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1 Introduction

Ambitious carbon reduction targets, adopted by many countries,1 may result in reduced

production efficiency and higher costs.2 However, the question of how to spatially al-

locate carbon reduction efforts and the associated costs remains unresolved. This com-

plexity arises from (i) substantial regional heterogeneity in productivity, amenities, and

industrial composition; (ii) distortions and externalities that impede efficient emissions

allocation through carbon markets;3 and (iii) inter-regional linkages, such as trade, mi-

gration, and input-output linkages. Designing spatial carbon policies that enhance overall

welfare requires careful consideration of these dimensions of heterogeneity, externalities,

and interdependence.

To understand the optimal spatial allocation of carbon emissions, it is essential to de-

velop a quantitative spatial model that incorporates carbon emissions and policies, along

with an efficient algorithm to solve for optimal spatial policies. Currently, the literature

lacks such a comprehensive model.4 Additionally, solving for high-dimensional optimal

spatial policies remains computationally challenging.5

To address these gaps, we develop a multi-sector quantitative spatial model incorpo-

rating carbon emissions and carbon taxes. Building on the spatial model by Allen and

1For example, in 2022, Australia legislated its greenhouse gas emission reduction targets, aiming to reach
emission levels 43% below 2005 levels by 2030 and achieve net zero by 2050. In 2021, President Biden set
the U.S. Greenhouse Gas Pollution Reduction Target, aiming to reduce net greenhouse gas emissions by
50-52% from 2005 levels by 2030. In 2020, China proposed to reduce carbon emissions rapidly by 2045 and
achieve carbon neutrality by 2060.

2Recent studies emphasize the role of energy as a key production input, with carbon emissions being
an inevitable byproduct. Consequently, carbon reduction increases energy input costs, leading to higher
production costs. See, for example, Larch and Wanner (2017) and Farrokhi and Lashkaripour (2024).

3Classical externalities in spatial economies include the impacts of regional population size on local
productivity and amenities.

4Farrokhi and Lashkaripour (2024) make progress in this direction by incorporating carbon emissions
and policies into a quantitative trade model and characterizing optimal trade policies aimed at reducing
global carbon emissions. Their framework follows the quantitative trade model with pollution emissions
developed by Shapiro and Walker (2018). However, to our knowledge, there is no quantitative framework
designed to understand optimal carbon policies within a country across different regions.

5For instance, Lashkaripour and Lugovskyy (2023) highlight “the well-known limitations of numerical
optimization routines when applied to nonlinear models with many free-moving variables.”
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Arkolakis (2014), we integrate the specifications for carbon emissions and carbon taxes

from Shapiro and Walker (2018) and Farrokhi and Lashkaripour (2024). Our model sim-

ulates a spatial economy where workers move freely across regions, influenced by vari-

ations in technology, amenities, and local agglomeration and congestion forces. Regions

are interconnected through trade and input-output linkages, enabling the exchange of

goods and services.

In our model, carbon emissions are treated as a factor of production, with their cost

determined by government-imposed carbon taxes. When a carbon tax is applied to a

specific sector in a particular region, it reduces carbon emissions in that sector and region

but increases production costs. This tax also impacts carbon emissions and production

costs in other sectors and regions through trade and input-output linkages.

Building on our model, we characterize carbon taxes that maximize aggregate real

income while adhering to an aggregate carbon emission constraint. To achieve this, we

develop a novel emission allocative efficiency (EAE) measure, which quantifies the poten-

tial real income gains from reallocating emissions. This measure evaluates the trade-off

between the benefits of reducing carbon emissions and the associated losses in produc-

tion efficiency for any given set of spatial carbon taxes. The optimal carbon tax for a

specific sector in a particular region should be higher than the observed carbon tax if its

EAE exceeds 1, and lower if its EAE is less than 1. This property of the EAE offers guid-

ance for enhancing real income through emission reallocation without explicitly solving

for optimal spatial carbon taxes.

Our analysis of emission allocative efficiency (EAE) addresses two key dimensions.

First, in the one-sector version of our model, we derive analytical sufficient statistics that

link EAE to inter-regional trade, labor, and emissions data. Our findings suggest that

carbon taxes should be lower in regions with higher Katz centrality (KC) in the inter-

regional trade network, as taxes in these regions result in larger aggregate productivity

losses. Additionally, we show that optimal carbon taxes should decline in more central

regions as agglomeration strengthens or congestion weakens. These sufficient statistics
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offer theoretical characterizations that connect optimal spatial carbon taxes with regional

heterogeneity, externalities, and interdependence.

Second, we propose an EAE-based iterative algorithm for solving optimal spatial car-

bon taxes. This algorithm integrates the linear system that solves for EAE with the non-

linear system that captures equilibrium changes under exogenous shocks (the ”exact-

hat” algebra). By incorporating EAE, the algorithm improves computational efficiency

by structuring the Jacobian matrix in the optimization process. This approach enables

the efficient computation of complex, high-dimensional, and continuous optimal policies

within a general equilibrium framework. The algorithm is versatile and applicable to a

wide range of quantitative trade and spatial models, facilitating the solution of optimal

policy problems.

We apply our framework to quantify optimal carbon taxes for 30 provinces and 15

sectors in China using a calibrated model based on 2017 data on production, trade flows,

input-output linkages, population, and carbon emissions. We calculate the EAE for the

observed carbon taxes in the calibrated economy and then compute optimal carbon taxes

using our iterative algorithm. We find that

(i) Optimal spatial carbon taxes are significantly negatively correlated with Katz cen-

trality within observed inter-regional trade networks. This result is consistent with

our analytical characterization of optimal spatial carbon taxes in the simplified one-

sector model.

(ii) Emission Allocative Efficiency (EAE), which can be easily computed using a lin-

ear system, shows a strong correlation with the ratio of optimal to observed carbon

taxes. Thus, EAE offers policymakers qualitative guidance for reallocating emis-

sions to improve real income, without calculating precise optimal spatial carbon

taxes.

(iii) Implementing optimal spatial carbon taxes could increase Chinese welfare by 1.37%

while maintaining total emissions unchanged. This highlights the potential welfare
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gains from accounting for regional heterogeneity, externalities, and interdependence

in carbon reduction policy design.

Our optimal carbon taxes serve as a valuable benchmark for spatial carbon reduction

policies. However, it is often impractical for the central government to enforce region-

sector-specific carbon policies. Instead, the central government may allocate emission

constraints to regions and delegate the authority for sectoral carbon policies to local gov-

ernments. To elucidate this decentralized carbon allocation, we analyze a non-cooperative

carbon tax game within our spatial model. In this scenario, each region sets its local car-

bon taxes to maximize real income while adhering to regional emission constraints, con-

sidering the carbon taxes in other regions as given. We find that in this non-cooperative

scenario, local governments fail to internalize the impacts of their carbon taxes on pro-

duction and emissions in other regions. This leads to excessively high carbon taxes on

upstream sectors, resulting in efficiency losses. This result highlights the necessities for

regional coordination in carbon policy design.

Related Literature–This paper relates to several strands of literature. First, it relates

to quantitative explorations of policies on carbon emission. Shapiro (2021) and Garcia-

Lembergman, Ramondo, Rodriguez-Clare, and Shapiro. (2024) quantify the impacts of

carbon policies in the global economy. Farrokhi and Lashkaripour (2024) further consider

the optimal design of carbon policies within a quantitative trade model. Our paper com-

plements this strand of literature by focusing on the optimal design of carbon emission

policies across different regions within a country, which, to the best of our knowledge,

has not been extensively explored in previous studies.6

Second, we contribute to the characterization of optimal spatial policies. Fajgelbaum

and Gaubert (2020) provide a generalized framework for optimal transfers, while Henkel,

Seidel, and Suedekum (2021) and Colas and Hutchinson (2021) examine optimal taxes

6One exception is Arkolakis and Walsh (2023). They focus on the optimal spatial allocation of electricity
transmission networks and the corresponding consequences on the adoption of renewable energy. This
paper departs from their work by considering generalized spatial policies on carbon emissions.
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and fiscal transfers across regions. Our paper complements this literature by focusing

on the optimal spatial allocation of a specific outcome of economic activity: carbon emis-

sions.

Third, our work relates to targeting interventions in networks. Galeotti, Golub, and

Goyal (2020) provide generalized theoretical results for this problem. Liu (2019) exam-

ines the impacts of industrial policies in production networks, while Lashkaripour and

Lugovskyy (2023) consider optimal industrial policies in trade networks. Liu and Ma

(2024) investigate innovation subsidies in knowledge networks. This paper contributes

to this strand of literature by deriving sufficient statistics that can be used to characterize

optimal spatial carbon taxes. Our framework can be applied to characterize a wide range

of policies in networks, such as the combination of zoning and industrial policies and

economic sanctions in trade and technology networks.

This paper is structured as follows. Section 2 introduces our model. Section 3 charac-

terizes optimal spatial carbon taxes utilizing the emission allocative efficiency (EAE). In

Section 4, we calibrate our model and perform counterfactual analysis for optimal spatial

emissions. We conclude in Section 5.

2 Spatial Model with Carbon Emissions and Carbon Taxes

2.1 Environment

Consider a spatial economy with N regions, denoted by (i, n, k), and J sectors, denote by

(j, s). Total endowment of workers is L̄. Workers are freely mobile across regions and

sectors. The representative consumer in region i has a Cobb-Douglas preference over J

sectors:

Ui = BiL
−β
i

J

∏
j=1

(
Cj

i

)αj
,

N

∑
j=1

αj = 1, (1)
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where Cj
i is the consumption of sector j in region i. BiL

−β
i represents amenity in region i,

where Bi is the exogenous amenity shifter, Li is the labor in region i, and β ≥ 0 captures

the congestion force over space.

Each sector j consists of a unit mass of varieties, aggregated by a CES function with the

elasticity of substitution σj ≥ 0. Following Shapiro and Walker (2018) and Farrokhi and

Lashkaripour (2024), we regard carbon emission as a factor of production whose price is

determined by carbon tax. This is a tractable way to incorporate carbon abatement costs

and carbon policies into a general equilibrium framework. Specifically, we assume that

each variety is produced by a firm using labor, carbon, and intermediates in a perfectly

competitive market. The unit cost of variety ω of sector j produced in region i is given by

cj
i(ω) =

cj
i

zj
i (ω)

, cj
i ≡ L

−ψj
i w

γL
j

i

J

∏
s=1

(Ps
i )

γsj
(

tj
i

)ξ j
, γL

j +
J

∑
s=1

γsj + ξ j = 1, (2)

where wi is the wage in region i, Ps
i is the price index of sector s in region i, tj

i > 0 is

the tax rate on carbon emission in region i and sector j, and zj
i(ω) is the productivity of

variety ω. Notice that (i) ψj ≥ 0 characterizes the sectoral agglomeration force,7 and (ii)

ξ j is the share of carbon emission in producing good j which, as shown below, affects the

emission intensity of sector j.

The exogenous productivity zj
i (ω) is drawn independently from a Frechet distribution

with level parameter Aj
i and shape parameter θj ≥ σj. Exporting good j from region i to

n incurs an iceberg trade cost τ
j
in.

Finally, we assume that region i receives a share si of carbon tax revenue. The alloca-

tion of these transfers is critical for the efficiency of spatial carbon taxes, as emphasized

by Fajgelbaum and Gaubert (2020). Our baseline specification sets si =
Li
L̄ , distributing

tax revenue evenly across households, regardless of location. This specification avoids

distorting labor’s spatial allocation and is adopted in all quantitative exercises in this

7This specification follows Adao, Arkolakis, and Esposito (2023) to allow productivities of different sec-
tors respond differently to changes in local production scale.
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paper. We also consider si = wi Li
∑N

k=1 wk Lk
, where revenue is distributed based on regional

wage incomes, wiLi. This simplifies the equilibrium system, facilitating the derivation of

analytical sufficient statistics for optimal spatial carbon taxes.

2.2 Equilibrium

We proceed by defining the equilibrium in our model. Let X j
i be the total expenditure in

region i on good j and X j
in be the value of trade of good j from region i to n. Then

λ
j
in ≡

X j
in

X j
n
=

Aj
i

(
τ

j
incj

i

)−θj

∑N
k=1 Aj

k

(
τ

j
kncj

k

)−θj
. (3)

The price indices can be expressed as

Pj
n =

[
N

∑
k=1

Aj
k

(
τ

j
kncj

k

)−θj

]− 1
θj

, Pn =
J

∏
j=1

(
Pj

n

)αj
. (4)

The wage satisfies

wiLi =
J

∑
j=1

γL
j

N

∑
n=1

λ
j
inX j

n. (5)

Final income in region i is the sum of wage income and carbon tax revenue:

Yi = wiLi + siR, R ≡
N

∑
k=1

J

∑
j=1

Rj
k, Rj

k ≡ ξ j

N

∑
n=1

λ
j
knX j

n, si =
Li

L̄
. (6)

Notice that ∑N
k=1 ∑N

n=1 λ
j
knX j

n = ∑N
n=1 X j

n for all j. Therefore, R = ∑J
j=1 ∑N

n=1 ξ jX
j
n.

X j
i is the sum of final consumption and intermediate usage:

X j
i = αjYi +

J

∑
s=1

γjs

N

∑
n=1

λs
inXs

n. (7)
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Welfare equalization implies that

BiL
−β
i

Yi/Li

Pi
= W. (8)

Since L̄ = ∑N
i=1 Li, we have

Li

L̄
=

(
Bi

Yi/Li
Pi

) 1
β

∑N
k=1

(
Bk

Yk/Lk
Pk

) 1
β

, (9)

and the aggregate welfare can be measured by the weighted average of regional real in-

come:

W =
1

L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

. (10)

Finally, the aggregate emission is given by

E =
J

∑
j=1

N

∑
i=1

Ej
i , Ej

i ≡
ξ j

tj
i

N

∑
n=1

λ
j
inX j

n. (11)

Definition Given parameters
(

ψj, β, θj, αj, γL
j , γsj, ξ j; Aj

i , Bi, τ
j
in; L̄; tj

i

)
, the equilibrium con-

sists of
(

wi, Li, Pj
i , X j

i

)
such that (i) (wi) is given by labor market clearing in Equation (5);

(ii) (Li) is given by the labor allocation in Equation (9); (iii)
(

Pj
i

)
is given by the price

index in Equation (4); (iv)
(

X j
i

)
is given by goods market clearing in Equation (7).

Following Dekle, Eaton, and Kortum (2008), we can express our equilibrium system

in relative changes. For any variable Z > 0, we denote Z′ as its level after changes and

Ẑ ≡ Z′
Z . Let χ

j
in ≡

γL
j λ

j
inX j

n

wi Li
be the export share. Let δw

i ≡ wi Li
Yi

be the wage income share

and δ
j
n ≡ 1

R ξ jX
j
n be the carbon tax revenue share. Let νY

ij ≡
αjYi

X j
i

be final expenditure share.

Let ν
js
in ≡ γjsλs

inXs
n

X j
i

be intermediate expenditure share.
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Then given exogenous changes
(

t̂j
i

)
, we can derive

(
ŵi, L̂i, P̂j

n, X̂ j
n

)
by solving the fol-

lowing non-linear system:

ŵi L̂i =
J

∑
j=1

N

∑
n=1

χ
j
inλ̂

j
inX̂ j

n, λ̂
j
in =

(
ĉj

i

)−θj
(

P̂j
n

)θj
, ĉj

i = L̂
−ψj
i ŵ

γL
j

i

(
t̂j
i

)ξ j
J

∏
s=1

(
P̂s

i
)γsj

(
P̂j

n

)−θj
=

N

∑
i=1

λ
j
in

(
ĉj

i

)−θj
, P̂n =

J

∏
j=1

(
P̂j

n

)αj

X̂ j
i = νY

ij Ŷi +
J

∑
s=1

N

∑
n=1

ν
js
inλ̂s

inX̂s
n, Ŷi = δw

i ŵi L̂i + (1 − δw
i ) L̂i

J

∑
j=1

N

∑
n=1

δ
j
nX̂ j

n,

L̂i =

(
Ŷi/L̂i

P̂i

) 1
β

∑N
k=1 ιk

(
Ŷk/L̂k

P̂k

) 1
β

, ιi ≡
Li

L̄
.

(12)

3 Optimal Spatial Emissions

3.1 The Central Government’s Problem

The central government decides
(

tj
i

)
to maximize the aggregate real income subject to an

aggregate emission constraint:

max(
tj
i ;wi,Li,P

j
n,X j

n

)W ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

s.t.
J

∑
j=1

N

∑
i=1

ξ j

tj
i

N

∑
n=1

λ
j
inX j

n ≤ Ē

(
wi, Li, Pj

n, X j
n

)
satisfy Equation (4), (5),(9), and (7)

(13)

Regarding Problem (13), two key questions merit discussion. First, why is the disu-

tility from carbon emissions not included in the central government’s objective function?

The central government’s problem in Equation (13) is indeed equivalent to that in a model
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considering disutility from carbon emissions. To see this, we re-express the central gov-

ernment’s problem following the specification in Farrokhi and Lashkaripour (2024):

max(
tj
i ;wi,Li,P

j
n,X j

n

) log


1

L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

︸ ︷︷ ︸
W

− δE log


J

∑
j=1

N

∑
i=1

ξ j

tj
i

N

∑
n=1

λ
j
inX j

n︸ ︷︷ ︸
E


s.t.

(
wi, Li, Pj

n, X j
n

)
satisfy Equation (4), (5),(9), and (7)

(14)

where δE > 0 is the weight for aggregate emission in the central government’s objective.

Problem (14) is isomorphic to Problem (13), with identical solutions once δE is cali-

brated so that the aggregate emission in Problem (14) matches the value Ē in Problem

(13). We choose to solve Problem (13) in this paper because the aggregate emission con-

straint Ē can be directly linked to real-world policy targets.

Second, can carbon emissions derived in Problem (13) be replicated through a carbon

market, thereby obviating the need for spatial carbon policies? Fajgelbaum and Gaubert

(2020) have argued that in the absence of externalities and distortions, the spatial equi-

librium leads to the first best once the income of fixed factors is evenly distributed across

households. In our model, carbon emissions are considered a factor of production and

their income is evenly distributed across workers. Therefore, carbon emissions can be

efficiently allocated through a carbon market if (i) there is no local agglomeration exter-

nality, i.e. ψj = 0 for all j and (ii) there is no local amenity externality, i.e. β = 0. This

result can be summarized by the following result:

Proposition 1 (Optimal Spatial Carbon Taxes without Externalities) Suppose that si =
Li
L̄ .

If ψj = β = 0, then the solution to Problem (13) satisfies tj∗
i = t∗ > 0 where

t∗ =
J

∑
j=1

N

∑
i=1

ξ j

Ē

N

∑
n=1

λ
j
inX j

n. (15)
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Proposition 1 indicates that, in the absence of externalities, optimal spatial carbon

taxes are straightforward: the central government simply sets the national carbon price

as in Equation (15), allowing the national carbon market to efficiently allocate emissions

across space to achieve the aggregate target Ē. We present the details of this national

carbon market in Appendix A.1.

However, in the presence of agglomeration and amenity externalities, the optimal spa-

tial emissions in Problem (13) cannot be achieved through the national carbon market. In

this scenario, spatial carbon taxes can raise real income while maintaining the aggregate

emission level. Our analysis will focus on this case in the sections that follow.

3.2 Emission Allocative Efficiency (EAE)

In this subsection, we characterize the solution to Problem (13), t∗, in the case where β > 0

and ψj > 0 for some j. To this end, we develop an emission allocative efficiency (EAE)

measure: for any carbon tax profile t ≡
(

tj
i

)
, its corresponding EAE is defined as

Mj
i (t) ≡

µ

W

Ej
i +

J

∑
s=1

N

∑
k=1

(
−

∂ log Rs
k

∂ log tj
i

)
Es

k︸ ︷︷ ︸
Effect of tj

i on carbon emissions



 −∂ log W

∂ log tj
i︸ ︷︷ ︸

Effect of tj
i on real income



−1

, (16)

where µ is the Lagrange multiplier of the aggregate carbon emission constraint in Equa-

tion (13).

By construction, Mj
i (t) increases with the effect of tj

i on aggregate carbon emission

and decrease with (the absolute value of) the effect of tj
i on aggregate real income W. As

a result, Mj
i (t) summarizes the key trade-off in determining carbon taxes: the increase in

tj
i would lower carbon emissions but also lower real income by raising production costs.

In the following lemma, we will argue that Mj
i (t) measures the extent to which emission

reallocation would increase the aggregate real income.
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Proposition 2 (Emission Allocative Efficiency) Let t∗ ≡
(

tj∗
i

)
be the solution of Problem

(13). Then there exists δ > 0 such that for any t satisfying ∑i,j

[
tj
i − tj∗

i

]2
≤ δ, Mj

i (t) defined by

Equation (16) has the following properties:

1. Mj
i (t

∗) = 1 for all (i, j).

2. If Mj
i (t) > 1, then tj∗

i > tj
i .

3. If Mj
i (t) < 1, then tj∗

i < tj
i .

Proposition 2 suggests that tj
i should increase if the benefit from carbon reduction

exceeds the loss from lowering real income. Moreover, Proposition 2 implies that tj∗
i is

higher in the region-sector pair where (i) the carbon tax can substantially reduce carbon

emission, or (ii) the carbon tax has small negative effects on the aggregate welfare.

The properties of Mj
i (t) in Proposition 2 hold exactly only if t is close to t∗. However,

our counterfactual analysis in Section 4.2 will show that they hold numerically in most of

the (i, j)-pairs for the observed t in our quantification practice. Consequently, Mj
i (t) could

offer a qualitative guidance for spatial carbon policies: carbon taxes should be higher in

region-sector pairs with higher Mj
i (t) and lower in those with lower EAE.

To demonstrate the usefulness of EAE in designing spatial carbon policies, we (i) de-

rive sufficient statistics that link EAE to observable data, and (ii) develop an EAE-based

iterative algorithm to solve optimal spatial carbon taxes.

3.3 Sufficient Statistics for EAE in the One-Sector Model

In this subsection, we express the emission allocative efficiency (EAE) by model param-

eters
(

ψj, β, θj, αj, γL
j , γsj, ξ j

)
and data on trade, labor, and emissions,

(
X j

in, Li, Ej
i

)
. In

particular, we derive analytical sufficient statistics for EAE in the one-sector special case

of our model to understand the structure of optimal spatial carbon policies.
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Consider there is only one sector, i.e. J = 1 and there is no roundabout production,

i.e. γjs = 0 for all (j, s). We omit subscript/superscript j for all variables in this case. The

EAE in this case can be expressed as

Mi (t) =
µξ

W

[
Ei +

N

∑
k=1

(
−∂ log Rk

∂ log ti

)
Ek

](
−∂ log W

∂ log ti

)−1

. (17)

We define several parameters and matrices. Let θ̆ ≡ θ
1+θ(2−ξ)

, δ1 ≡ 1+[1 + θ(1 − ξ)] β−

θψ, and δ2 ≡ (1− ξ)− θ(1− ξ)β+ (1+ θ)ψ. Let ι ≡ [ιi] be a column vector, e be a column

vector with all ones, and I be the identity matrix. Let χin ≡ Xin
∑N

k=1 Xik
, and χ = [χin] with i

denoting the rows and n denoting the columns.

Proposition 3 (EAE and Katz Centrality in the One-Sector Model) Suppose that si =
wi Li

∑N
k=1 wk Lk

.

The real income effect of carbon taxes:

[
∂ log W
∂ log t1

, . . . ,
∂ log W
∂ log tN

]
= −

ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
(18)

The effects of carbon taxes on carbon tax revenues

[
∂ log Rk
∂ log ti

]
=

[
1 + θ̆

(
β + ψ − 1

θ

)] [
∂ log Lk
∂ log ti

]
− θ̆ξI, (19)

where
[

∂ log Lk
∂ log ti

]
= −

[
I − 1

ι′
[
I− δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ
]−1

eι′

] [
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]
.

According to Proposition 3, the EAE in the one-sector model, Mi (t) in Equation (17),

can be expressed in terms of data on χ, ι, and (Ei) and parameter values on
(
θ̆, δ1, δ2

)
.

The detailed proof to Proposition 3 is presented in Appendix A.3.1. Under our baseline

allocation of carbon tax revenue, i.e. si =
Li
L̄ , the sufficient statistics for the EAE are similar

to those in Proposition 3 but much less tractable and interpretable. We present the details

of this case in Appendix A.3.2.
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Two points merit further discussion. First, the vector ι′
[
I − δ2

δ1
χ
]−1

represents the

Katz Centrality (KC) in inter-regional trade networks, a centrality measure that captures

the rich heterogeneity and spatial interdependence of regions. KC reflects the impact of

each region’s production costs on aggregate real income. Proposition 3 shows that regions

with higher KC tend to exhibit lower emission allocative efficiency (EAE). Intuitively,

carbon taxes should be lower in regions where increases in production costs have a more

significant negative effect on aggregate real income. Katz Centrality is commonly used

to assess the influence of nodes in a network. The contribution of Proposition 3 lies in

linking KC with EAE and demonstrating its usefulness in determining optimal spatial

carbon taxes.

Second, the attenuation parameter of the Katz Centrality (KC), δ2
δ1

, can be interpreted

structurally within the context of our spatial model. Specifically,

δ2

δ1
=

(1 − ξ)− θ(1 − ξ)β + (1 + θ)ψ

1 + [1 + θ(1 − ξ)] β − θψ
, (20)

which rises with agglomeration externalities ψ and falls with congestion forces β. This

parameter encapsulates the role of productivity and amenity externalities in shaping op-

timal spatial carbon taxes. As agglomeration strengthens or congestion weakens, optimal

carbon taxes should decrease in regions more central to trade networks, as taxes in these

regions lead to larger reductions in aggregate real income.

3.4 EAE-Based Iterative Algorithm to Solve for
(

tj∗
i

)
In this subsection, we characterize the emission allocative efficiency (EAE) in our full

model. Instead of analytical sufficient statistics, we express
(

∂ log Rs
k

∂ log tj
i

)
and

(
∂ log W
∂ log tj

i

)
in

our full model as the solution to a linear recursive system.

Without loss of generality, we normalize ∑N
i=1 wiLi = 1. For any variables Z > 0, we

15



denote Z̃ ≡ d log Z. Then
(

w̃i, L̃i, P̃j
i , X̃ j

i

)
can be computed by solving:

w̃i + L̃i =
J

∑
j=1

N

∑
n=1

χ
j
in

(
λ̃

j
in + X̃ j

n

)
, λ̃

j
in = −θj c̃

j
i + θjP̃

j
n, c̃j

i = −ψj L̃i + γL
j w̃i + ξ j t̃

j
i +

J

∑
s=1

γsjP̃s
i

X̃ j
i = νY

ij Ỹi +
J

∑
s=1

N

∑
n=1

ν
js
in
(
λ̃s

in + X̃s
n
)

, Ỹi = δw
i
(
w̃i + L̃i

)
+ (1 − δw

i )

(
L̃i +

J

∑
j=1

N

∑
n=1

δ
j
nX̃ j

n

)

P̃j
n =

N

∑
i=1

λ
j
in c̃j

i , P̃n =
J

∑
j=1

αjP̃
j
n

L̃i =
1
β

(
Ỹi − L̃i − P̃i

)
− 1

β

N

∑
k=1

ιk
(
Ỹk − L̃k − P̃k

)
(21)

The welfare effects of carbon taxes can then be derived by:

W̃ =
N

∑
k=1

ιk
(
Ỹk − L̃k − P̃k

)
. (22)

The impacts of carbon taxes on carbon tax revenues can be expressed as

R̃j
i =

N

∑
n=1

ξ jλ
j
inX j

n

Rj
i

(
λ̃

j
in + X̃ j

n

)
. (23)

Therefore, for any spatial economy where we can observe
(

ψj, β, θj, αj, γL
j , γsj, ξ j

)
and(

X j
in, Li, Ej

i

)
, Mj

i (t) defined by Equation (16) can be derived by Equation (21), (22), and

(23).

We then combine the linear system in Equation (21) with the nonlinear “exact-hat”

algebra (12) to develop the following algorithm for solving optimal spatial carbon taxes:

Algorithm 4 (Optimal Spatial Carbon Taxes) t∗ that solves the problem in Equation (13) can

be calculated as follows:

1. Guess t∗ ∈ R
N×J
++ .
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2. Solve for
(

X j
in, ιi

)
under t∗ by the “exact-hat algebra” in Equation (12).

3. Solve the linear system (21).

4. Calculate Mj
i(t

∗) using Equation (22), (23), and (16).

5. Update tj∗
i by tj∗

i Mj
i(t

∗).

6. Repeat Step 1-5 until tj∗
i = tj∗

i Mj
i(t

∗) for all (i, j).

7. Adjust the level of t∗ to bind the aggregate emission constraint in Equation (13).

Notably, the linear system (16) offers sufficient statistics for the Jacobian matrix of

Problem (13). Therefore, Algorithm 4 effectively derives the Jacobian matrix under any

given t utilizing sufficient statistics embedded in the linear system (16), achieving the

efficiency of Newton’s method with analytical Jacobian matrix.

4 Quantifying Optimal Spatial Carbon Taxes

4.1 Data and Calibration

Our quantitative analysis requires values on
(

ψj, β, θj, αj, γL
j , γsj; ξ j, tj

i ; X j
in

)
. We consider

N = 30 Chinese provinces and J = 15 sectors in 2017. We calibrate
(
θj, ψj

)
from Lashkaripour

and Lugovskyy (2023). Notably, we rescale the scale elasticities so that its average is equal

to 0.05, consistent with the estimate in Adao et al. (2023). We report the calibrated values

of
(
θj, ψj

)
in the first two columns of Table 1.

We calibrate β = 2
3 from Tombe and Zhu (2019). We calibrate

(
αj, γL

j , γsj

)
using Chi-

nese aggregate input-output table for 2017. We obtain
(

X j
in

)
directly from Chinese inter-

provincial input-output table for 2017.
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Table 1: Calibration of
(
θj, ψj, ξ j

)
Sector Description θj ψj ξ j

1 Agriculture&Mining 6.227 0.0254 0.0203
2 Food 2.303 0.0697 0.0064
3 Textiles, Leather&Footwear 3.359 0.0397 0.0083
4 Wood 3.896 0.0406 0.0032
5 Paper 2.646 0.0567 0.0153
6 Petroleum 1.200 0.2163 0.0368
7 Chemicals 3.966 0.0411 0.0262
8 Rubber&Plastic 5.157 0.0248 0.0041
9 Minerals 5.283 0.0296 0.0883
10 Basic&Fabricated Metals 3.004 0.0371 0.0635
11 Machinery 7.75 0.0213 0.0077
12 Electrical&Optical Equipment 1.235 0.0979 0.0034
13 Transport Equipment 2.805 0.0229 0.0041
14 N.E.C.&Recycling 6.169 0.0270 0.0054
15 Services 10 0.0000 0.0070

Simple Average 4.33 0.05 0.02

We calibrate
(

ξ j, tj
i

)
combining Chinese inter-provincial input-output table and Car-

bon Emission Account&Datasets (CEADs). In particular, we have

ξ j

tj
i

=
Ej

i

∑N
n=1 X j

in

. (24)

We normalize 1
N ∑N

i=1 tj
i = 1 for all j. We then get ξ j and tj

i separately. To this end, we

attribute all sectoral variations in emission intensities to
(
ξ j
)
. Notably, we adjust the unit

of Ej
i so that 1

J ∑J
j=1 ξ j = 0.02, consistent with the estimate in Shapiro and Walker (2018).

We report the calibrated values of
(
ξ j
)

in the last column of Table 1.

4.2 Optimal Spatial Carbon Taxes

In this subsection, we derive and characterize optimal spatial carbon taxes,
(

tj∗
i

)
, in our

calibrated economy. Using a personal computer without parallel computation, it takes

about three hours for our EAE-based algorithm to solve for
(

tj∗
i

)
i=1,...,N;J=1,...,J

where N =

30 and J = 15. Optimal spatial carbon taxes generate significant welfare gains in China,
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increasing real income by 1.37% without altering aggregate carbon emissions. This result

underscores the importance of considering the spatial dimension in designing optimal

carbon policies.

To understand the variations in optimal spatial carbon taxes across regions and sec-

tors, we link them with Katz centrality (KC) of region i and sector j in the observed inter-

provincial trade networks of sector j, defined as

[
KCj

1, . . . , KCj
N

]
≡ ι′

[
I −

δ2j

δ1j
χj

]−1

, (25)

where χj ≡
[
χ

j
in

]
is the inter-provincial export share matrix of sector j.

Proposition 3 shows that, in the one-sector model with si = wi Li
∑N

k=1 wk Lk
, optimal spa-

tial carbon taxes are negatively correlated with Katz centrality within the observed inter-

regional trade network. Panel (a) of Figure 1 confirms that this negative correlation also

holds in our full model. To maximize the aggregate real income, the central government

should reallocate more emissions to province-sectors with greater influence in domestic

production networks. For instance,
(

tj∗
i

)
values are generally higher in Inner Mongo-

lia, which is peripheral in inter-province trade networks, compared to Guangdong, a key

production hub in China.

(a) Katz Centrality (b) Initial Emission

Figure 1: Optimal Spatial Carbon Taxes in the 2017 Chinese Economy
(Notes: The dash line is the linear fit line. Katz centrality is defined in Equation (25).)
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We then link optimal spatial carbon taxes
(

tj∗
i

)
with province-sector emissions in the

calibrated economy, Ej
i . Equation (16) indicates that Ej

i reflects the direct impacts of car-

bon taxes on carbon emissions. Panel (b) of Figure 1 demonstrates a positive correlation

between
(

tj∗
i

)
and Ej

i . Higher carbon taxes on high-emission province-sectors result in

significant carbon reduction gains. For instance,
(

tj∗
i

)
are particularly high for the basic

and fabricated metal sectors, which are major emission contributors in most provinces.

We further investigate the variation in optimal spatial carbon taxes across regions and

sectors by regressing
(

tj∗
i

)
on KCj

i and log
(

Ej
i

)
. Column (1) of Table 2 shows that

(
tj∗
i

)
is significantly negatively correlated with KCj

i but positively correlated with log
(

Ej
i

)
.

This indicates that optimal spatial carbon taxes balance the benefits of carbon reduction

against the losses in production efficiency.

We also relate optimal spatial carbon taxes to emission intensity Ej
i

∑N
n=1 X j

in

, a simple

measure capturing the trade-off between promoting production and reducing emissions.

Column (2) of Table 2 reveals that emission intensity is significantly positively correlated

with optimal spatial carbon taxes, suggesting that the central government should impose

higher tj
i on (i, j) pairs with higher initial emission intensities. However, the R-squared of

this regression is notably lower than that in Column (1), indicating that emission intensity

is not as strong a predictor for optimal spatial carbon taxes as the model-guided variables

KCj
i and log

(
Ej

i

)
.

Figure 2 depicts spatial reallocation of carbon emissions due to optimal spatial car-

bon taxes, indicating that these taxes shift emissions from high-emission provinces at the

periphery of domestic production networks, such as Xinjiang and Inner Mongolia, to pro-

duction hubs with higher KCj
i . The regression coefficient for emission reallocation on Katz

centrality in the observed inter-provincial trade networks is 10.9 with a standard error of

2.75.

It is often computationally demanding to solve for precise values of optimal spatial

carbon taxes, as in our practice. Many policy practices require easily computable, albeit

less accurate, indicators to guide policy design. The emission allocative efficiency (EAE),
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Table 2: Optimal Spatial Carbon Taxes vs. Region-Sector Characteristics

Dependent Variable: Optimal Carbon Taxes tj∗
i

(1) (2)
KCj

i −2.049∗∗∗

(0.307)
log
(

Ej
i

)
0.0184∗∗∗

(0.0036)

log
(

Ej
i

∑N
n=1 X j

in

)
0.0108∗∗

(0.00461)

r2 0.114 0.009
N 450 450
Standard errors in parentheses. Standard errors are clustered at the sector-level.

* (p < 0.10), ** (p < 0.05), *** p < 0.01

Figure 2: Emission Relocation Led by Optimal Carbon Taxes
(Notes: The dash line is the linear fit line. The regression coefficient of emission reallocation on Katz centrality is 10.9, with a

standard error 2.75.)
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Mj
i (t) in Equation (16), offers two key advantages. First, it can be computed through the

linear system in Equation (21), requiring significantly less computational time (3 minutes

in our case) to solve for
(

Mj
i (t)

)
in the initial economy. Second, as shown in Proposi-

tion 2, EAE predicts the ratio of optimal carbon taxes to initial carbon taxes, tj∗
i /tj

i . In

summary, EAE provides valuable qualitative guidance for designing spatial carbon taxes

without requiring fully optimal policy calculations.

Figure 3: Emission Allocative Efficiency Mj
i(t) as a Predictor to Optimal Carbon Taxes

(Notes: The dash line is the 45-degree line.)

Figure 3 shows that EAE,
(

Mj
i (t)

)
, in our initial economy is a strong predictor of the

ratio of observed to initial carbon taxes. Consequently, obtaining the easily computable

EAE is sufficient for many policy practices.

The quantitative results in this subsection suggest that strategic spatial emission allo-

cation is essential for balancing carbon reduction with production promotion. Our quan-

titative framework offers a valuable tool for designing practical carbon policies.

4.3 Extension: Decentralized Carbon Reduction

It is often impractical for the central government to formulate carbon policies tailored to

specific regions and sectors. Consequently, emission constraints are typically assigned to
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regions, with local governments setting carbon taxes for their industries. In this decen-

tralized process, local governments prioritize regional benefits and do not internalize the

effects on emissions and production in other areas. What are the equilibrium carbon poli-

cies under decentralized allocation, and how do they differ from optimal policies? These

questions are crucial for understanding the value of regional coordination in designing

effective carbon reduction strategies.

In this section, we apply our framework to quantify the non-cooperative carbon taxes

set by local governments. We extend our emission allocative efficiency measure in Equa-

tion (16) to characterize unilaterally optimal carbon taxes in each region and develop an

algorithm to compute Nash equilibrium carbon taxes. We then apply this framework to

the Chinese economy in 2017.

For any region k, we consider the problem where it chooses its local carbon taxes,(
tj
k

)J

j=1
to maximize its real income while adhering to its emission constraint Ēk, taking

carbon taxes in all other regions as given:

max(
tj
k;wi,Li,P

j
n,X j

n

)Wk ≡
Yk/Lk

Pk

s.t.
J

∑
j=1

ξ j

tj
1

N

∑
n=1

λ
j
1nX j

n ≤ Ēk(
wi, Li, Pj

n, X j
n

)
satisfy Equation (4), (5),(9), and (7)

Take
(

tj
i

)
for i ̸= k as given

(26)

Solving the problem above for all regions, we obtain Nash carbon taxes in which each

region maximizes its real income subject to a regional emission constraint, taking carbon

taxes in other regions as given. In this Nash equilibrium, a region will not internalize the

impacts of its carbon taxes on other regions’ production, emission, and real income.

To solve for unilaterally optimal carbon taxes for each region, we propose a decentral-

ized emission allocative efficiency (DEAE) measure analogous to EAE in Equation (16).
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From this, we develop an iterative algorithm to solve for Nash carbon taxes across re-

gions. The details of DEAE and the computation algorithm are presented in Appendix

A.4.

We proceed by solving for Nash carbon taxes for 30 provinces in China. We consider

two sets of regional emission constraints, (Ēi): (i) the initial regional emissions, and (ii)

the regional emissions under optimal carbon taxes,
(
E∗

i
)
. Using a personal computer, it

takes about 4 hours to compute a single set of Nash equilibrium carbon taxes.

We find that if we impose initial emissions as regional emission constraints, Nash

carbon taxes tend to reduce China’s overall real income by 0.09%. If we impose
(
E∗

i
)

as

regional emission constraints, Nash carbon taxes tend to increase China’s real income by

0.81%. As a comparison, optimal carbon taxes would increase the Chinese real income

by 1.37%. Both results suggest that lack of regional carbon tax coordination could lead to

considerable distortions and thereby welfare losses.

Why do these non-cooperative carbon taxes result in welfare losses? To address this

question, we regress the ratio of Nash carbon taxes under optimal regional emission con-

straints to optimal taxes on the upstreamness measure developed by Antras, Chor, Fally,

and Hillberry (2012). Specifically, let Yp ≡
[
∑i,n X j

in

]
be the vector of sectoral produc-

tion values and Γ ≡
[
γjs
]

be the input-output matrix. Then the vector of upstreamness

up ≡
[
upj
]

satisfies up · Yp = [I − Γ]−1 Yp, where · refers to element-wise matrix multi-

plication.

Column (1) of Table 3 presents the regression results, indicating that Nash carbon

taxes, under optimal regional emission constraints, are significantly higher in sectors with

greater upstreamness compared to optimal carbon taxes. This discrepancy occurs because

local governments, when setting carbon taxes non-cooperatively, do not account for the

effects of their upstream carbon taxes on the production costs of downstream sectors in

other regions. These excessively high carbon taxes in upstream sectors distort production

and result in significant welfare losses compared to the optimal spatial carbon taxes.
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Table 3: Nash Carbon Taxes and Upstreamness

Dependent Variable: log
(

Nash tax (optimal)
Optimal tax

)
log
(

Nash tax (initial)
Initial tax

)
(1) (2)

Upstreamness (in log) 1.261∗∗∗ 1.969∗∗∗

(0.079) (0.138)
Prov. FE ✓ ✓
r2 0.194 0.258
N 450 450
Standard errors in parentheses. Standard errors are clustered at the provincial-level. * (p < 0.10), ** (p < 0.05), *** p < 0.01

Upstreamness is the upstreamness measure of sectors developed by Antras et al. (2012).

Nash taxes under optimal regional emissions increase China’s real income by 0.81%

Nash taxes under initial regional emissions decrease China’s real income by 0.09%

Optimal taxes increase China’s real income by 1.37%

Column (2) of Table 3 shows the results of regressing the ratio of Nash carbon taxes

under initial regional emission constraints to initial taxes on the upstreamness measure.

Similar to the optimal case, Nash carbon taxes under initial regional emission constraints

are higher in sectors with greater upstreamness compared to initial carbon taxes. This

lack of regional coordination results in a 0.09% decline in China’s aggregate real income.

In summary, our quantitative analysis reveals that under a decentralized carbon al-

location system, local governments fail to internalize the effects of their carbon taxes on

production and emissions in other regions, particularly for upstream sectors, leading to

inefficiencies. Therefore, regional coordination is essential for designing effective spatial

carbon policies.

5 Conclusion

In this paper, we develop a multi-sector quantitative spatial model with carbon emissions

and taxes to quantify optimal spatial carbon policies. We propose a novel emission alloca-

tive efficiency (EAE) measure gauging the extent to which emission relocation could in-

crease real income. We derive sufficient statistics that link EAE with data on inter-regional
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trade, labor, and emissions, highlighting the importance of regional heterogeneity, exter-

nalities, and interdependence in shaping optimal spatial carbon taxes. Based on EAE, we

develop an iterative algorithm to compute high-dimensional optimal spatial carbon taxes.

Applying our framework to the Chinese economy in 2017, we find that optimal spatial

carbon taxes lead to considerable real income gains without changing total emissions.

Furthermore, we utilize our framework to examine Nash carbon taxes implemented by

local governments, underscoring the need for regional coordination in designing carbon

policies.

Our framework has broad policy applications. First, it can calculate optimal spatial

carbon policies for major economies including the U.S. and EU. Second, it can be used

to compute optimal policies in other networks such as industrial policies in trade and

production networks and innovation policies in knowledge networks. Notably, we do

not specify how the optimal spatial carbon taxes could be practically implemented. This

implementation question remains open for future research.
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A Theory

A.1 National Carbon Market

Consider an endowment of carbon emission Ē that can be frictionlessly traded across

regions and sectors. The price of carbon emission is therefore PE > 0 for all region-

sectors. The revenue of carbon emission sales is distributed proportional to the wage

income. The equilibrium under carbon emission market consists of
(

wi, Li, Pj
i , X j

i ; PE

)
satisfying Equation (5), (9), (4), (7), and

PEĒ =
J

∑
j=1

N

∑
i=1

N

∑
n=1

ξ jλ
j
inX j

n. (A1)

According to Proposition 2 in Fajgelbaum and Gaubert (2020), when si = Li
L̄ and

ψj = β = 0, the decentralized spatial equilibrium is efficient. Consequently, the national

carbon market mirrors the emissions allocation that would result from optimal carbon

taxation. Under these conditions, the central government sets the carbon tax uniformly

across regions and sectors at tj
i = t∗ = PE for all i and j, achieving the first-best allocation.

Therefore, Proposition 1 holds.

A.2 Emission Allocative Efficiency

The Lagrange function of Problem (13) is defined as

L (t; µ) ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Yk/Lk
Pk

) 1
β

]β

+ µ

[
Ē −

J

∑
j=1

N

∑
i=1

ξ j

tj
i

N

∑
n=1

λ
j
inX j

n

]
. (A2)
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The first-order conditions indicate that the optimal carbon taxes
(

tj∗
i

)
satisfy:

∂L (t∗; µ∗)

∂tj
i

= 0 ⇒ ∂W

∂tj
i

= µ∗

− Rj∗
i(

tj∗
i

)2 +
J

∑
s=1

N

∑
k=1

∂Rs
k

∂tj
i

1
ts∗
k

 , (A3)

and
J

∑
j=1

N

∑
i=1

Ej∗
i = Ē. (A4)

Proof to Proposition 2

Equation (A3) can be expressed as:

1 =
µ∗

W∗

[
Ej∗

i +
J

∑
s=1

N

∑
k=1

(
−

∂ log Rs
k

∂ log tj
i

)
Es∗

k

](
−∂ log W

∂ log tj
i

)−1

. (A5)

The RHS of Equation (A5) is, by construction, Mj
i (t

∗). Therefore, we have Mj
i (t

∗) = 1.

Suppose that t = t∗ except for tj
i . Notice that L (t; µ) is continuously differentiable

w.r.t. t. Then there exists δ > 0 such that for any tj
i ∈
(

tj∗
i − δ, tj∗

i + δ
)

we have

∂L (t; µ)

∂tj
i

> 0 ⇒ tj
i < tj∗

i and
∂L (t; µ)

∂tj
i

< 0 ⇒ tj
i > tj∗

i . (A6)

Equivalently, for any tj
i ∈

(
tj∗
i − δ, tj∗

i + δ
)

, we have if Mj
i(t) > 1 then tj∗

i > tj
i and if

Mj
i(t) < 1 then tj∗

i < tj
i .

Again, since L (t; µ) is continuously differentiable w.r.t. t, there exists δ > 0 such that

for any t satisfying ∑i,j

[
tj
i − tj∗

i

]2
≤ δ, we have if Mj

i(t) > 1 then tj∗
i > tj

i and if Mj
i(t) < 1

then tj∗
i < tj

i .

Q.E.D.
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A.3 Sufficient Statistics in the One-Sector Case

In the one-sector case, the central government solves for the following spatial emission

problem:

max
(ti;wi,Li,Xi)

W ≡ 1
L̄β

[
N

∑
k=1

(
Bk

Xk/Lk
Pk

) 1
β

]β

s.t.
N

∑
i=1

ξ

ti

N

∑
n=1

λinXn ≤ Ē,

wiLi = γL
N

∑
n=1

λinXn

Xi = wiLi + siR, R ≡ ξ
N

∑
n=1

Xn, si =
wiLi

∑N
k=1 wkLk

Pn =

[
N

∑
k=1

AkLθψ
k

(
τknwγL

k tξ
k

)−θ
]− 1

θ

Li

L̄
=

(
Bi

Xi/Li
Pi

) 1
β

∑N
k=1

(
Bk

Xk/Lk
Pk

) 1
β

(A7)

Lagrange:

L = W + µ

(
Ē −

N

∑
k=1

ξXk
tk

)
. (A8)

F.O.C.
∂W
∂ti

+ µ

(
ξXi

t2
i

−
N

∑
k=1

ξ

tk

∂Xk
∂ti

)
= 0. (A9)

Then

−∂ log W
∂ log ti

=
µ

W∗

(
ξX∗

i
t∗i

−
N

∑
k=1

ξX∗
k

t∗k

∂ log Xk
∂ log ti

)
. (A10)

Then

t∗i =
µξ

W∗

[
X∗

i +
N

∑
k=1

t∗i
t∗k

(
−∂ log Xk

∂ log ti

)
X∗

k

](
−∂ log W

∂ log ti

)−1

. (A11)
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A.3.1 Proof to Proposition 3

Notice that the aggregate consumption expenditure is equal to the aggregate produc-

tion value, i.e. ∑N
i=1 Xi = ∑N

i=1 ∑N
n=1 λinXn. Also γL + ξ = 1. Therefore, we have

R = ξ
1−ξ ∑N

i=1 wiLi and Xi = 1
1−ξ wiLi. Then the equilibrium system can be expressed

in terms of (wi, Li, Pi; W):

wiLi =
N

∑
n=1

AiL
θψ
i

(
τinw1−ξ

i tξ
i

)−θ
Pθ

nwnLn

P−θ
i =

N

∑
n=1

AnLθψ
n

(
τniw

1−ξ
n tξ

n

)−θ

Li =

(
1

1 − ξ

) 1
β

W− 1
β

(
Bi

wi

Pi

) 1
β

N

∑
i=1

Li = L̄.

(A12)

Then we have

A−1
i w1+θ(1−ξ)

i L1−θψ
i tθξ

i =

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
in Bθ

nw1+θ
n L1−θβ

n , (A13)

and

B−θ
i w−θ

i Lθβ
i =

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
ni AnLθψ

n

(
w1−ξ

n tξ
n

)−θ
. (A14)

Then we have

A−1
i w1+θ(1−ξ)

i L1−θψ
i tθξ

i = ϕB−θ
i w−θ

i Lθβ
i , (A15)

where ϕ > 0 is some scalar.

Therefore,

wi = ϕ
1

1+θ(2−ξ)

(
AiB−θ

i

) 1
1+θ(2−ξ) L

θ(β+ψ)−1
1+θ(2−ξ)

i t
− θξ

1+θ(2−ξ)

i . (A16)
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Then

A
− θ

1+θ(2−ξ)

i B
− θ[1+θ(1−ξ)]

1+θ(2−ξ)

i L
θ

1+[1+θ(1−ξ)]β−θψ
1+θ(2−ξ)

i t
θ2ξ

1+θ(2−ξ)

i

= ϕ
1+θ

1+θ(1−ξ)

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

τ−θ
in A

1+θ
1+θ(2−ξ)
n B

θ2(1−ξ)
1+θ(2−ξ)
n L

θ
(1−ξ)−θ(1−ξ)β+(1+θ)ψ

1+θ(2−ξ)
n t

−θξ 1+θ
1+θ(2−ξ)

n .
(A17)

Let θ̆ = θ
1+θ(2−ξ)

, δ1 = 1 + [1 + θ(1 − ξ)] β − θψ, and δ2 = (1 − ξ)− θ(1 − ξ)β + (1 +

θ)ψ. Then

Lθ̆δ1
i tθ̆θξ

i = ϕ
1+θ

1+θ(1−ξ)

(
1

1 − ξ

)θ

W−θ
N

∑
n=1

KinLθ̆δ2
n t−θ̆(1+θ)ξ

n , (A18)

where Kin = τ−θ
in A

θ̆(1+ 1
θ )

n Bθ̆θ(1−ξ)
n Aθ̆

i Bθ̆[1+θ(1−ξ)]
i .

We then log-linearize Equation (A18). For any variables (Zi)
N
i=1 with Zi > 0, we denote

Z̃i ≡ d log Zi and the column vector Z̃ ≡
(
Z̃1, . . . , Z̃N

)′. We also denote ∇t̃Z̃ ≡
[

∂ log Zk
∂ log ti

]
as a matrix with k denoting the rows and i denoting the columns.

Notice that Equation (A18) is derived from (A13). Then we have

L̃i = − θ

θ̆δ1
W̃ − θξ

δ1
t̃i +

N

∑
n=1

χin

[
δ2

δ1
L̃n −

(1 + θ)ξ

δ1
t̃n

]
, (A19)

where χin = Xin
∑N

k=1 Xik
.

We then have the matrix expression as

L̃ = − θ

θ̆δ1
eW̃ − θξ

δ1
t̃ +

δ2

δ1
χL̃ − (1 + θ)ξ

δ1
χt̃. (A20)

Therefore,

L̃ = − θ

θ̆δ1

[
I − δ2

δ1
χ

]−1

eW̃ −
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A21)
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We also have
N

∑
i=1

ιi L̃i = 0. (A22)

Therefore

0 = ι′L̃ = − θ

θ̆δ1
ι′
[

I − δ2

δ1
χ

]−1

eW̃ − ι′
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A23)

Then

W̃ = −
ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
t̃. (A24)

Then

∇t̃W̃ = −
ι′
[
I − δ2

δ1
χ
]−1 [

θξ
δ1

I + (1+θ)ξ
δ1

χ
]

θ
θ̆δ1

ι′
[
I − δ2

δ1
χ
]−1

e
. (A25)

The effects of carbon taxes on labor can be expressed as

L̃ =
1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃

−
[

I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃.

(A26)

Therefore,

L̃ = −

I − 1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′

 [I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
t̃. (A27)
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Then

∇t̃L̃ = −

I − 1

ι′
[
I − δ2

δ1
χ
]−1

e

[
I − δ2

δ1
χ

]−1

eι′

 [I − δ2

δ1
χ

]−1 [θξ

δ1
I +

(1 + θ)ξ

δ1
χ

]
.

(A28)

Moreover,

w̃ = θ̆

[
(β + ψ)− 1

θ

]
L̃ − θ̆ξ t̃. (A29)

Since X̃ = w̃ + L̃. Therefore,

∇t̃X̃ =

[
1 + θ̆

(
β + ψ − 1

θ

)]
∇t̃L̃ − θ̆ξI. (A30)

Q.E.D.

A.3.2 EAE under si =
Li
L̄

Without loss of generality, we let L̄ = 1 and ∑N
i=1 wiLi = 1. Then si =

Li
L̄ implies that

Xi =

(
wi +

ξ

1 − ξ

)
Li. (A31)

Therefore, the equilibrium system can be expressed as

wiLi = (1 − ξ)
N

∑
n=1

AiL
θψ
i

(
τinw1−ξ

i tξ
i

)−θ
Pθ

n

(
wn +

ξ

1 − ξ

)
Ln

P−θ
i =

N

∑
n=1

AnLθψ
n

(
τniw

1−ξ
n tξ

n

)−θ

W = L−β
i Bi

wi +
ξ

1−ξ

Pi
N

∑
i=1

Li = L̄.

(A32)
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Then we have

A−1
i w1+θ(1−ξ)

i L1−θψ
i tθξ

i = (1 − ξ)W−θ
N

∑
n=1

τ−θ
in Bθ

n

(
wn +

ξ

1 − ξ

)1+θ

L1−θβ
n , (A33)

and

B−θ
i

(
wi +

ξ

1 − ξ

)−θ

Lθβ
i = W−θ

N

∑
n=1

τ−θ
ni AnLθψ

n

(
w1−ξ

n tξ
n

)−θ
. (A34)

Log-linearization leads to

[1 + θ(1 − ξ)] w̃i + (1 − θψ) L̃i + (θξ) t̃i = −θW̃ +
N

∑
n=1

χin
[
(1 + θ) δ̃w

n w̃n + (1 − θβ) L̃n
]

δw
i w̃i − βL̃i = W̃ +

N

∑
n=1

λni
[
−ψL̃n + (1 − ξ) w̃n + ξ t̃n

]
(A35)

In matrix form:

[(1 + θ(1 − ξ)) I − (1 + θ) χδw] w̃ + [(1 − θψ) I − (1 − θβ) χ] L̃ = −θW̃e − θξ t̃

[δw − (1 − ξ) λ] w̃ − [βI − ψλ] L̃ = W̃e + ξλt̃
(A36)

where δw is a diagonal matrix whose diagonal is
[
δw

1 , . . . , δw
N
]′.

Then{
[(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1 [βI − ψλ] + [(1 − θψ) I − (1 − θβ) χ]

}
L̃

= −W̃
{

θI + [(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1
}

e

− ξ
{

θI + [(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1 λ
}

t̃

(A37)

Let Ω ≡ [(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1 [βI − ψλ]+ [(1 − θψ) I − (1 − θβ) χ].

Notice that ι′ L̃ = 0. Therefore, we have

∇t̃W̃ = −
ξι′Ω−1

{
θI + [(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1 λ

}
ι′Ω−1

{
θI + [(1 + θ(1 − ξ)) I − (1 + θ) χδw] [δw − (1 − ξ) λ]−1

}
e

(A38)
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A.4 Decentralized Carbon Allocation

To characterize region i’s unilaterally optimal carbon taxes, we define the following de-

centralized emission allocative efficiency (DEAE):

DMj
i (ti) ≡

µi

Wi

[
Ej

i +
J

∑
s=1

(
−

∂ log Rs
i

∂ log tj
i

)
Es

i

](
−∂ log Wi

∂ log tj
i

)−1

, (A39)

where µi is the Lagrange multiplier of the regional carbon emission constraint in Equation

(26).

Corollary 5 (Decentralized Emission Allocative Efficiency) Consider region i, taking
(

tj
k

)
for all k ̸= i as given. Let t∗i ≡

(
tj∗
i

)
be the solution of Problem (26). Then there exists δ > 0

such that for any ti satisfying ∑j

[
tj
i − tj∗

i

]2
≤ δ, DMj

i (ti) defined by Equation (A39) has the

following properties:

1. DMj
i
(
t∗i
)
= 1 for all j.

2. If DMj
i (ti) > 1, then tj∗

i > tj
i .

3. If DMj
i (ti) < 1, then tj∗

i < tj
i .

To derive DMj
i (ti), we can still calculate

(
w̃i, L̃i, P̃j

i , X̃ j
i

)
by solving Equation (21). No-

tice that the first-order changes in real income can be expressed as

W̃i = Ỹi − L̃i − P̃i. (A40)

Based on Corollary 5, we develop an algorithm to solve for Nash carbon taxes t∗i which

is analogous to Algorithm 4.

Algorithm 6 (Nash Carbon Taxes) The Nash carbon taxes t∗ can be calculated as follows:

- Guess t0 ∈ R
N×J
++ .
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- Given
(

tj0
k

)
for all k ̸= i, derive t∗i that solves the problem in Equation (26):

1. Guess t∗i ∈ R
J
++.

2. Solve for
(

X j
in, ιi

)
under t∗i by “exact-hat algebra” in Equation (12).

3. Solve the linear system (21).

4. Calculate DMj
i
(
t∗i
)

using Equation (A40), (23), and (A39).

5. Update tj∗
i by tj∗

i DMj
i(t

∗
i ).

6. Repeat Step 1-5 until tj∗
i = tj∗

i DMj
i(t

∗
i ) for all j.

7. Adjust the level of t∗i to bind the regional emission constraint in Equation (26).

- Iterate until t∗ = t0.

Notably, our DEAE framework accelerates the computation of unilaterally optimal

carbon taxes in the inner loop of Algorithm 6. Additionally, we can parallelize the com-

putation of regional optimal carbon taxes, further speeding up the overall process.

Proof to Corollary 5

The Lagrange function of Problem (26) for region i is

Li (ti, µi) = Wi + µi

[
Ēi −

J

∑
j=1

Rj
i

tj
i

]
. (A41)

The first-order condition with respect to tj
i is

∂Wi

∂tj
i

= µ∗
i

− Rj∗
i(

tj∗
i

)2 +
J

∑
s=1

∂Rs
i

∂tj
i

1
ts∗
i

 . (A42)

Then we have

1 =
µ∗

i
Wi

[
Ej∗

i +
J

∑
s=1

(
−

∂ log Rs
i

∂ log tj
i

)
Es∗

i

](
−∂ log Wi

∂ log tj
i

)−1

. (A43)
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Therefore, DMj
i
(
t∗i
)
= 1 for all j. The rest of the proof follows the arguments in

Appendix A.2.

Q.E.D.
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