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Abstract

In this paper we assess the impact of preferential trade agreements
(PTAs) on the structure of world trade looking for communities in the
world trade network (WTN), and allowing the presence of preferential
trade patterns to emerge endogenously. The network analysis of the
world trade system, modeling the international transactions among
countries as links between nodes in a network, is a useful tool for
studying the pattern of trade flows, their evolution over time, and the
effects on world trade of a number of phenomena, including preferen-
tial trade agreements (PTAs). The finding of significant communities
(as defined in network analysis) would imply that trading countries
are organized in groups of preferential partners, e.g., on a regional ba-
sis. We use different approaches to analyze communities in the world
trade network (WTN) between 1962 and 2008, but all methods agree
in finding no evidence of a significant partition. A few weak commu-
nities emerge from the analysis, but they do not represent secluded
groups of countries, as inter-communities linkages are also strong, sup-
porting the view that the existing PTA are not strongly distorting the
geography of trade patterns, at least at the aggregate level.
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1 Introduction

Preferential Trade Agreements (PTAs) have been discussed in trade policy
debates for a long time. Many works in the international trade literature show
the increasing tendency of countries to sign preferential trade agreements, but
there is no conclusive evidence on the actual effects of these treaties (Pomfret
(2007); Baier and Bergstrand (2007)). Among the many still open issues, in
particular on two points there is very little agreement in the literature: the
actual impact of PTAs on the trade flows between members, and the possible
distortion produced on trade flows with non-members. The first of these
points has been addressed in the literature relying on the gravity model
framework (see for example De Benedictis and Salvatici (2011)), but this
approach raises a number of concerns on the endogeneity of the PTA dummy
variable used (e.g. Baier and Bergstrand (2004); Baier et al. (2008)) and on
the robustness of its conclusions. The second issue deals with the possibility
that PTAs give rise to ’isolated’ groups of countries, highly integrated among
them, but separated from the rest of the world (i.e. possible ’stumbling blocs’
on the way to multilateralism according to Bhagwati (1991)). The second
issue was addressed mainly by building measures of regionalization of trade
patterns, but all these indices have potential drawbacks (Iapadre (2004);
De Lombaerde et al. (2011)), leaving open the discussion on the effects of
PTA.

In this paper we address these issues using a different methodological
approach, the network analysis of international trade flows. Among the
many real-world networks studied in the literature, the World Trade Net-
work (WTN) recently received increasing attention because of a number of
interesting features. It is quite natural to represent international transac-
tions among countries as a network, where countries are the nodes and the
connecting edges are the international trade flows between them, giving rise
to an intricate system of exchanges affecting all the countries. The specific
economic motivations driving international trade flows shape this network,
that consequently displays characteristics that are relevant for their economic
implications, as well as for the network analysis in itself.

The aim of this paper is to study the possible existence of communities
within the WTN to assess the impact of PTAs on the structure of world
trade. Network analysis allows to examine the role of preferential trade not
only on a bilateral basis, but considering the world trading system as a whole.
The possible effects of trade creation and trade diversion are therefore fully
taken into account, considering existing interdependencies for all countries.
If the signed agreements signficantly affect the geographical pattern of trade
flows, increasing trade between members and possibly reducing trade with
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non-members, community structures should emerge in the WTN. In fact,
in general terms, a significant network community is a set of nodes with
strong internal connections, much stronger than those with the remaining
nodes of the network. What defines a community in this context are strong,
above-average commercial ties (relative to the rest of the world) rather than
imposed partitions of the network, or common individual characteristics of
the nodes. Applying community analysis to the WTN should then discover
- without pre-imposing any preferential link - groups of countries with priv-
ileged relationships, originated by geographical vicinity, common language
or religion, traditional partnerships, and of course preferential trade agree-
ments, if these agreements indeed affect trade. Instead, in a “globalized” or
“multilateral” world, with no “exclusive” PTAs, we do not expect communi-
ties to be significant, as countries can be connected through trade to nearly
any country in the world with similar ease.

So far, very few studies analyzed communities, or clustering, within the
WTN (Reyes et al. (2009); Barigozzi et al. (2011); He and Deem (2010)),
possibly because of the many open issues still existing in the methodolo-
gies for community analysis, making the intepretation of the results quite
problematic (Fortunato (2010)). A direct reference to PTAs when looking
for communities in the WTN is made by Reyes et al. (2009), using as a
benchmark the groups of countries that signed regional trade agreements,
and they find that over time the formation of communities follows an irregu-
lar pattern. Instead, He and Deem (2010) move from a peculiar definition of
distance and clusters within the network to find that clustering declined over
time, opposite to what would be expected observing the rising trend in pref-
erential agreements. Barigozzi et al. (2011) examine the WTN considering
sectoral trade flows, finding no clear time trend in communities formation.
They observe heterogeneous communities structures in different sectors, even
if it is impossible to compare the significance of the different communities.
The above-mentioned studies define and detect communities in the WTN in
distinct ways, but in all cases the main problem is that it is quite difficult to
assess the significance of the partitions that emerge.

In this paper, we look for communities in the WTN in the period between
1962 and 2008, and we compare different methodologies to search for com-
munities in networks, in order to verify the robustness of the results that we
obtain. All the different methods applied here base the search for a commu-
nity on the identification of a group of countries sharing a disproportionate
amount of trade among them when compared with that they have with the
rest of the world. Our analyses shed many doubts on the existence of commu-
nities in the WTN, as the results show that the network is not significantly
splitted between different groups. Some “weak” communities emerge, but
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these groups of countries are not more connected among them than with
the rest of the world to the extent of forming truly privileged or exclusive
relationships.

2 The role of preferential trade

The number of existing trade agreements increased very rapidly since the
1990s, reaching almost 300 in 2011. Currently, all countries of the world
are members of at least one trade agreement (with the only exception of
Mongolia). According to the WTO (WTO (2011)), the value of trade between
members of preferential trade agreements has grown faster than the world
average in the past decades, increasing the share of PTA trade in world
trade from 18% in 1990 to 35% in 2008. This remarkable increase, however,
overstates the extent of trade that actually takes place on a preferential
basis. The number and coverage of PTAs in fact is not fully conveying the
effectiveness of these agreements in promoting trade among its members,
and potentially diverting trade of non-members. What matters most is the
actual preferential reduction in tariffs and other trade barriers put forth with
a PTA, and in many ways, the multiplication of PTAs reduces the exclusivity
of a trade agreement, possibily watering down its effects.

The eagerness of countries to form PTAs orginated a large body of lit-
erature trying to understand the causes and the effects of this phenomenon
(Frankel (1998) is an example of the analyses undertaken when the current
wave of regionalism began). At the basis of the interest both for economists
and policy-makers are the potentially important welfare implications of such
agreements, which can be positive or negative. Most concerns on the rapidly
increasing number of PTAs are related to the extent that existing preferential
arrangements might distort patterns of trade, a concern constantly present
since the very beginning of the studies on PTAs in the 1950s. In spite of
many modeling differences, most works agree in showing that the potential
negative welfare effects depend on the trade diversion and the terms-of-trade
distortions that can be created by such arrangements.

The crucial role of trade diversions is often neglected in the empirical
work, as it is not easy to capture. A recent notable exception is Magee
(2008), explicitely considering in a gravity equation not only the PTA effect,
but also the effect of not partecipating to a PTA. In this work, the analysis
is performed at the level of bilateral trade flows between countries, as the
gravity framework suggests. This specification allows to conclude that the
relevance of the diversion effects is very modest, but it does not consider
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more complex interactions between countries.1 This is where the analysis of
countries’ blocs performed on the entire network of world trade can provide
additional information.

3 Communities in the World Trade Network

3.1 The World Trade Network

The WTN is here modeled as a directed, weighted network composed of N
nodes corresponding to countries (N = {1, 2, . . . , N} is the set of nodes) and
L edges connecting countries representing the trade flows among them. We
denote by W = [wij] the N ×N weight matrix, where wij ≥ 0 is the value of
the trade flow from country i to country j. The connectivity matrix A = [aij]
is the N × N matrix where aij = 1 if wij > 0, i.e., if there exists the edge
i→ j, and aij = 0 otherwise.

Data for our analysis come from the Direction of Trade Statistics pub-
lished by the International Monetary Fund (IMF) and from the dataset made
available by the Center for International Data at UC Davis, constructed from
United Nations trade data by Feenstra et al. (2005), known as NBER-UN
Trade Data. We use annual bilateral imports for the years 1962, 1965, 1970,
1975, 1980, 1985, 1990, 1995, 2000, 2005 and 2008 (in the paper we mostly
display results for the first and last year of our sample, but the full, detailed
set of results is available from the authors). A number of important events
affected the patterns of world trade in the period considered: the end of
colonial links, changes in the exchange rate regime, removal of many barriers
to trade, increasing role of emerging countries in the international markets,
and - as mentioned - a rising trend in the number of PTAs signed. Our
observation period stops before the outbreak of the financial crisis affected
international trade, which was still growing by 15% in value in 2008 before
the dramatic drop recorded in 2009.

We use directed aggregate flows received by an importing country from
any given exporting country, measuring the value in U.S. dollars at current
prices of all merchandise imported by a country from each partner country
(import data are generally more reliable and complete than exports). Here
we are not concerned with the change in prices over time, as we do not make
any time series analysis, but we consider the existence of communities in
each year separately (for other analyses of the WTN as a directed network
see De Benedictis and Tajoli (2011); Barigozzi et al. (2011)).

1See Chen and Joshi (2010) on the importance of considering countries’ interdependen-
cies when analyzing PTAs.
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The main topological properties observed by past analysis of the WTN are
confirmed by this dataset, indicating that this network is disassortative, with
a high clustering coefficient, and a number of small-world properties (Serrano
and Boguñá (2003); Garlaschelli and Loffredo (2005); Serrano et al. (2007);
Fagiolo et al. (2008)). In other words, in this network, countries with few
trade links tend to be connected to countries with a large number of links,
the trade partners of a given country are often trade partners themselves,
and the average distance in terms of steps required to move from one node to
another is small. These properties arise from the high heterogeity of countries
as traders, from the presence of geographical distance or proximity, and from
the structure of trade costs. The evolution of the WTN over time is slow, but
it is in line with the so-called ’globalization’ process, showing an increasing
connectivity between nodes (De Benedictis and Tajoli (2011)).

Being the network directed, for each node i we distinguish between the in-
degree kini =

∑
j aji, the out-degree kouti =

∑
j aij, and the total degree ki =

kini +kouti , and we denote the average degree by 〈k〉 =
∑

i ki/N . Analogously,
we define the in-, out-, and total strength of node i as sini =

∑
j wji, s

out
i =∑

j wij, and si = sini + souti , respectively, and the total weight of the network
edges as w =

∑
ij wij.

The network is strongly connected if, for every pair (i, j) of distinct nodes,
there exists an oriented path from i to j (e.g., Barrat et al. (2008)). If the net-
work is not connected, the set N of nodes can be partitioned in components
K1,K2, . . . ,Km having, without loss of generality, N1 ≥ N2 ≥ . . . ≥ Nm > 0
nodes, respectively (

∑
iNi = N). Each component is a maximally strongly

connected sub-network (i.e., it is strongly connected and it is not part of a
larger connected sub-network). In our study, given the increase in interna-
tional trade and in the number of trading partners for most countries, we
will find that the largest component K1 is actually a giant component, i.e., it
has a dimension N1 which has the same order of magnitude as N and, on the
other hand, it is much larger than all the other components. Network com-
ponents can be identified by means of standard algorithms of graph analysis
(Cormen et al. (2001)).2 In 1962, the strongly connected component in-
cludes N = 145 countries, and it keeps slowly increasing until 1985 when it
jumps to N = 165. From 1995 onward, the giant component is composed of
N = 180− 182 countries, including the new countries born from the disman-

2Even if the overall density of the WTN is high (density is given by d = L/(N(N −1)),
i.e., the actual number of edges divided by their maximum allowable number), not all the
countries in our sample are connected in every period. In fact, even if the cases in which a
country does not trade at all are really exceptional, in our database a country can appear
not connected in a given year for a number of reasons. For example, some countries did
not report their data to the IMF in a given year.
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tling of the former Soviet bloc. In the analysis of the following section we
will consider the giant components only.

In our sample, the total value of world imports w =
∑

ij wij increases
from about 126 billion in 1962 to 15760 billion in 2008 (all amounts in U.S.
dollars). The value of imports in our dataset represents approximately 95
per cent of total world imports in 2008 and slightly lower amounts in the
previous years 3. Not only the trade value but also the number of edges L
registers a remarkable increase, passing from 7870 in 1962 to 21123 in 2008.
The average in-strengh of each node also increases significantly, but average
values in this network are not especially relevant, as nodes and edges (in our
case, countries and trade flows) are very heterogeneous. For example, import
flows span a range from 34 million for Tonga to 243 billion for the United
States in 1980, and from 160 million to more than 2000 billion for the same
two countries in 2008.

3.2 Searching for communities in the WTN

Consider now a directed, weighted, strongly connected network (or, if not
connected, its giant component). Roughly speaking, a subset Ch ⊂ N is called
a community if the total weight of the edges internal to Ch is much larger
than that of the edges connecting Ch to the rest of the network. In other
words, community search in a network looks for non-random distributions
of links between nodes, generating groups of nodes more tightly connected
than the network average. In our WTN a community arises if a subset of
countries is trading relatively more among them than with the rest of the
world. This can occur for a number of reasons, but it is the effect that we
expect to observe if a PTA is indeed promoting trade among its members,
and trade within the PTA is indeed preferred to trade with the rest of the
world, being more economically convenient.

The community analysis of a given network with nodes N consists there-
fore in finding the “best” partition C1,C2, . . . ,Cq (i.e.,

⋃
h Ch = N and

Ch ∩ Ck = � for all h, k), according to some criteria (for simplicity, we
do not consider possibly overlapping communities), or the “best” grouping
of countries that are close trade partners. Despite a huge amount of con-
tributions in the network analysis literature (Fortunato (2010)), there is not
consensus, however, on formal criteria for defining communities and for test-
ing their significance. This is why we will use four different approaches to
analyze communities in the WTN.

3Our dataset does not cover all trade flows registered in a given year because some
exchanges are covered by secrecy for security or similar reasons (e.g., arms trade) and the
origin and/or destination of the flow are not recorded.
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3.2.1 Modularity optimization

Finding the partition that maximizes a quality index called modularity is by
far the most popular method for finding communities in a given network.
Originally proposed by Newman and Girvan (2004); Newman (2006), this
approach has found plenty of applications in diverse areas and has been
extended in many directions Fortunato (2010).

In the case of a directed and weighted network, the modularity Q associ-
ated to the partition C1,C2, . . . ,Cq is given by

Q =
1

w

q∑
h=1

∑
i,j∈Ch

[
wij −

souti sinj
w

]
, (1)

which is the fraction of network weight internal to communities, minus the
expected value of such fraction in a random network that has in common the
in- and out-strengths with the original one (Arenas et al. (2007)).

Although the best partition (i.e., the one with Q = Qmax) cannot be
found by exhaustive search even in rather small networks, for computational
reasons, many efficient algorithms are available for obtaining a presumably
“close to optimal” solution (Fortunato (2010)). We use the aggregative,
hierarchical method devised by Blondel et al. (2008), which is considered very
effective both in terms of Qmax (i.e., in the capability of finding a partition
with high modularity) and in computational requirements (Lancichinetti and
Fortunato (2009)).

The results of modularity optimization for all the years of our WTN
dataset are in Table 1 (see the Appendix for the composition of each com-
munity). In 1962 we obtain q = 4 communities with Qmax = 0.225. The
communities count 55, 44, and 22 countries, plus a very small community
formed by only 4 countries. The largest communities essentially coincide
with most of Europe and Africa, America, and Asia plus Oceania, respec-
tively. This last community also includes UK and Ireland, still strongly linked
to Commonwealth countries.

From 1970 onward, the results show q = 3 with a similar grouping of
countries (possibly with the exception of African countries, that tend to be-
come more scattered across communities), and with UK and Ireland shifting
to the European community, following their membership of the EEC in 1973.
In this case, we see in the change of the community composition the possible
effect of joining a PTA.

The number of communities temporarily increases in 1995, when trade
flows for the new countries formed by the dismantling of the Soviet bloc
start to be recorded, and indeed one of the communities is formed essentially
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by this group. Over time, the strong ties between these countries loosen
up, as they appear no longer as a separate group, but mostly in the large
Europe-based community. In 2008 the communities contain 68, 66, and 47
countries, but the largest cluster is now associated to Asia/Oceania, confirm-
ing the rapidly increasing role of Asia in international trade. This clustering
by continents is very much in line with the large body of literature show-
ing that geographical proximity still matters for international trade and for
the formation of trading blocs (e.g., Krugman (1991b), Egger (2008)).4 A
slightly larger modularity appears over time, reaching Qmax = 0.296 in 2008,
but this cannot be immediately seen as an increase in the relevance of our
communities, as max modularity generally grows if the size of the graph
increases.

A first check on the significance of these partitions, which appear very
weak looking at the values of Qmax, comes from filtering the original WTN.
A well-known peculiarity of the WTN is the large value of its density in
comparison to most real-world networks. In our dataset, d ranges from 0.37
in 1962 to 0.65 in 2008. Since the weights are extremely diversified, a large
number of edges convey a very small import/export flow. It is reasonable to
wonder whether this could be an obstacle to our analysis, in the sense that
the actual communities could be concealed by the many scarcely significant
inter-country connections. To assess this, we applied a filtering technique to
the WTN to extract its “backbone”, namely a set of truly significant edges.
Besides the trivial threshold approach (which discards all weights below a
fixed level), a few filtering methods have recently been proposed which are
explicitly designed to deal with multi-scale weight distributions. We apply
the method proposed in Serrano et al. (2007, 2009) where, in deriving the
filtered network, only those edges are preserved which significantly deviate
from a null model which assumes that the strength of each given node is
uniformly distributed among its incident edges. More precisely, once a sig-
nificance level 0 < α < 1 is set, an edge is preserved if the probability that
its weight complies with the null hypothesis is less than α (a smaller α value
is thus more selective). Therefore the method acts locally by analyzing each
single node, and by discarding edges which do not carry a significant fraction
of the node strength. Since the selection is done on a node-by-node basis,
none of the edges (and none of the countries) is a priori discarded, which is
instead the effect of trivially fixing a threshold.

We apply the filtering method to the WTN from 1962 to 2008, and we

4 We also note that, in terms of the number q of communities, our results are qual-
itatively consistent with Barigozzi et al. (2011), where a value of q ranging from 2 to 4
is reported for the period 1992-2003 (no modularity value is reported, however, in that
paper).
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(a) original network
year N 〈kini 〉 〈sini 〉 Qmax # comm.
1962 145 54.2 870 0.225 4 [55,44,42,4]
1965 145 64.4 1197 0.223 4 [48,43,40,14]
1970 150 74.1 1949 0.244 3 [51,50,49]
1975 151 80.8 5528 0.238 3 [75,40,36]
1980 151 76.9 12322 0.232 3 [75,42,34]
1985 165 69.2 11383 0.282 3 [70,64,31]
1990 163 78.7 20330 0.260 3 [74,70,19]
1995 182 92.7 26315 0.281 6 [77,73,18,8,4,2]
2000 180 106.7 34432 0.290 3 [76,61,43]
2005 181 113.6 56024 0.294 3 [70,65,46]
2008 181 116.7 87056 0.296 3 [68,66,47]

(b) filtered network
year N 〈kini 〉 〈sini 〉 Qmax # comm.
1962 136 5.3 731 0.287 4 [44,40,39,13]
1965 141 6.0 983 0.288 4 [51,41,41,8]
1970 149 6.9 1618 0.302 4 [52,47,43,7]
1975 150 7.8 4553 0.296 3 [77,71,2]
1980 151 7.5 10009 0.287 4 [56,42,41,12]
1985 159 6.6 9449 0.349 4 [74,61,21,3]
1990 161 7.3 17298 0.312 4 [76,68,14,3]
1995 181 8.4 22338 0.341 6 [79,75,18,5,2,2]
2000 180 9.8 29545 0.341 3 [79,57,44]
2005 181 10.4 47759 0.348 5 [68,54,49,8,2]
2008 181 10.8 72534 0.360 3 [72,62,47]

Table 1: (a): World Trade network statistics in the 1962-2008 period, and the results of
the max-modularity community analysis. (b): same as above, but for the filtered network.
N : number of countries of the giant component; 〈kini 〉: average number of import partner
countries; 〈sini 〉: average import value (million US dollars); 〈ksym〉: average number of
partner countries; 〈ssymi 〉: average trade value (import + export, million US dollars);
Qmax: max modularity; # comm.: number of communities, and number of countries for
each community (see the Appendix for the composition of each community).
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present in panel (b) of Table 1 the results for α = 0.01. Consistently with
Serrano et al. (2007), we find that this α-level yields a reasonable trade-off
between the simplification of the network (the number of edges is dramat-
ically reduced to 10% or less) and the integrity of its important features
(about 80% of the total weight is preserved, and practically all nodes remain
connected). If the community analysis if then performed, however, the re-
sults obtained with the original and filtered networks are not very different.
As expected, the maximal modularity is larger for filtered networks, but the
dramatic decrease of the density does not give rise to a similar increase of
Qmax nor to a structural redesign of the communities. In fact, we note that
the newly appeared communities turn out to be very small and, although
geographically meaningful (e.g., Kenya, Rwanda, and Uganda in 1990), they
have scarce economical importance. We conclude that, while filtering is an
essential tool for unveiling important network properties, it seems not crucial
in community analysis because different weight scales are naturally treated
within the definition of modularity (1).

The problem we face now is the significance of the obtained network par-
titions. Maximizing the modularity obviously yields some “best” partition,
but this does not imply that the network is actually structured in signifi-
cant clusters. In our analysis, what emerges in most cases is a partition of
the WTN into three (almost continental) blocs, which is the number that
many observers expected to emerge “naturally”, but that was also seen as a
welfare-minimizing situation (Krugman (1991a)). This could be a worrisome
conclusion, but in fact what really matters for the welfare effects is the ex-
tent of intra-bloc preferences (Frankel et al. (1998)). If the three blocs are
scarcely significant in terms of relevance of intra-bloc trade with respect to
inter-bloc trade, welfare implications would be very different. This is why
assessing the significance of the partitions is relevant.

Although a large value of Qmax, per se, should reveal that the network has
a modular organization (as it measures a kind of “dissimilarity” between the
network and its randomizations), a large value of Qmax can even be obtained
in random (i.e., Erdős-Rényi) networks, which instead are expected to have
no community structure by construction Reichardt and Bornholdt (2006).
In addition, the values of Qmax we obtain can hardly be considered to be
large.5 So, finding the partition that maximizes Q by no means concludes
the community analysis of the network (Fortunato (2010)). For undirected,
unweighted networks, some methods have been proposed for complementing

5For example, the values of Qmax for two synthetically generated benchmark networks,
purposely built with a well-defined cluster structure in Piccardi and Tajoli (2011) have
Qmax = 0.604 and 0.861, respectively.
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the max-modularity approach with a test of statistical significance. These
methods, however, have some features that make their use problematic in our
case. Firstly, the significance analysis is based on the modularity optimiza-
tion of many instances of a random model or of a perturbed network, thus
potentially it suffers of the same criticalities that affect the computation of
Qmax (and of the associated partition) in the original network. Secondly, no
straightforward extensions exist in the case of weighted, directed networks,
for which the definition of randomized models and of suitable perturbation
schemes is absolutely not trivial (see Zlatic et al. (2009); Piccardi et al. (2010)
for some proposals). For these reasons, in the next sections we will move to
completely different approaches for testing the existence and significance of
communities in the WTN.

3.2.2 Cluster analysis

Standard data clustering is aimed at organizing objects into “homogeneous
groups”, trying to maximize at the same time the intra-group similarity
and the inter-group dissimilarity. This needs defining a suitable distance
among data. When we move to graph clustering, i.e., grouping the nodes of
a network, which distance should be used is by no means obvious.

We adopt a notion of similarity/distance among nodes which is based on
random walks. An N -state Markov chain can straightforwardly be associated
to the N -node network by row-normalizing the weight matrix W , i.e., by
letting the transition probability from i to j equal to

pij =
wij∑
j wij

=
wij

souti

. (2)

The resulting transition matrix P = [pij] is a stochastic (or Markov) matrix,
i.e., 0 ≤ pij ≤ 1 for all i, j, and

∑
j pij = 1 for all i.6

It is important to note that modeling the WTN by (2) corresponds to
moving from absolute to relative trade values, since the flow from i to j
is now normalized by the total export flow from country i. This allows to
control for countries’ different economic weight, and the consequence is that
communities, if any, will not necessarily be composed of groups of countries
related by large trading, but instead by countries with privileged partnership,

6 The study of many problems in network science benefits from some sort of Markov
chain approach (e.g., epidemic spreading, navigation, etc. Barrat et al. (2008); Newman
(2010)). Community analysis is one of them, and several contributions have already been
published along this vein - we recall Pons and Latapy (2005); Rosvall and Bergstrom
(2008); Steinhaeuser and Chawla (2010); Piccardi (2011) among others. See again Fortu-
nato (2010) for a comparative survey.
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namely whose trading is important in relative terms. As mentioned, this can
be due to different factors, but certainly it should arise in presence of trade
agreements that promote trade between members more than trade with non-
members because they give rise to a preferential treatment. Since we expect
such communities to be composed of a mixture of large and small economies
(Whalley (1998); WTO (2011)), the use of relative trade values appears to be
more appropriate, as absolute measures would a priori obscure the position
of medium-small countries.

In defining a distance among nodes, we essentially adopt the approach of
Steinhaeuser and Chawla (2010), where a T -step random walk is performed,
in a Monte Carlo fashion, from each of the N network nodes. If the two nodes
(i, j) are visited along the same walk, a similarity counter σij is increased by
1. At the end, a similarity matrix Σ = [σij] is obtained which is used as a
basis for agglomerative, hierarchical clustering. The rationale of the method
is the following: if the number T of steps is limited, the random walker
started from i will more likely visit nodes strongly connected to i, i.e., within
the same community.

The distance dij = dji between nodes (i, j) is defined by complementing
the similarity and normalizing the results between 0 and 1:

dij = dji = 1− σij −minσij
maxσij −minσij

. (3)

At this point, a standard hierarchical, aggregative cluster analysis is used to
explore the possible existence of communities (Everitt et al. (2011)). More
precisely, a binary cluster tree (dendrogram) is computed by initially defining
N groups each containing a single node, and then by iteratively linking the
two groups with minimal distance.7

The dendrograms obtained for the WTN in 1962, 1980, and 2008 (i.e., the
two extremes of the time window of our dataset, plus and intermediate year)
are displayed in Fig. 1 (the full set of dendrograms with the indication of the
countries is available from the authors). In the dendrograms, each vertical
line corresponds to a node (a country). Horizontal lines (“links”) connect
two groups of nodes, and the height of the link (as read on the y-axis) is the
distance between the two groups.

A clear, visual indication of a clusterized network structure would be the
existence of long vertical segments or, equivalently, of links (i.e., horizontal
segments) whose height is largely different from the heights of the links be-
low them. In fact, this situation arises when the distance between the two

7See Piccardi and Tajoli (2011) for the technical details on the derivation of the simi-
larity matrix and the computation of these dendrograms.
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Figure 1: The dendrograms obtained by the hierarchical cluster analysis. From top to
bottom: WTN in 1962, 1980, and 2008. Colors (other than black) denote groups of nodes
whose distances are all not larger than 0.7.
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groups joined by the link is much larger than the distance among the nodes
forming the two groups - this exactly means that there are clusters in the
network. The situation appears to be markedly different in the WTNs’ den-
drograms: no long vertical segment is shown and only few distinct groups
appear, and they are mostly composed of few countries. Moreover, there
seems to be no significant structural differences through the years, possibly
with a diminishing visual distance between groups over time.

In all years, some expected patterns can be observed: United States and
Canada form one of the closest pairs (actually in 5 cases over 7 their distance
is zero, meaning they are the closest pair consistently with (3)); France is
strongly connected to some of its former colonies; Germany is close to other
European countries, and these large countries tend to fall in the left or central
part of the dendrogram. Some of these links are very large both in absolute
and in relative terms (e.g. between US and Canada), others are important
in relative terms (e.g. over one third of the imports of New Caledonia come
from France). Often very small countries are connected to much larger ones,
confirming the disassortativity already observed in the WTN (Fagiolo et al.
(2008)). These links tend to be small in absolute terms, given the small
economic size of the countries, but they are very important in relative terms,
as they show a strong preference for a given partner.

As pointed out above, the visual analysis of the dendrograms lead us
to claim that the WTN, through the years, does not display a significant
community structure. It is important to point out that this result is nei-
ther specific to our particular choice of node distance, nor to the choice of
considering relative trade values.8

In summary, the results of the cluster analysis (although based on the
visual evidence only) denote the absence of a strong evidence of the existence
of a significant community structure in the WTN. This emerges both from
the use of relative trade measures, a metric that appears to be more suited
to a multi-scale network such as the WTN (it is actually consistent with the
filtering technique described in Sec. 3.2.1), and from the adoption of a node
distance based on absolute trade values. Together with the small modularity
level (Sec. 3.2.1), this is a further clue of a mild community structure of the
WTN.

8We repeated the hierarchical cluster analysis by using a different definition of distance,
the one proposed by He and Deem (2010), relating country i to its direct neighbors through
the absolute trade value wij . This led to exactly the same conclusion as above: the
qualitative structure of the dendrograms is markedly different passing from the benchmarks
to the WTN, denoting clusterization levels very strong for the formers but extremely mild
for the latter.
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3.2.3 Stability of partitions

A different approach for exploiting random walks in studying network com-
munities has been devised by Delvenne et al. (2010), who introduced the
concept of stability of a partition. As above, the rationale is that, in a
strongly clusterized network, a random walker started in a community is
likely to remain for quite a long time within that community, before leaving
it to enter another community. Imagine that the walker emits a signal at each
step, which has the same value as long as it remains within a community and
changes when moving to another community. Then studying the persistence
of this signal provides important information on the community structure of
the network.9

A good, significant partition will have a stability measure rHt which re-
mains large over a long time span, since the random walker has a high likeli-
hood of remaining within the same community for long time. On the contrary,
a rapidly decaying rHt denotes a scarcely significant partition, because the
walker rapidly abandons the starting community.10

We compute the stability function rHt for all the WTWs of our dataset
1962-2008. In all instances, we consider the partition H obtained via modu-
larity optimization (Sec. 3.2.1). The results are depicted in the upper panel
of Fig. 2 (for readability, only the WTN curves for 1962, 1980 and 2008
are plotted, together with the curves of two benchmark clustered networks).
These functions are, however, not easy to be compared, essentially for two
reasons. First, the curves start from different values rH1 . Second, the decay
velocities are hardly comparable because of the different dimensions N of the
networks. For these reasons, we normalize the curves along both axes and
plot, in the lower part of Fig. 2, the normalized stability rHt /r

H
1 with respect

to the normalized time t/N . In this way the curves are directly compara-
ble. The visual exam of the figure is probably sufficient to grasp the much
more rapid decay, i.e. the much lower stability of partitions, of the WTNs
with respect to two artificial benchmark networks, GN and LFR, built with

9Delvenne et al. (2010) propose a measure of the stability of a network partition based
on the probability, evolving according to a Markov chain process, that the random walker
is still within a given community after a infinitely large number of steps. See Delvenne
et al. (2010); Piccardi and Tajoli (2011) for details on this stability measure.

10In Delvenne et al. (2010) rHt is actually proposed not only for testing the significance
of a given partition but mainly as a tool for finding the “best” partition. If a pretty
large number of “good” candidate partitions are derived, then the graph stability function
rt = maxH rHt puts in evidence, for each time instant t, which is the “optimal” partition
according to the stability criterion. It is suggested in Delvenne et al. (2010) that the most
relevant partitions are those which are optimal over long time windows.
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a community structure.11

3.2.4 Persistence probabilities

The final search on the presence of significant communities in the WTN
is performed by extracting another quantitative indicator, that we call the
persistence probability of the communities. Starting from the N -state net-
work, a given partition C1,C2, . . . ,Cq induces a q-state meta-network, where
communities becomes meta-nodes. At this scale, the random walker can be
described by the q-state lumped Markov chain (Kemeny and Snell (1976))
with stochastic matrix U .12 Under appropriate assumptions, the entry ucd of
U is the probability that the random walker is at time (t + 1) in any of the
nodes of community d, provided it is at time t in any of the nodes of com-
munity c. We define persistence probability of the community c the diagonal
term ucc of U . Large values of ucc are expected for significant communities.
In fact, the expected escape time from Cc is τc = (1− ucc)−1: the walker will
spend long time within the same community if the weights of the internal
edges are comparatively large with respect to those pointing outside. The
analysis of the persistence probabilities induced on a network by a given par-
tition has recently been proved to be an effective tool for testing the existence
and significance of communities (Piccardi (2011)).

We compute the persistence probabilities ucc, c = 1, 2, . . . , q, of the WTNs
in the 1962-2008 period for the partition corresponding to the maximum
modularity (Sec. 3.2.1). The results are in Fig. 3, for the original and
filtered WTNs, and for two benchmark networks characterized by built-in
communities. It is evident from Fig. 3 that the ucc-s of all the WTNs
under scrutiny are smaller than those of the benchmarks, and in most cases
much smaller. Actually, in all instances the entire range of the ucc-s of the
original WTNs is below the corresponding range of the benchmarks. If we
then individually analyze each single community, we discover that most of
them turn out to be scarcely significant, as revealed by the small persistence
probability. From this point of view, the results are even worse for the
filtered networks. From one side, removing several small-weight edges slightly
increases the highest persistence probabilities. But, on the other side, the
finer partition detected by the max-modularity approach pops up some small,

11 The computation (via linear fitting) of the decay rate γ reinforces this impression:
while the artificial networks have γ = 23.3 and 26.6, respectively, the WTNs in 1962,
1980 and 2008 are characterized by the much higher decay values 106.8, 100.3 and 97.6,
respectively. Similar figures (92.4 < γ < 109.4) are obtained for the other years of the
dataset, with no clear trend with respect to time.

12See Piccardi (2011) for details.
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Figure 2: (Above: the stability functions rHt of the GN and LFR benchmark
networks, and those of the World Trade network (WTN) in 1962, 1980, and 2008.
For each network, we consider the partition H obtained via modularity optimiza-
tion. Below: same as above, but the stability is normalized by the initial value rH1
and the time axis is normalized, separately for each curve, by the number N of
network nodes.
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scarcely significant communities, as clearly highlighted by the larger number
of small ucc-s in the lower panel of Fig. 3.

Nonetheless, some important information is conveyed by the analysis of
Fig. 3. Even if, in most instances, the partition of the WTN is scarcely
significant as a whole, we notice that there is in each case (at least) one com-
munity with rather large persistence probability, both in absolute terms, and
comparatively with respect to most of the other ucc-s. It turns out that it is a
large community which always includes the entire set of European countries,
plus a number of minor non-European partners (partially varying from year
to year), mainly from North Africa, Near East, and the Asian republics of the
former USSR. Up to 1995, there is also another large community with high
persistence probability, which includes the entire North America and most of
Central and South America, plus China, Australia and many others. Since
2000, however, the community partition dictated by the max-modularity sug-
gests a different arrangement, with North and South America in a community
and China and Australia in another one. Notably, both these new communi-
ties have a definitely smaller persistence probabilities than before, denoting
less exclusive intra-community partnerships. The evidence emerging from
this analysis is partially in line with what can be expected looking at the
existence of trade agreements between countries. Most European countries
form the European Union (EU), the oldest and deeper custom union in the
world, and the persistence of their ties is confirmed by the data. But this
analysis also suggests that the EU is not a group of countries separated from
to the rest of the world, and the observed community includes non-EU mem-
bers, and the not-too-high persistence probability suggests that trade links
with other countries are also important (in 2008, over one third of the Eu-
ropean Union imports were coming from non-EU countries). The reported
evidence also captures the new active role of China, which became a major
player in many areas of the world, less dependent from the US market.

Overall, we can conclude that, as well as the other methods above pre-
sented, the use of stability functions and the evaluation of the persistence
probabilities seem to confirm the absence of a strong clusterized structure
in the WTN, when considered as a whole. However, the capability of the
persistence probabilities of assessing the quality of each single community,
differently from the other tools of analysis, puts forward the existence of some
significant cluster of countries with privileged intra-community partnerships.
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Figure 3: The persistence probabilities of the World Trade Network (WTN 1962-
2008) and of the GN and LFR benchmark networks. The panels refer, respectively,
to the original and filtered WTN, as defined in Sec. 3.2.1. For each network, we
consider the q-community partition obtained via modularity optimization: the q
horizontal dashes denote the values of the diagonal terms ucc of the lumped Markov
matrix U (vertical straight lines are for visual aid only).
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4 Testing the significance of the PTA parti-

tion

In a world where international trade takes place according to well-defined
preferential partnerships, we would expect to observe a world trading sys-
tem formed by separated, clearly identified groups of countries, intensely
trading within each group, and trading relatively less among each other. If
PTAs indeed foster trade between members and discourage trade with non-
members, significantly distorting trade flows, communities should emerge in
the WTN. The evidence presented in the previous section indicates that the
world trading system does not have such a structure. The communities an-
alyzed, arising endogenously from the bilateral trade data, appear weak and
scarcely significant in shaping the structure of world trade.

As a further test of the role of PTAs, we computed the indicator of per-
sistence probability for the communities formed by the existing preferential
trade agreements, rather than the ones suggested directly by the trade data,
to test their significance within the WTN structure. The existing PTAs and
the countries belonging to them were taken from the WTO database (WTO
(2011)). Even if many countries are members of more than one trade agree-
ment, and grant some kind of preferential treatment to different group of
countries, the list used here includes only plurilateral preferential trade agree-
ments regionally based, so that each country appears only in one group.13

The PTAs considered are listed in Table 2, together with the respective per-
sistence probabilities. The persistence probabilities were computed for the
strongly connected component of the WTN in 2008.

From Table 2 it is possible to observe that most PTAs have a very low
persistence probability, generally lower than the values found for the endoge-
nous partitions, i.e. they do not form significant communities from the point
of view of the network structure. If we were to choose a 0.5 threshold for the
persistence probability to define a community (a situation in which for every
member of the community, trade with a member of the same community
is preferred - in probabilistic terms - to trade with a non-member at least
half of the times), only the the EU would satisfy this criterion, and NAFTA
would only come close, but stay below the threshold. Not surprisingly, the
values for the African and Asian communities are generally extremely low: it
is acknowledged that the trade agreements between these countries are not
very effective. The EFTA displays the lowest value, as for its members trade

13According to these criteria, only four plurilateral agreements listed by the WTO are
left out of our partition: the Asia-Pacific Trade Agreement, the Economic Cooperation
Organization, the Pan-Arab Free Trade Area, and the Global System of Trade Preferences.
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Communities formed by different PTA members in 2008
PTA N Persistence prob.
EU 27 0.6707
NAFTA 3 0.4595
ASEAN 10 0.2403
CACM 5 0.2022
CIS 8 0.1947
MERCOSUR 4 0.1507
ECOWAS 15 0.1219
CARICOM 13 0.1062
COMESA 17 0.0841
ANDEAN 4 0.0697
GCC 6 0.0626
SAFTA 6 0.0495
EFTA 3 0.0065
Others 60 0.3407

Table 2: Persistence probabilities of the communities in the WTN formed by the existing
PTAs (see the Appendix for the composition of each community).

with other European countries is much more important. These results can
be due to the fact that - as mentioned - many of these agreements are not
exclusive. The EFTA countries in fact, even if not belonging to the EU, have
trade agreements also with the EU.

In any case, the evidence confirms that the existing trade agreements
forming PTAs are not giving rise to significant trade diversion, and they do
not isolate the member countries from the rest of the world, as they limit
the links of non-members to members in a very mild way. This result is
fully in line with the previous results of the paper, that could hardly iden-
tify communities in the WTN without pre-imposing any partition. Overall,
the results show that these trade agreements do not affect significantly the
general structure of world trade as a whole.

5 Concluding remarks

In this paper we used different approaches to analyze communities in the
WTN. These methods are actually able to identify communities in directed-
weighted networks, but in the case of the WTN, all the four approaches led
to similar conclusions: there is no significant evidence on the existence of a
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strong community structure in the WTN. The eligible communities found in
the data are reasonable, but they are not very significant according to any of
the criteria adopted. Even if there is not a single robust measure to identify
communities in the WTN, the convergence of results from all the approaches
strengthens the robustness of this conclusion. Also the significance of com-
munities formed by the existing PTAs turns out to be very weak, confirming
the general result.

The configuration of the WTN therefore supports the view that the
growth of international trade linkages did not occur only within specific
groups of countries and through the formation of PTAs. Even if countries
select their trading partners, this selection is not following a strong or exclu-
sive preferential structure. In this respect, the effects of the PTAs on trade
patterns appear to be weak, and not introducing significant distortions in
trade flows.

While globalization of trade in terms of aggregate flows is quite plausi-
ble, much stronger community ties can emerge considering trade in specific
sectors, where the effect of removing trade barriers can be sizable. Future
developments of this work could focus on trade flows between countries in
particular commodities, using these aggregate results as a benchmark.

6 Appendix. Composition of the communi-

ties analyzed

PTAs
EU Community (27 nodes): ’Austria’ ’Belgium’ ’Bulgaria’ ’Cyprus’ ’Czech

Republic’ ’Denmark’ ’Estonia’ ’Finland’ ’France’ ’Germany’ ’Greece’ ’Hun-
gary’ ’Ireland’ ’Italy’ ’Latvia’ ’Lithuania’ ’Luxembourg’ ’Malta’ ’Netherlands’
’Poland’ ’Portugal’ ’Romania’ ’Slovak Republic’ ’Slovenia’ ’Spain’ ’Sweden’
’United Kingdom’

NAFTA community (3 nodes): ’Canada’ ’Mexico’ ’United States’
ASEAN community (10 nodes): ’Brunei Darussalam’ ’Cambodia’ ’In-

donesia’ ’Lao People’s Democratic Republic’ ’Malaysia’ ’Myanmar’ ’Philip-
pines’ ’Singapore’ ’Thailand’ ’Vietnam’

CACM community (5 nodes): ’Costa Rica’ ’El Salvador’ ’Guatemala’
’Honduras’ ’Nicaragua’

CIS community (8 nodes): ’Armenia, Republic of’ ’Azerbaijan, Republic
of’ ’Belarus’ ’Georgia’ ’Kazakhstan’ ’Moldova’ ’Russian Federation’ ’Ukraine’

MERCOSUR community (4 nodes): ’Argentina’ ’Brazil’ ’Paraguay’ ’Uruguay’
ECOWAS community (15 nodes): ’Benin’ ’Burkina Faso’ ’Cape Verde’
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’Côte d’Ivoire’ ’Gambia, The’ ’Ghana’ ’Guinea’ ’Guinea-Bissau’ ’Liberia’
’Mali’ ’Niger’ ’Nigeria’ ’Senegal’ ’Sierra Leone’ ’Togo’

CARICOM community (13 nodes): ’Bahamas, The’ ’Barbados’ ’Belize’
’Dominica’ ’Grenada’ ’Guyana’ ’Haiti’ ’Jamaica’ ’St. Kitts and Nevis’ ’St.
Lucia’ ’St. Vincent and the Grenadines’ ’Suriname’ ’Trinidad and Tobago’

COMESA community (17 nodes): ’Burundi’ ’Comoros’ ’Congo, Demo-
cratic Republic of’ ’Djibouti’ ’Egypt’ ’Ethiopia’ ’Kenya’ ’Libya’ ’Madagas-
car’ ’Malawi’ ’Mauritius’ ’Rwanda’ ’Seychelles’ ’Sudan’ ’Uganda’ ’Zambia’
’Zimbabwe’

ANDEAN community (4 nodes): ’Bolivia’ ’Colombia’ ’Ecuador’ ’Peru’
GCC community (6 nodes): ’Bahrain, Kingdom of’ ’Kuwait’ ’Oman’

’Qatar’ ’Saudi Arabia’ ’United Arab Emirates’
SAFTA community (6 nodes): ’Bangladesh’ ’India’ ’Maldives’ ’Nepal’

’Pakistan’ ’Sri Lanka’
EFTA community (3 nodes): ’Iceland’ ’Norway’ ’Switzerland’
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