1

 , (33)

where the first term in the brackets describes the welfare derived from trade with locations on the left
side of xi, the second term describes the welfare derived from trade with locations on the right side of
xi, and one stands for the transportation costs from xi to xi (that are normalized to unity). In this case,
the social planner’s problem is to choose the level of transportation infrastructure at each location xi
that maximizes the social welfare. This maximization problem is the approximation of the maximization
problem in the main text (see (14)). Specifically, taking the limit (n → ∞), one can derive the actual
maximization problem described in the main text. This in turn implies that the solution of the continuous
maximization problem is the limit of the solution of the discrete problem (when n→∞).

Note that the existence of the global maximum in the above discrete maximization problem follows
from the continuity of the objective function and the fact that the objective function is maximized on the
compact subset of Rn (which is given by the constraints in (31) and (32)). Moreover, it is straightforward

to show that if γ(σ − 1)(δ − 1) < 1 (as assumed in the paper),
(

1 + 1
δ−1

∑k
j=i+1 i (xj)

1−δ4n
)γ(1−σ)

is

a concave function in i (x) = {i (xj)}j=1..n for any i and k. This in turn implies that ṽ(xi) is concave

in i (x) as the sum of concave functions, but not strictly concave, as v(xi) does not depend on i(xi).
However, it is straightforward to show that

∑n
i=1 m̃ (xi) v(xi) is strictly concave with respect to i (x).

Finally, since (1− α) / (σ − 1) is assumed to be strictly less than one, the objective function in (30) is
strictly concave in infrastructure investments, i(x).

Next, we formulate the corresponding Lagrange function that can be written as follows:

Λ ≡ (1− t)

(
4n

n∑
i=1

m̃ (xi) v(xi)

) 1−α
σ−1

− λ0

(
n∑
i=1

q (xi) i (xi)4n −btL

)
,

where λ0 is the Lagrange multiplier of the corresponding constraint. The necessary and sufficient condition
for the global maximum is that

∂Λ

∂i (xi)
= 0, i = 1..n,

∂Λ

∂t
= 0.

Next, we find the expression for ∂Λ/∂i (xi). Specifically,

∂Λ

∂i (xi)
=

(1− t) (1− α)

σ − 1
4n

(
4n

n∑
l=1

m̃ (xl) v(xl)

) 1−α
σ−1−1 n∑

l=1

m̃ (xl) (v(xl))
′
i(xi)
− λ0 4n q (xi) . (34)

One can show that

(v(xl))
′
i(xi)

= (4n)
2
γ(σ − 1)i(xi)

−δ
i∑

k=1

(
1 +

1

δ − 1

l−1

j=k
i (xj)

1−δ4n
)γ(1−σ)−1

if i < l,

(v(xl))
′
i(xi)

= (4n)
2
γ(σ − 1)i(xi)

−δ
n∑
k=i

(
1 +

1

δ − 1

k

j=l+1
i (xj)

1−δ4n
)γ(1−σ)−1

if i > l,

(v(xl))
′
i(xi)

= 0 if i = l.

55



As a result,

∂Λ

∂i (xi)
=

(4n)
3 γ(1−α)(1−t)

i(xi)δ

∑i−1
l=1 m̃ (xl)

(∑n
k=i

(
1 + 1

δ−1

k

j=l+1
i (xj)

1−δ4n
)γ(1−σ)−1

)
(4n

∑n
l=1 m̃ (xl) v(xl))

1− 1−α
σ−1

(35)

+

(4n)
3 (1−α)(1−t)

i(xi)δ

∑n
l=i+1 m̃ (xl)

(∑i
k=1

(
1 + 1

δ−1

l−1

j=k
i (xj)

1−δ4n
)γ(1−σ)−1

)
(4n

∑n
l=1 m̃ (xl) v(xl))

1− 1−α
σ−1

−λ0 4n q (xi) .

Finally,

∂Λ

∂t
= −

(
4n

n∑
l=1

m̃ (xl) v(xl)

) 1−α
σ−1

+ λ0bL = 0 ⇐⇒

λ0 =
(4n

∑n
l=1 m̃ (xl) v(xl))

1−α
σ−1

bL
. (36)

Note that since ∂Λ
∂i(xi)

|i(xi)=0 = ∞ (because of γ(σ − 1)(δ − 1) < 1), ia (xi) is strictly greater than

zero for all i = 1..n. That is, the global maximum {ia (xi) , t
a}i=1..n does not include zero investments

and, therefore, solves the following system of equations

q(xi)i
a (xi)

δ

4nbLγ (1− α) (1− ta)
=

∑i−1
l=1 m̃ (xl)

(∑n
k=i

(
1 + 1

δ−1

k

j=l+1
ia (xj)

1−δ4n
)γ(1−σ)−1

)
∑n
i=1 m̃ (xi) v(xi)

(37)

+

∑n
l=i+1 m̃ (xl)

(∑i
k=1

(
1 + 1

δ−1

l−1

j=k
ia (xj)

1−δ4n
)γ(1−σ)−1

)
∑n
i=1 m̃ (xi) v(xi)

,

n∑
i=1

q (xi) i
a (xi)4n = btaL.

As the solution of the continuos maximization problem is the limit of the solution of the discrete
problem (when n→∞), it is straightforward to see that the optimal infrastructure investment function
ia (x) and the tax rate ta solve

ia (x)
δ

=
bLγ (1− α) (1− ta)

q(x)

(
φL(x) + φR(x)

)
,

ta =

∫ s̄
0
q (s) ia (s) ds

b
,

where

φL(x) =

∫ x
0
m̃ (s)

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s
ia (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
m̃ (s) v(s)ds

,

φR(x) =

∫ s̄
x
m̃ (s)

(∫ x
0

(
1 + 1

δ−1

∫ s
t
ia (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
m̃ (s) v(s)ds

.
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Proof of Proposition 2

Property (ii)

Note that the derivative of ia(x) with respect to x can be written as follows:

q(x)δia (x)
δ−1

(ia (x))
′
+ q′(x)ia (x)

δ
= bLγ (1− α) (1− ta)

((
φL(x)

)′
+
(
φR(x)

)′) ⇐⇒
(ia (x))

′
=

bLγ (1− α) (1− ta)
((
φL(x)

)′
+
(
φR(x)

)′)− q′(x)ia (x)
δ

q(x)δia (x)
δ−1

.

We have that

(
φL(x)

)′
=

m̃ (x)

(∫ s̄
x

(
1 + 1

δ−1

∫ t
x
i (r)

1−δ
dr
)γ(1−σ)−1

dt

)
−
∫ x

0
m̃ (s)

(
1 + 1

δ−1

∫ x
s
i (r)

1−δ
dr
)γ(1−σ)−1

ds∫ s̄
0
m̃ (s) v(s)ds

,

(
φR(x)

)′
=

−m̃ (x)

(∫ x
0

(
1 + 1

δ−1

∫ x
t
i (r)

1−δ
dr
)γ(1−σ)−1

dt

)
+
∫ s̄
x
m̃ (s)

(
1 + 1

δ−1

∫ s
x
i (r)

1−δ
dr
)γ(1−σ)−1

ds∫ s̄
0
m̃ (s) v(s)ds

.

It is straightforward to see that (
φL(0)

)′
+
(
φR(0)

)′
> 0,(

φL(1)
)′

+
(
φR(1)

)′
< 0.

Since q′(x) is continuous on [0, s̄] and ia (0) = ia (s̄) = 0, q′(0)ia (0)
δ

= q′(s̄)ia (s̄)
δ

= 0. This in turn
immediately implies that

(ia (0))
′

= ∞
(ia (s̄))

′
= −∞.

Property (iii)

First, we show that ia(x) is symmetric around x = s̄/2. To do so, we use the fact that the objective
function of the planner’s problem is strictly concave, implying that there is a unique solution of (19).
Indeed, if there are two different solutions of (19), then there are two different stationary points, which
is not possible with a strictly concave objective function. It is straightforward to see that if there is no
variation in the cost of infrastructure investment and the household size across the locations: q(x) = q
and m(x) = m for any x ∈ [0, s̄], symmetric investments indeed solve (19). Taking into account the
uniqueness of the solution, we can conclude that the symmetric infrastructure profile delivers the global
maximum of the maximization problem. Finally, if ia(x) is symmetric around x = s̄/2, the transportation
costs are symmetric and, thereby, v(x) is symmetric as well (this immediately follows from the definition
of v(x) (see (15)).

Next, we prove that ia(x) has a hump shape with the peak at x = s̄/2. Note that the optimal
investment profile can be considered as a unique fixed point of a certain functional J : E −→ E. Here,
E is the subset of the space of symmetric (around x = s̄/2) continuous functions on [0, s̄], which is
determined by the constraints in the maximization problem. Specifically, the functional is given by

J(ia(x)) =

(
bLγ (1− α) (1− ta)

q

(
φL(x) + φR(x)

))1/δ

,
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where

φL(x) =

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s
ia (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

,

φR(x) =

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t
ia (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

.

We then show that if ia(x) has a hump shape with the peak at x = s̄/2, then J(ia(x)) has a hump
shape. This in turn means that the fixed point of the functional has a hump shape. That is, the optimal
investment profile has a hump shape.

Consider a function ia1(x) ∈ E that has a hump shape. We define ia2(x) as the value of the functional
at ia1(x): i.e., ia2(x) = J(ia1(x)). Next, we prove that ia2(x) has a hump shape. To show this, we consider
the derivative of ia2(x). It is straightforward to see that

ia2 (x)
δ−1

(ia2 (x))
′

= 2
bLγ

qδ

(1− α) (1− ta)∫ s̄
0
v(s)ds

H(x),

where

H(x) =

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz.

The first thing to notice is that H(s̄/2) = 0 (which follows from the symmetry of ia1 (x)). Consider
any x < s̄/2, then the function H(x) can be written as follows:

H(x) =

∫ 2x

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz

+

∫ s̄

2x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz,

where ∫ s̄

2x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz > 0.

Note that as ia1 (s) is symmetric around x = s̄/2 and has a hump shape at s̄/2, for any 4 ∈ (0, x]

ia1 (x+4) > ia1 (x−4) .

This in turn means that for any 4 ∈ (0, x],

1 +
1

δ − 1

∫ x+4

x

ia1 (s)
1−δ

ds < 1 +
1

δ − 1

∫ x

x−4
ia1 (s)

1−δ
ds,

implying that(
1 +

1

δ − 1

∫ x+4

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

>

(
1 +

1

δ − 1

∫ x

x−4
ia1 (s)

1−δ
ds

)γ(1−σ)−1

,

as γ(1− σ)− 1 is negative. As a result, it is straightforward to see that∫ 2x

x

(
1 +

1

δ − 1

∫ z

x

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz >

∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz.
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That is, for any x < s̄/2, H(x) > 0. Similarly, it is possible to show that for any x > s̄/2, H(x) < 0.
Thus, (ia2 (x))

′
is strictly greater than zero 0 on x ∈ [0, s̄/2) and strictly less than zero on (s̄/2, 1]. This

means that ia2 (x) has a hump shape. Therefore, the solution of (19) has a hump shape.
Finally, we show that v(x) has a hump shape as well. We have that

v′(x) =

(∫ x

0

(
1 +

1

δ − 1

∫ x

z

i (s)
1−δ

ds

)γ(1−σ)

dz +

∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ(1−σ)

dz

)′

=
γ(σ − 1)i (x)

1−δ

δ − 1

(∫ s̄

x

(
1 +

1

δ − 1

∫ z

x

i (s)
1−δ

ds

)γ(1−σ)−1

dz −
∫ x

0

(
1 +

1

δ − 1

∫ x

z

ia1 (s)
1−δ

ds

)γ(1−σ)−1

dz

)

=
γ(σ − 1)i (x)

1−δ

δ − 1
H(x).

Taking into account the properties of H(x), we can conclude that v(x) has a hump shape.

Proof of Proposition 3

Recall that the optimal infrastructure profile ia(x) maximizes the following function (up to an irrelevant
constant):

W (I, A) =

(
1−A

∫
x∈S

i (x) dx

)(∫
x∈S

v(x)dx

)(1−α)/(σ−1)

,

where I = {i (x)}x∈{0,s̄} and A = q/bL (where L = ms̄). The partial derivative of W (I, A) with respect
to A is given by

∂W (I, A)

∂A
= −

(∫
x∈S

i (x) dx

)(∫
x∈S

v(x)dx

)(1−α)/(σ−1)

< 0.

We say that I ′ % I ′′ if and only if i′ (x) ≥ i′′ (x) for all x ∈ S. It is straightforward to see that if I ′ % I ′′,
then

∂W (I ′, A)

∂A
≤ ∂W (I ′′, A)

∂A
for any A.

The latter follows from the fact that v(x) is increasing in infrastructure investment. Thus, W (I, A) is
submodular and satisfies single crossing property. This in turn implies that a rise in A decreases the
optimal infrastructure profile Ia (see details in Milgrom and Shannon (1994)). That is, ia(x) falls for all
x. This proves the proposition.

Proof of Proposition 4

If m(x) is the same at all locations, then L = ms̄ and

ia (x) =

(
γ (1− α) (bms̄−

∫ s̄
0
q (s) ia (s) ds)

q(x)

(
φL(x) + φR(x)

))1/δ

.

In this case, the partial derivative of ia (x) with respect to s̄ is given by (here we use the fact that
ia (s̄) = 0)

∂ia (x)

∂s̄
=
γ (1− α)

q(x)δ
(ia (x))

1−δ
((
φL(x) + φR(x)

)′
s̄

(bms̄−
∫ s̄

0

q (s) ia (s) ds) + bm
(
φL(x) + φR(x)

))
.

The derivatives of φL(x) and φR(x) with respect to s̄ are given by

(
φj(x)

)′
s̄

=

∫ x
0

(
1 + 1

δ−1

∫ s̄
s
ia (r)

1−δ
dr
)γ(1−σ)−1

ds− v(s̄)φj(x)∫ s̄
0
v(s)ds

,
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where j ∈ {L,R}. Thus,

∂ia (x)

∂s̄
=
bmγ (1− α)

q(x)δ
(ia (x))

1−δ

 2s̄(1−ta)
∫ x
0 (1+ 1

δ−1

∫ s̄
s
ia(r)1−δdr)

γ(1−σ)−1
ds∫ s̄

0
v(s)ds

+
(
φL(x) + φR(x)

) (
1− s̄v(s̄)(1−ta)∫ s̄

0
v(s)ds

)
 .

As can be seen, if x is sufficiently close to s̄, then
(
φj(x)

)′
s̄
> 0 (as φj(s̄) = 0) and, thereby, ∂ia (x) /∂s̄ > 0.

Moreover, if the cost of infrastructure is uniform,

∂ia (x)

∂s̄
> 0 for all x.

This is due to fact that if q(x) = q for all x, v(x) is symmetric around x = s̄/2 and has a hump shape.
As a result, v(s̄) ≤ v(s) for any s ∈ S. This in turn means that∫ s̄

0

v(s)ds > s̄v(s̄) =⇒

1− s̄v(s̄)(1− ta)∫ s̄
0
v(s)ds

> 0.

Proof of Lemma 2

As in the proof of Proposition 1, we first formulate and analyze a discrete modification of the social
planner’s maximization problem, which approximates the actual continuos maximization problem, and
then take the limit. Recall that the home social planner solves

{
iH(x), tH

}
x∈[0,s̄]

= arg max
t,i(x)

{
(1− t)

(∫ s̄

0

v(x)dx

) 1−α
σ−1

∣∣∣∣q ∫ s̄

0

i (x) dx ≤ bLtH
}
,

where

v(x) =

∫ 2s̄

0

T (x, z)
1−σ

dz

=

∫ x
0

(
1 + 1

δ−1

∫ x
z
i (r)

1−δ
dr
)γ(1−σ)

dz +
∫ s̄
x

(
1 + 1

δ−1

∫ z
x
i (r)

1−δ
dr
)γ(1−σ)

dz

+
∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
x
i (s)

1−δ
ds+ 1

δ−1

∫ z
s̄
iF (s)

1−δ
ds
)γ(1−σ)

dz
.

To formulate the corresponding discrete maximization problem, we consider a uniform partition of
the [0, 2s̄]-interval given by {xi}i=0..2n, where x0 = 0, xn = s̄, and x2n = 2s̄. Then, the discrete analogue
of the continuos maximization problem can be written as follows (without loss of generality, we assume
that location n belongs to the home country):

{
iH(xi), t

H
}
i=0..n

= arg max
t,i(xi)

(1− t)

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

 ,

subject to

q

n∑
i=0

i (xi)4n ≤ bLt.

where

v(xi) = 4n
1 +

∑i−1
k=0

(
1 + 1

δ−1

i−1

j=k
i (xj)

1−δ4n
)γ(1−σ)

+
∑n
k=i+1

(
1 + 1

δ−1

k

j=i+1
i (xj)

1−δ4n
)γ(1−σ)

+
∑2n
k=n+1

(
1 + 1

δ−1

n

j=i+1
i (xj)

1−δ 4n + 1
δ−1

k

j=n+1
iF (xj)

1−δ4n
)γ(1−σ)
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and 4n = 1/n.
The first order conditions are given by

∂Λ

∂i (xi)
= 0, i = 0..n,

∂Λ

∂t
= 0,

where Λ is the corresponding Lagrange function. It is straightforward to see that

∂Λ

∂i (xi)
=

(1− t) (1− α)

σ − 1

(
n∑
i=0

v(xi)4n

) 1−α
σ−1−1

4n
n∑
l=0

(v(xl))
′
i(xi)
− λ0 4n q,

∂Λ

∂t
= −

(
n∑
i=0

v(xi)4n

) 1−α
σ−1

+ λ0bL.

We have that for i < l,

(v(xl))
′
i(xi)

= (4n)
2
γ(σ − 1)i(xi)

−δ
i∑

k=0

(
1 +

1

δ − 1

l−1

j=k
i (xj)

1−δ4n
)γ(1−σ)−1

,

for i > l,

(v(xl))
′
i(xi)

= (4n)
2
γ(σ − 1)i(xi)

−δ
n∑
k=i

(
1 +

1

δ − 1

k

j=l+1
i (xj)

1−δ4n
)γ(1−σ)−1

+ (4n)
2
γ(σ − 1)i(xi)

−δ
2n∑

k=n+1

(
1 +

1

δ − 1

n

j=l+1
i (xj)

1−δ 4n +
1

δ − 1

k

j=n+1
iF (xj)

1−δ4n
)γ(1−σ)−1

.

Finally, (v(xl))
′
i(xi)

= 0 if i = l.

Thus, the optimal infrastructure profile,
{
iH(xi)

}
i=0..n

, solves the following system of equations:

qiH (xi)
δ

4nbLγ (1− α) (1− tH)
=

∑i−1
l=0

(∑n
k=i

(
1 + 1

δ−1

k

j=l+1
iH (xj)

1−δ4n
)γ(1−σ)−1

)
∑n
i=0 v(xi)

+

∑i−1
l=0

(∑2n
k=n+1

(
1 + 1

δ−1

n

j=l+1
iH (xj)

1−δ 4n + 1
δ−1

k

j=n+1
iF (xj)

1−δ4n
)γ(1−σ)−1

)
∑n
i=0 v(xi)

+

∑n
l=i+1

(∑i
k=0

(
1 + 1

δ−1

l−1

j=k
iH (xj)

1−δ4n
)γ(1−σ)−1

)
∑n
i=0 v(xi)

.

Taking the limit, we obtain the solution of the continuous maximization problem:

qiH (x)
δ

bLγ (1− α) (1− tH)
=

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s
iH (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

+

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t
iH (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

.

+

∫ x
0

(∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
s
iH (r)

1−δ
dr + 1

δ−1

∫ t
s̄
iF (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0
v(s)ds

.
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Finally, the optimal tax rate solves

tH =
q
∫ s̄

0
iH (s) ds

bL
.

Proof of Proposition 7

From the expression for iH(x), we can see that

δiH (x)
δ−1 (

iH (x)
)′

=
bLγ (1− α) (1− tH)

q

(
φ̃L,N (x) + φ̃R,N (x)

)′
.

It is straightforward to see that(
φ̃R,N (x)

)′
x=0

> 0 and
(
φ̃R,N (x)

)′
x=s̄

< 0.

Consider the derivative of φ̃L,N (x) with respect to x. We have that

(
φ̃L,N (x)

)′
=

∫ s̄
x

(
1 + 1

δ−1

∫ t
x
iH (r)

1−δ
dr
)γ(1−σ)−1

dt∫ s̄
0
v(s)ds

−

∫ x
0

(
1 + 1

δ−1

∫ x
s
iH (r)

1−δ
dr
)γ(1−σ)−1

ds∫ s̄
0
v(s)ds

+

∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
x
iH (r)

1−δ
dr + 1

δ−1

∫ t
s̄
iH (2s̄− r)1−δ

dr
)γ(1−σ)−1

dt∫ s̄
0
v(s)ds

.

As can be inferred from the above expression,
(
φ̃L,N (x)

)′
x=0

> 0. Moreover, as

∫ s̄

0

(
1 +

1

δ − 1

∫ s̄

s

iH (r)
1−δ

dr

)γ(1−σ)−1

ds =

∫ 2s̄

s̄

(
1 +

1

δ − 1

∫ t

s̄

iH (2s̄− r)1−δ
dr

)γ(1−σ)−1

dt,

(
φ̃L,N (x)

)′
x=s̄

= 0.

Hence, we can conclude that
(
iH (x)

)′
x=0

= ∞ (as iH (0)
δ−1

= 0) and
(
iH (x)

)′
x=s̄

is negative, but

finite (as iH (s̄)
δ−1

> 0).

Proof of Proposition 8

Recall that the infrastructure profile is determined by

iH (x)
δ

=
bLγ (1− α) (1− tH)

q

(
φ̃L,N (x, τ) + φ̃R,N (x, τ)

)
.

It is straightforward to see that if there are additional transport costs for products produced in the foreign
country, then

φ̃L,N (x, τ) =

∫ x
0

(∫ s̄
x

(
1 + 1

δ−1

∫ t
s
iH (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0

(∫ s̄
0
T (s, z)

1−σ
dz
)
ds+ τ1−σ

∫ s̄
0

(∫ 2s̄

s̄
T (s, z)

1−σ
dz
)
ds

+

τ1−σ ∫ x
0

(∫ 2s̄

s̄

(
1 + 1

δ−1

∫ s̄
s
iH (r)

1−δ
dr + 1

δ−1

∫ t
s̄
iH (2− r)1−δ

dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0

(∫ s̄
0
T (s, z)

1−σ
dz
)
ds+ τ1−σ

∫ s̄
0

(∫ 2s̄

s̄
T (s, z)

1−σ
dz
)
ds

,

φ̃R,N (x, τ) =

∫ s̄
x

(∫ x
0

(
1 + 1

δ−1

∫ s
t
iH (r)

1−δ
dr
)γ(1−σ)−1

dt

)
ds∫ s̄

0

(∫ s̄
0
T (s, z)

1−σ
dz
)
ds+ τ1−σ

∫ s̄
0

(∫ 2s̄

s̄
T (s, z)

1−σ
dz
)
ds
.
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Therefore, to explore the direct effect of τ on iH (x), we need to analyze how changes in τ affect

φ̃L,N (x, τ) + φ̃R,N (x, τ). Specifically, we find that the sign of
(
φ̃L,N (x, τ) + φ̃R,N (x, τ)

)′
τ

is the same

as the sign of the following expression (remember that taking the derivative, we ignore all the indirect
effects):

R(x)
d≡
∫ x

0

(∫ s̄

x

(
1 +

1

δ − 1

∫ t

s

iH (r)
1−δ

dr

)γ(1−σ)−1

dt

)
ds

∫ s̄

0

(∫ 2s̄

s̄

T (s, z)
1−σ

dz

)
ds

+

∫ s̄

x

(∫ x

0

(
1 +

1

δ − 1

∫ s

t

iH (r)
1−δ

dr

)γ(1−σ)−1

dt

)
ds

∫ s̄

0

(∫ 2s̄

s̄

T (s, z)
1−σ

dz

)
ds

−
∫ x

0

(∫ 2s̄

s̄

(
1 +

1

δ − 1

∫ s̄

s

iH (r)
1−δ

dr +
1

δ − 1

∫ t

s̄

iH (2s̄− r)1−δ
dr

)γ(1−σ)−1

dt

)
ds

∫ s̄

0

(∫ s̄

0

T (s, z)
1−σ

dz

)
ds.

As can be seen, R(x) is negative in some left neighborhood of x = s̄, implying that iH (x) falls for all

x from this neighborhood. Finally, as
∫ s̄

0
iH (x) dx remains the same, iH (x) must rise at some locations

that are relatively far from the border.
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Appendix B

In this Appendix, we provide the description of the data used to construct Table 5.

Table 6: Summary statistics for Table 5

Variable Mean Std. Dev. Min Max

Ln variable transport costs(a) 1.57 0.11 1.18 1.73
Ln geographical difficulty(b) -0.51 1.02 -2.35 1.52
Ln population 13.03 0.70 11.20 14.74
Ln area in square km 8.53 0.70 5.16 9.23
Remoteness measures

Ln distance to Paris 0.33 0.17 0.01 0.66
Ln trade costs weighted distance to Paris(c) 5.25 0.84 2.48 6.24
Ln distance to rest of France(d) 7.84 0.15 7.58 8.27
Ln trade costs weighted distance to rest of France(e) 0.42 0.19 0.08 0.90

Construction of variables.
(a) Miren Lafourcade has kindly provided access to generalized trade cost data for France départements
for the year of 1993. Those data are constructed as the (more disaggregated, but unfortunately confi-
dential) data that Combes et Lafourcade (2005) describe. The data contains trade costs département
by département. One can recover total variable transport costs by subtracting the costs of loading and
unloading the truck of FF 60. To obtain a measure of transit costs, we average total variable transport
costs per kilometer between neighboring départements, using the neighbors’ area as weights.
(b) Geographical difficulty is the measured by the difference between the points of highest and lowest
altitude above sea level in a département.
(c) Trade cost weighted distance to Paris is the generalized trade cost index (including fixed costs, as
reported by Combes and Lafourcade, 2005) for transportation from or to Paris to or from the respective
département.
(d) Distance to rest of France is computed as the average unweighted distance of some département to
all the other départements.
(e) Repeats the exercise conducted for (d), but uses generalized trade costs instead of distance (as reported
by Combes and Lafourcade, 2005).
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