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Abstract

This paper estimates the effect of trade policy during the Great Liberalization of the 1990s on

innovation in nearly 100 countries using international firm-level patent data. The empirical

strategy exploits ex-ante differences in firms’ exposure to countries and industries, allowing

us to construct firm-specific measures of tariff cuts. This provides a source of variation that

enables us to establish the causal impact of trade policy on innovation. Our results suggest that

trade liberalization has economically significant effects on innovation and, ultimately, techni-

cal change and growth. According to our estimates, a substantial share of global knowledge

creation during the 1990s can be explained by trade policy reforms. Furthermore, we find

that the increase in patenting reflects innovation, rather than simply more protection of exist-

ing knowledge. Both improved market access and more import competition contribute to the

positive innovation response to trade liberalization.
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1 Introduction

Trade policy liberalization opens up new markets abroad while increasing the competitive pressure
in the home market. Both mechanisms are likely to affect the innovation rate in the economy, as
well as the rate of economic growth. In this paper we set out to estimate the net impact of trade
policy on innovation, as well as to disentangle the impact of market access and import competition
on innovation.

During the 1990s, tariffs in both developing and developed countries came down substantially,
leading researchers to name the period the Great Liberalization of the 1990s (Estevadeordal and
Taylor, 2013). Those reductions were predominantly a result of the GATT Uruguay Round, span-
ning the years 1986 to 1994 and phased in from 1995 to 2000, but also a result of regional trade
agreements and unilateral liberalization. On average, developed country tariffs were cut from
around 6 to 3 percent, while developing country tariffs were cut from almost 20 to 13 percent
between 1990 and 2000 (Section B).

We use the Great Liberalization as a quasi-natural experiment and estimate the causal impact
of diminishing tariffs on innovation by using firm-level variation in country and industry exposure
prior to the tariff cuts. Intuitively, a firm x located in Germany and selling to the U.S. and Mexico
is affected differently than a Japanese firm y selling to China and South Korea because tariff cuts
vary across countries and industries. Furthermore, a German firm z selling only to Germany is
again affected differently because that firm does not immediately benefit from improved market
access abroad but is potentially hurt by fiercer import competition in its home market.

The data requirements for this exercise are large; one would ideally need a firm-level panel
data set on innovation over a long time period, along with detailed information on where firms are
located and in which markets they sell in. To achieve this, we construct a global and comprehensive
firm-level data set on patenting using PATSTAT from the European Patent Office.

In our data, we observe nearly every firm worldwide that files a patent, in which country (patent
office) they file, along with their industry and home country affiliation, over four decades. We do
not directly observe in which markets firms sell in, but instead we observe where firms are patent-
ing. We therefore construct firm-level measures of country exposure by using patent information
up until 1985, one year before the Uruguay negotiations started. As pointed out by Aghion et al.
(2014), patent weights may be a better measure of exposure because they reflect the firms’ ex-

pectations of where their future profits will be. We also provide evidence that patent weights are
strongly correlated with sales weights.

Our firm-level approach has a number of advantages. First, because ex-ante country exposure
varies significantly within a country and within narrowly defined industries, we can sweep out
all home country-industry trends in innovation by fixed effects. This is crucial because the like-
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lihood of patenting depends on a host of factors such as the legal framework and technological
characteristics of the industry. Second, because we observe aggregate patenting in all countries
and industries, we can flexibly control for all other factors that are correlated with tariff cuts and
also affect innovation. An example of this is market size. Being exposed to a high-tariff cut coun-
try may be correlated with innovation simply because this country grows faster (and market size
fosters innovation). Controlling for aggregate patenting in this destination country will eliminate
this concern. Third, our long time period allows us to perform placebo tests; to test if treated firms
(exposed to high-tariff cut countries) typically always patent more.

Our results show that the Great Liberalization of the 1990s had a large positive net impact on
innovation. Overall, our estimates can explain six percent of global knowledge creation over the pe-
riod. The aggregate number masks considerable heterogeneity across countries and industries. For
example, our estimates explain roughly one fifth of knowledge creation among firms in developing
countries, which experienced much greater tariff cuts compared to firms in developed countries.
While our data do not include other firm-level outcomes than patenting, other researchers have
found an economically significant impact of patenting on firm-level productivity (Bloom and Van
Reenen, 2002). Hence, our results suggest that innovation was one important channel by which
trade policy liberalization improved global growth during this period. Furthermore, our decompo-
sition exercise shows that both improved market access and tougher import competition have large
and positive effects on innovation. The economic magnitude of the two mechanisms is similar.

One may question whether increased patenting reflects more innovation. The literature typ-
ically finds a strong correlation between patenting and research and development, and between
patenting and other measures of innovation. We also find a strong positive correlation between
patent counts and other innovation indicators in our own data . Moreover, our firm-level identifica-
tion strategy ensures that all regulatory changes in the patent system, or differences across patent
offices, are differenced out by fixed effects. But the concern remains that more trade could induce
greater protection of intellectual property rights (IPR), i.e. that more patenting is simply a “lawyer
effect”. To deal with this, we calculate citation counts for all firms in our data set to control for the
quality of a patent, and check whether average citations are falling in response to trade liberaliza-
tion. This would indeed be the case if import competition induced firms to take out more patents
to protect marginal inventions. The data rejects this hypothesis, if anything, average citations are
rising in response to trade liberalization. In addition we use alternative measures correlated with
the economic value of patents to control for the quality of patents. This includes the breadth of a
patentas well as the size of the research team behind the patent. The results mirror those obtained
using citations.

The contributions of this paper are as follows. First, we provide broad and systematic evidence
of the impact of trade policy on worldwide innovation over a decade with steep global tariff de-
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clines. This provides external validity compared to the current literature that has primarily focused
on relatively narrow policy changes (e.g., Bustos, 2011). Moreover, there is a large literature on
the impact of trade policy on firm performance (e.g., TFP or labor productivity), but there is lit-
tle evidence on observable output or input measures of innovation (e.g., patents and research and
development, respectively). Third, we disentangle the import competition from the market access
effect of trade policy, which not only informs the literature on trade policy but also the broader
literature on the effects of competition on innovation (e.g. Aghion et al., 2005, Bloom et al. (2016)
and Griffith et al., 2010) and market size on innovation (e.g. Acemoglu and Linn, 2004). Fourth,
we construct and analyze a novel, comprehensive and global firm-level patent data set that has so
far not been applied in the context of international trade.

Our analysis thus speaks to different strands of literature. Our work is related to the empirical
analyses of firm level data on the impact of tariffs on firm performance such as Amiti and Konings
(2007), Goldberg et al. (2010) and Khandelwal and Topalova (2011). They all find that input
tariffs cuts are associated with sizable measured productivity gains. Compared to our work, these
papers focus on the impact of trade on firm performance but do not separately identify what are
the channels that allow for the benign impact of trade on innovation.1 Along the same line of
work, but somehow closer to this paper is Boler et al. (2015) who explores the complementarities
between international sourcing of intermediates and R&D investment and their joint impact on
firm performance.

Second, our work relates to the literature on complementarities between exports and technology
adoption. Closest in the spirit to our analysis is empirical work by Bustos (2011) and Lileeva
and Trefler (2010) who show that trade integration can induce exporters to upgrade technology,
Bloom et al. (2016) who focus on the effect of imports from China on technology upgrading and
productivity, Teshima (2009) who examines the impact of reduced output tariffs on Mexican firms,
and the recent analysis of the China trade shock on US firms’ innovation by Autor et al. (2016).
What distinguishes our paper from these contributions is the fact that: (i) we focus on the global
impact of multilateral trade liberalization rather than on regional or industry-specific shocks, (ii)
we disentangle the market access and competition mechanisms and (iii) we offer an entirely new
identification strategy and provide external validity. Finally, our empirical approach is related
to Aghion et al. (2014) and Calel and Dechezleprêtre (2014). Like us, they use PATSTAT data,
but focus on very different questions, namely the impact of environmental policies on technical
change.

1Goldberg et al. (2010) find that lower input tariffs are associated with increased R&D expenditures. Steinwender
(2015) finds that productivity upgrades following increased export opportunities and stronger import competition are
driven by higher R&D expendures, patenting, and adoption of foreign technologies. Halpern, Koren, and Szeidl (2015)
and Gopinath and Neiman (2013) also examine the link between firm performance and trade, but do not use variation
in tariffs.
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The rest of the paper is organized as follows. Section 2 presents our economic framework.
Section 3 describes the data, while Section 4 outlines the estimation details, highlights econometric
issues and provides some descriptive statistics. Section 6 presents and discusses the empirical
results and Section 7 concludes.

2 Economic Framework

We aim to investigate the effect of trade liberalization on firms’ innovation. To do so, we start
by presenting a basic economic framework to support the analysis, and proceed by developing
predictions for the relationship between trade and innovation.

2.1 Basic Setup

This section presents a simple reduced-form framework that will guide the econometric specifica-
tion and yield testable empirical relationships. Consider the following global profit function of a
firm i,

πi = ∑
n∈Ωi

πin = zi ∑
n∈Ωi

τ
βn
n ein, (1)

where zi is productivity, τn is the iceberg-equivalent tariff in country n, βn is an unknown parameter
and ein is a residual capturing all other country-specific factors facing firm i that determine profits,
such as overall demand in country n. The set of countries where the firm i has positive sales is
given by Ωi. We obtain the firm’s global profits by summing across all countries in Ωi.

In this part of the paper, we abstract from the possibility of bilateral tariffs due to preferential
trade agreements. Our empirical analysis will, however, take this into account. Similarly, to ease
notation, we abstract from tariffs being industry-specific so that we can drop industry subscripts for
τn, but we shall exploit industry variation in τn in the empirical part of the paper. The profit function
captures two main ideas. First, profits increase with effective market size (∑n∈Ωi τ

βn
n ein), either due

to increased demand ein or by a change in market access 1/τn. Second, the impact of tariffs on
profits may be heterogeneous across countries. In particular, a decline in home country tariffs may
have a net negative impact on profits due to fiercer competition (i.e., βHome > 0), while a decline in
tariffs in export markets is expected to have a net positive impact due to better market access (i.e.,
βForeign < 0). Note the similarity between our profit function and gross profits in standard trade
models with monopolistic competition. In that framework, ein would capture aggregate spending
and the price index in n, while βn would equal 1−σ , where σ is the elasticity of substitution. In
those models tariffs enter directly in the expression for gross profits in a market (the market access
effect), but also indirectly through the price index term (the competition effect). For empirical
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tractability, we instead choose a specification where ein is invariant to the level of tariffs, but where
βn is allowed to vary across countries.

The set of countries where the firm has positive sales, Ωi, is varying across firms but taken
as exogenous. This is motivated by the empirical fact that there is a high degree of persistence
in country-specific export participation, see e.g. Moxnes (2010), and that a dominant share of
the variation across firms in market entry can be attributed to heterogeneity in firm efficiency, and
efficiency is highly persistent over time (Eaton et al. 2011). Appendix Section E provides empirical
evidence that Ωi is remarkably persistent over time.

A firm’s productivity zi is proportional to its stock of knowledge Ki, zi = ξ Ki. We discuss the
measurement of Ki in Sections 4.1 and 6.2. Gaining new knowledge is costly, and we assume
that the cost of obtaining a stock of knowledge Ki is c(Ki) = ψKk

i , where ψ determines average
innovation cost and k > 1 determines how quickly those costs rise with knowledge. The firm then
chooses the optimal Ki that maximizes net profits, πi− ci. This gives the first order condition

ξ ∑
n∈Ωi

τ
βn
n ein−ψkKk−1

i = 0, (2)

or

K∗i = κ

(
∑

n∈Ωi

τ
βn
n ein

)1/(k−1)

, (3)

where κ is a positive constant.2

The optimal knowledge stock, K∗i , is a function of effective market size, ∑n∈Ωi τ
βn
n ein. Trade lib-

eralization affects innovation through improved market access and through increased competition,
and the magnitudes (and signs) of these effects are determined by the parameters βn. Improved
market access raises profits in a destination and will therefore give more innovation, suggesting a
negative βn. A more competitive marketplace may foster innovation due to an increased threat to
monopoly rents, which may induce incumbent firms to innovate more in order to “escape” compe-
tition (see e.g. Aghion et al., 1997 and Aghion et al., 2005), also suggesting a negative βn. On the
other hand, the fundamental Schumpeterian force implies that competition lowers price-cost mar-
gins, thereby reducing the rents from innovation and the incentives to innovate (see e.g. Aghion
and Howitt, 1992), suggesting a positive βn.

Now consider a change in τn and ein from period t = 0 to t = 1. Using Jones’ hat algebra

2κ ≡ (ξ/ψk)1/(k−1). The second order condition for profit maximization, ∂ 2πi/∂K2
i − ψk (k−1)Kk−2

i =

−ψk (k−1)Kk−2
i < 0 is satisfied given that k > 1.

6



popularized recently by Dekle et al. (2008), we get

K̂i =

(
∑

n∈Ωi

ωinτ̂
βn
n êin

)1/(k−1)

, (4)

where ωin ≡ πin0/πi0 and the hat notation denotes the change from t = 0 to t = 1, x̂ ≡ x1/x0. The
weights ωin are simply the share of global profits generated in each country n in the pre-period
(t = 0). In Appendix Section D we show that equation (4) can be approximated by

∆ lnKi = ∑
n∈Ωi

β
∗
n ωin∆Tn + εi, (5)

where Tn ≡ τn−1 is the ad-valorem tariff, β ∗n ≡ βn/(k−1) and εi ≡∑n∈Ωi ωin∆ lnein/(k−1). We
proceed with this approximation because it is empirically more convenient to work with.

2.2 Predictions for Trade liberalization and Innovation: Two Cases

The setup in Section 2.1 gave us a simple relationship between the growth in a firm’s knowledge
stock and changes in ad-valorem tariffs. This section develops the final estimating equations. We
consider two cases; first a symmetric model, S, with β ∗n = β ∗m ≡ β ∗, so that the impact of lower
tariffs in home and export markets is identical. Second, we employ an asymmetric model, A,
where the impact of lower tariffs is allowed to differ across home and export markets, β ∗H 6= β ∗E ,
where β ∗H is the home market impact and β ∗E is the export market impact. In the first case, we
can rewrite equation (5) to

∆ lnKi = ηi +β
∗
∆T̄i + εi, (6)

where

T̄it ≡ ∑
n∈Ωi

ωinTnt (7)

is the weighted average of tariffs across all of firm i’s markets including its home market, and
where we introduce the variable ηi to account for all other factors that may also affect the growth
of a firm’s knowledge stock (i.e., a growth fixed effect that may be correlated with ∆T̄i and εi).3

According to our framework, we expect that the knowledge stock is changing when weighted aver-
age tariffs decline or when weighted average demand (εi) rises. As demand shocks are unobserved
in our data, εi will enter into the regression residual.

3As described in the Section 3 below, tariffs will be measured at the 3-digit industry-level, so that T̄i will vary both
because firms are exposed to different markets and because firms belong to different industries.
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In model A the change in knowledge stock is given by

∆ lnKi = ηi +β
∗H

ω
H
i ∆T H

i +β
∗E (1−ω

H
i
)

∆T̄ E
i + εi, (8)

where ωH
i denotes the home market weight, T H

i is the home market tariff while the weighted
average tariff in foreign markets is given by T̄ E

i ≡
[
1/
(
1−ωH

i
)]

∑n∈Ωi\h ωinTn. This specification
model allows us to separate the import competition effect from the market access effect of trade
policy. Specifically, β ∗H will be identified by firms with a high degree of home bias, while β ∗E

is identified by firms primarily exposed to foreign markets, and as such is mostly affected by the
weighted average tariff T̄ E

i in foreign markets. While both theory and empirical evidence suggest
that better market access gives rise to more innovation, i.e. that β ∗E is negative, as discussed
above the sign of β ∗H is theoretically ambiguous due to the undetermined net effect of increased
competition on innovation. Note that β ∗E will capture both improved market access and more
competition in export markets, to the extent that other foreign firms also benefit from improved
market access, while β ∗H will only capture the competition effect in the home market.

3 Data

3.1 Patents

We use patents from PATSTAT to measure a firm’s innovation and knowledge stock.4 PATSTAT
offers bibliographic data, family links and citations of 90 million applications of nearly 100 coun-
tries. It contains the population of all patents globally since the mid 1960s. The patent documents
as provided by PATSTAT are a rich source of information. We observe the name of the applicant
and date of filing, publication and if and when the patent was granted. We know the geography of
the patent in the sense that we have information on both source and destination country. Source
country is the residence country of the applicant. Destination is the country of the patent authority
(e.g. USPTO, EPO, JPO, etc). Appendix Section A provides more details on the construction of
our data set, while Abramovsky et al. (2008) provides a thorough review of the PATSTAT data and
the patenting process.

PATSTAT allows us to construct an international firm-level data set and to follow the patenting
activity of a firm through time. To measure the innovation activity of a firm i in year t we use
a count of patents by application/filing year (pit).5 Patenting is known to be highly correlated

4The European Patent Office’s (EPO) Worldwide Patent Statistical Database (henceforth PATSTAT), the April
2015 version.

5Dating by application filing date is conventional in the empirical innovation literature as it is much more closely
timed with when the R&D process took place than the patent publication and grant date. Patent applications are usually
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with innovation and R&D, see e.g. Griliches (1990). In the Appendix Section G we document a
close relationship between R&D expenditure and patenting for a subsample of our data set. We do
however acknowledge that the advantages and limitations of patenting as a measure of innovation
have been extensively discussed.6 For our purpose there is one major advantage of using patents. It
is the only source of information that allows for a comprehensive firm-level analysis of innovation
at a global scale. In Section 6.2 we use different measures to control for the quality of patents as
innovation indicators.

In our analysis, a patent corresponds to a unique invention, i.e. filing the same patent in mul-
tiple locations does not inflate the patent count (pit). Specifically, PATSTAT organizes patents
into “patent families” that identify identical inventions filed in multiple countries.7 An additional
advantage of PATSTAT is that names of applicants are harmonized over the entire sample period,
alleviating the concern that slight differences in the spelling of firm names generate multiple firm
IDs.8 Information about firms in PATSTAT is restricted to what can be retrieved from the patent
applications. Our basic firm characteristics are industry affiliation (NACE 3-digit), home country
of the firm, as well as in which countries the firm is patenting. 9

3.2 Tariffs

The main source of tariff data is the UNCTAD Trade Analysis and Information System (TRAINS),
which contains tariffs at the most disaggregated level of the Harmonized System (HS) for more
than 150 countries. From this database we extract the average applied MFN industry-level tariff
(NACE 3-digit) for the period 1992 to 2009. We use these to calculate firm-specific weighted
average tariffs, T̄i, T̄ E

i and T̄ H
i , which vary across firms, both because firms are exposed to different

markets and because they belong to different industries.10

Appendix Section B describes the procedure followed to calculate industry-level tariffs, while
Appendix Section C provides details about the historical background for tariff reductions during
the 1990s.

In addition to UNCTAD TRAINS data, we use information on regional trade agreements
(RTAs) between pairs of countries. This allows us to take into account the fact that some countries
are part of trade agreements, and as such cannot be treated as having the same level of protection

published 18 months after the first application.
6See e.g. OECD (2009), Griliches (1990) and Nagaoka et al. (2010) for reviews and discussion of patent data as

innovation indicators.
7We use DOCDB patent family.
8An applicant can be a firm or individual, but we will use the terminology firm when referring to an applicant.
9Home country and industry affiliation are missing for a subset of firms. These observations are dropped from the

dataset.
10Specifically, we add industry subscript j to equation (7) as follows, T̄it ≡ ∑n∈Ωi ωinTjnt , where j is the NACE

3-digit industry of firm i. We describe the weights ωin in Section 4.1.
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as countries where such agreements are not in force. The information on RTAs for around 200
countries from 1948 to 2006 comes from the CEPII gravity data set.11

4 Estimation Details

We use the Great Liberalization as a quasi-natural experiment and estimate the causal impact of
tariffs on innovation by using firm-level variation in which countries firms were exposed to before
the tariff cuts. This section provides details about the definition of the sample period, measurement
of variables as well as the construction of the final sample and discusses econometric concerns.

4.1 Measurement and Baseline Periods

Pre-Liberalization period. According to the theoretical predictions outlined above, the impact
of trade liberalization will depend on the change in weighted average tariffs. We calculate these
weights based on patent data over the pre-period years 1965 to 1985. We use 1965 as the starting
year because the number of patents in PATSTAT is limited in earlier years. 1985 is chosen as
the final year because the Uruguay round negotiations started in 1986; hence the weights are not
themselves affected by trade liberalization of the 1990s.

According to the models presented in Section 2.2, the weights should reflect the relative im-
portance of a country n in the firm’s total profits. Profits and sales are unobserved in our data,
but we do observe in which markets a firm is patenting. As pointed out by Aghion et al. (2014) a
patent based weighting scheme may potentially be a superior measure because it reflects the firms’
expectations of where their future market will be. We follow Aghion et al. (2014) and calculate
firm-specific weights as the share of patents issued in country n relative to all the patents issued by
the firm during the pre-period. Specifically, we define

ωin ≡
xin

∑k xik
, (9)

where xin is the number of patents issued by firm i in market n during the pre-period. Seeking
intellectual property rights in a country is typically motivated by (future) profits in that market.
There is strong empirical support that patent weights are highly correlated with sales weights (see
Aghion et al., 2014). We provide additional empirical evidence on this in Appendix Section E. The
weights are also remarkably persistent over time, even over a period of 20 years, see Appendix
Section F. This suggest that time-invariant firm and country characteristics (e.g. country-specific
entry costs on the supply side or idiosyncratic taste differences on the demand side) are limiting

11See Head et al. (2010) and Head and Mayer (2013).
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where firms export goods and file patents.
Sample period. The years 1992 to 2000 are defined as our baseline sample period. Hence,

the change in average tariffs facing firm i is ∆T̄i = T̄i2000− T̄i1992 and the change in the knowledge
stock of firm i is ∆ lnKi = lnKi2000− lnKi1992. The choice of sample period is motivated by the fact
that tariff reductions agreed upon during the Uruguay Round were gradually phased in from 1995
until 2000. Starting our sample in 1992 ensures that we capture the full impact of tariff reductions.
Our data also confirms that the 1990s was unique: the overall reduction in tariffs was much greater
during the latter half of the 1990s compared to both earlier and later periods. Finally, we choose to
work with long differences 1992-2000 in our baseline specification because we want to allow for
long time lags in the innovation response to trade liberalization. Long differences also eliminate
serial correlation in the errors, since the averaging over periods ignores time-series information
(see Bertrand et al., 2004).

Outcome variable. In the model presented above, the outcome variable ∆ lnKi is the change in
the log knowledge stock. Our empirical counterpart is the cumulative patent count of a firm until
year t,

Kit ≡
t

∑
s=1965

pis, (10)

where pis is the number of patents filed by firm i in year s. The outcome variable ∆ lnKit =

lnKi2000− lnKi1992 gives the change in the log cumulative patent count between 1992 and 2000
and provides a measure of the innovation that takes place during this time period. Focusing on the
change in the stock over a long time period smooths out lumpiness and zeros in the pit variable.
Indeed, in a given year the median pit is zero while the maximum pit is very large, suggesting that
linear models are not adequate to model the data generating process at the annual level.

4.2 Final Sample of Firms

Our point of departure is a data set constructed on the basis of PATSTAT described in Section
3.1 and Section A, matched with the average applied MFN industry-level tariff from UNCTAD
TRAINS. Given our sample period, 1992-2000, we treat the EU-15 countries as one country since
the Single market was established in 1992. Our final sample consists of the following firms: First,
it includes firms that applied for at least one patent over the sample period. Second, firms must be
observed at least once in the pre-period (1965-1985) in order to be assigned weights ωin. Third, in
some cases firms issue patents in countries with missing tariff data for their industry; these firms
are dropped from the analysis.12

12We drop firms that have positive weights ωin for one or more countries with missing tariff data, i.e. if Tjnt is
missing when calculating T̄it from equation (7).
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The last column of Table 1 shows that we have roughly 133,000 firms in the final sample,
filing abount 1,8 million patents between 1992 and 2000. The initial sample of firms, which also
includes firms without pre-period weights ωin, consists of almost 1,6 million firms filing about 6,1
million patents between 1992 and 2000. Hence, our final sample captures roughly one third of
global patenting over the sample period.

Note that we cannot distinguish between firm exit and zero innovation in our data. For example,
if we observe zero patenting from 1995 and onwards, then pit will be zero and Kit will be constant
for the remaining years of our sample. Hence, our baseline result will capture the overall innovation
effect of trade policy, including the impact on firm exit. In Section 6.3 we perform a robustness
where we estimate the model on a fully balanced panel of firms, i.e. firms that are survivers
throughout the sample period.

Table 1: Initial versus final sample.
Initial Final

∑i∆Kit 6,127,615 1,767,861
∆Kit

..mean 1.2 13.3

..median 0 1

..standard deviation 116.1 265.0
Number of firms 1,598,192 133,409

Note: The table shows the aggregate increase in the knowledge stock from 1992
to 2000 along with the mean, median and standard deviation of ∆Kit for the initial
and the final sample of firms. The initial sample consists of all firms identified
with a headquarter location and a NACE industry code that file at least one patent
over the sample period. The final sample is described in Section 4.2.

.

4.3 Econometric Issues

Estimating the models S and A is challenging for a number of reasons. The first econometric
concern is that the weighted average tariff reduction ∆T̄i may be correlated with unobservable firm
characteristics ηi. For example, firms exposed to high-tariff reduction countries may innovate
more even in the absence of trade liberalization. We solve this by including home country-industry

pair fixed effects in the regressions as well as controlling for pre-period firm characteristics.13

13Industries are defined at the NACE 3 digit level. Pre-sample covariates are home weights ωH
i , the number

of countries the firm is patenting in during the pre-period, ni,Pre, and the log knowledge stock of the firm in 1985,
lnKi,Pre.
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Intuitively, we compare firms within the same industry, headquartered in the same country, and
with similar observed characteristics during the pre-period, but that differ in terms of their exposure
to international markets, and ask whether firms exposed to high tariff-cut countries innovate more
than firms exposed to low tariff-cut countries.

An alternative way of solving this problem is by differencing out idiosyncratic firm trends.
Specifically, we split the sample into our sample period, 1992-2000 (t = 1) and add a second
period, 2000-2004 (t = 2), when the decline in tariffs was much smaller (see Figure 1 below), and
estimate model S by

∆ lnKi2−∆ lnKi1 = β (∆T̄i2−∆T̄i1)+ εi. (11)

Idiosyncratic growth trends in innovation, ηi, that may be correlated with ∆T̄i, is then differenced
out. We use a similar specification for the asymmetric model A. This is reminiscent of a triple
differences model, as we compare the growth in the change in tariffs (two differences) across firms
(third difference).

A second econometric concern is that the error term (εi≡∑n∈Ωi ωin∆ lnein), which is a weighted
average of all other country-specific factors that determine innovation, may be correlated with trade
liberalization. A case in point is the TRIPS agreement that strengthened IPR among WTO mem-
bers in the aftermath of the Uruguay round. A positive correlation between tariff reductions and
IPR strengthening could therefore produce biased estimates.14 We solve this by using the fact that
we observe aggregate patenting by industry and country, and this measure is itself determined by
the unobserved shocks ei. Specifically, we calculate the aggregate knowledge stock by industry j

and headquarters country h, Kh jt = ∑i∈Γh j
Kit , where Γh j is the set of firms in industry j headquar-

tered in h, and construct the weighted average

ε̃i ≡ ∑
n∈Ωi

ωin∆ lnKn j, (12)

where ∆ lnKn j = lnKn j2000− lnKn j1992. While headquarters-industry pair fixed effects control
for innovation trends in firm i’s home market, ε̃i controls for innovation trends in firm i’s destina-

tion markets. For example, if a US headquartered firm primarily exposed to the Indian market is
innovating more because the Indian market is growing quickly (high ∆ lneIndia), then including ε̃i

will control for this effect. 15

14TRIPS established minimum and common standards of IP protection to be adopted by all WTO members. While
the institutions in the developed countries were little affected due to already strong IP protection, developing countries
had to reform and strengthen their IP protection system to comply with new WTO rules.

15Section 6.3 describes an alternative empirical strategy using fixed effects for each of firm i’s destination markets.
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5 Descriptives on Patents and Tariffs

Weighted average trade barriers. To illustrate our identification strategy, we take a closer look
at the weighted average trade barriers, T̄it for our sample of firms. Figure 1 shows the mean T̄it

for firms headquartered in the U.S., Germany, Japan and the UK. There is a strong decline during
the latter half of the 1990s; the average firm experienced a decline in weighted tariffs of around
3 percentage points during the 1990s. Also, the decline almost stops in the year 2000, consistent
with the fact that Uruguay Round concessions were phased in until that year. The averages mask
a considerable amount of heterogeneity: Figure 2 shows that the whole distribution of weighted
tariffs (T̄it) across firms shifts markedly to the left from 1992 to 2000.

Figure 1: Average Firm-specific Tariffs, T̄it .
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Note: The figure shows the annual average T̄it across firms according to headquarters coun-
try.
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Figure 2: Density of Firm-specific Tariffs, T̄it , in 1992 and 2000.
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Note: T̄it is the weighted average import tariff in firm i’s markets, in 1992 and 2000. For
expositional purposes the histogram is truncated at T̄it = 20.

Patents. Figure 3 shows the development in the mean number of patents per firm by year in
our sample (pit). We observe that the mean number of patents is steadily increasing from 1980 and
onwards. Of course, these aggregate trends may not only reflect innovation, but also changes in
firms’ behavior, legal trends and changes in the patent systems worldwide.

Figure 4 shows the distribution of patenting firms across home countries and industries (NACE
2-digit) in our sample. We note the dominance of Japan and the US and by the industries machinery
and equipment (28), computers, electronic and optical products (26), and other manufacturing (32).
Tables 10 and 11 in Section H in the Appendix provide more details on patent counts and patenting
firms across industries and countries.
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Figure 3: Patenting per firm. 1980-2004.
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Note: The solid line shows the average number of patents filed per firm per year in the
sample. The dotted lines show the 95 percent confidence interval associated with the mean..

Figure 4: Share of Firms by Country and Industry

0

.05

.1

.15

.2

.25

CA SE ES GB KR FR IT DE JP US
0

.1

.2

.3

99 22 21 25 29 20 27 26 32 28

Note: The figure shows share of firms by home country and NACE 2-digit industry for the period 1992-2000. Only
the top 10 countries/industries are shown.

6 Results

6.1 Innovation and Trade Liberalization

We proceed by estimating the symmetric (S) and asymmetric (A) models presented in equations
(6) and (8), as well as the alternative specification outlined in equation (11). As described in
Section 4.3, all specifications include home country-industry (NACE 3-digit) pair fixed effects,
which will control for aggregate (country and industry) trends in patenting. Columns (1) to (3)

16



in Table 2 show the results for model S with various control variables included. Column (1) has
only fixed effects and column (2) adds pre-sample firm characteristics (the home weight, ωiH , the
number of countries the firm is patenting in during the pre-period, ni,Pre, and log knowledge stock
in 1985, lnKi,Pre), while column (3) also controls for aggregate destination trends ε̃i, as explained
in Section 4.3. Column (4) shows the results for the model described in equation (11), where we
difference out idiosyncratic firm trends. The results are highly significant and fairly similar across
specifications, with an estimated coefficient in the range of −0.4 to −0.5.

A potential concern with using raw patent counts is that they are only weakly correlated with
innovation. A typical solution in the literature is therefore to use citation-weighted patent counts
instead (Harhoff et al., 1999). Section 6.2 below discusses various proxies for patent quality in
detail. We therefore construct the citation-weighted knowledge stock as Kw

it =∑
t
s=1965 cis pis, where

cis is the number of citations obtained by firm i for the patents filed in year s.16 We show the results
when using ∆ lnKw

i instead of ∆ lnKi as the dependent variable in column (5). The point estimate
of the semi-log elasticity is highly significant and greater than the point estimates in columns (1)
to (4), suggesting that the quality-adjusted knowledge stock is responding more strongly to trade
liberalization. Note, however, that the number of firms in the sample also decreases, as roughly
half the firms have portfolios of patents that are never cited.

A semi-log elasticity of -0.9 from column (5) implies that a one percentage point reduction in
tariffs causes a 0.9 percent increase in the citation-weighted knowledge stock. Our data shows that
over the period 1992 to 2000 the mean citation-weighted knowledge stock among firms globally
grew by 44 percent (mean of ∆ lnKw

i ), while the mean reduction in the firm-specific tariff measure
T̄it was almost three percentage points (mean of ∆T̄i). Hence, our results suggest that roughly 6
(0.9× 3/44) percent of the observed increase in the knowledge stock can be explained by trade
policy reform. This overall number masks considerable heterogeneity across countries and indus-
tries. For example, among developing countries firm-specific tariffs fell seven percentage points
on average, while the mean knowledge stock grew by 28 percent - suggesting that trade policy
explains roughly one fifth of the increase in the knowledge stock (0.9×7/28).17

16As in Section 6.2, we use the citation rate three years after the patents were filed, in order to control for cohort
effects.

17Developing countries are defined according to the World Bank 1995 definition of high/low income countries.
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Table 2: Trade Policy and Knowledge Creation. Model S.
Dep. variable: ∆ lnKi ∆ lnKi ∆ lnKi ∆ lnKi2−∆ lnKi1 ∆ lnKw

i

(1) (2) (3) (4) (5)

Change in average tariff (∆T̄i) -.48a -.44a -.42a -.43a -.87a

(.11) (.11) (.11) (.08) (.32)
Home country-industry FE Yes Yes Yes Yes Yes
Firm controls No Yes Yes Yes Yes
Destination market controls (ε̃) No No Yes Yes Yes
Number of firms 133,409 133,409 133,402 133,402 67,955

Note: Standard errors clustered by home country-industry in parentheses. Pre-sample firm char-
acteristics are the home weight, ωiH , the number of countries the firm is patenting in during the
pre-period, ni,Pre, and log knowledge stock in 1985, lnKi,Pre. a p< 0.01, b p< 0.05, c p< 0.1.

The symmetric model S masks the fact that trade liberalization in the home market can have a
different effect than liberalization in export markets. Table 3 shows the results when we estimate
the asymmetric model A, see equation (8), and disentagle the effect of home market tariffs T H

i

and export market tariffs T E
i . Columns (1) to (2) show the baseline model with and without the

destination market control ε̃i, column (3) uses the specification based on equation (11) to control for
idiosyncratic firm trends, while column (4) uses the citation-weighted knowledge stock Kw

i . The
coefficient for ωH

i ×∆T H
i captures the differential impact of home tariffs depending on the firm’s

home bias. The coefficients are negative and significant, indicating that firms with high exposure
to the home market innovate more, relative to firms with less exposure to the home market, when
home tariffs decline. Hence, our results suggest that unilateral liberalization raises innovation in
the home market. The coefficient for

(
1−ωH

i
)
×∆T̄ E

i captures the differential impact of export
market tariffs depending on the firm’s export market bias. Again, we find a negative and significant
number, suggesting that firms highly exposed to export markets innovate relatively more when
export market tariffs decline.18

18Note that the non-interacted variables ∆T̄ H
i and ∆T̄ E

i are not identified. For ∆T̄ H
i , this occurs because it is

subsumed by the home country-industry fixed effect, while for ∆T̄ E
i it occurs because ∆T̄ E

i is not defined for non-
exporters.

18



Table 3: Trade Policy and Knowledge Creation. Model A.
Dep. variable: ∆ lnKi ∆ lnKi ∆ lnKi2−∆ lnKi1(4) ∆ lnKw

i

(1) (2) (3) (4)

Home weight × home tariff change (ωH
i ×∆T H

i ) -.23b -.21b -.51a -.90
(.09) (.09) (.14) (.61)

Export weight × foreign tariff change (
(
1−ωH

i
)
×∆T̄ E

i ) -.54a -.51a -.39a -.87b

(.14) (.14) (.10) (.40)
Home country-industry FE Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes
Destination market controls (ε̃) No Yes Yes Yes
Number of firms 133,409 133,409 133,409 67,955

Note: Standard errors clustered by home country-industry in parentheses. Firm controls are the home weight, ωiH , the
number of countries the firm is patenting in during the pre-period, ni,Pre and log knowledge stock in 1985, lnKi,Pre. a

p< 0.01, b p< 0.05, c p< 0.1.

Theory suggests that the market access effect of trade policy liberalization promotes innovation,
while the import competition effect may encourage or discourage innovation, depending on the
strength of escape-competition and Schumpeterian forces. Our results suggest that both the market
size and import competition effect increase innovation, so that the net effect is unambiguously
positive.

6.2 Is Patenting a Good Measure of Innovation?

As pointed to in Section 3.1, there is an ongoing discussion of the use of patenting as a measure
of innovation. One may argue that patents are an imprecise measure of knowledge and innovation.
Patenting is not the only way to protect innovations. Another problem is that patent quality is
highly heterogeneous. According to Nagaoka et al. (2010) roughly half of the patents owned by a
firm are used either by them internally or licensed to others. The remaining patents are used for
strategic reasons, e.g. attempts to block inventions by competitors. Hence, it is possible that firms
take out more patents, without innovating more, in response to e.g. import competition. If this
were the case, one would expect that firms are taking out patents on their marginal innovations, so
that the average quality of their patent stock is decreasing.

To address the issue of heterogeneous patent quality, we use three different proxies for patent
quality: the number of citations, the size of the research teams behind a patent, and the number
of technology areas (IPC codes) to which a patent is attributed (patent breadth). We use citations
because high value inventions are more extensively cited than low value patents (Harhoff et al.,
1999). We include the size of research teams since a set of studies have associated the number
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of inventors listed in a patent with the economical and technological value of the patent (OECD,
2009). Finally we include number of technical classes attributed to a patent application (patent
breadth) which has been found to be a measure of the value of a patent portfolio (see e.g. Lerner
(1994)).

We calculate average quality of the knowledge stock as follows. Let qp denote the number of
citations three years after a patent p was filed, or the number of inventors or the number of IPC
codes associated with patent p. The cumulative sum is then

Qit =
t

∑
s=1965

∑
p∈Ξis

qp, (13)

where Ξis is the set of firm i’s patents filed in year s. The average quality of the knowledge stock
is then calculated as Q̄it = Qit/Kit . We proceed by using ∆ ln Q̄i = ln Q̄i2000− ln Q̄i1992 as the
dependent variable and estimate the symmetric model S in (6) again.

The results using all three proxies for quality are reported in columns (1)-(3) of Table 4. The
results suggest that trade liberalization did not affect the quality of patents, i.e. there is no evidence
of a “lawyer effect”. If anything, the point estimate for citations indicates that trade policy may
have increased the quality of patents.

In addition to using different measures of patent quality, we also recognize that not all patent
applications are successfully granted. A natural way to account for differences in quality is thus
to limit the analysis to patents that are granted.19 We therefore re-estimate equation (6) based on
granted patents only. The results are reported in Column 4 of Table 4. Our finding that reduced
trade barriers increases innovation proves to be strong and robust.

Table 4: Trade Policy and Innovation Quality.
Dep. variable: ∆ ln Q̄i Citations Research Team IPC codes Granted Patents

(1) (2) (3) (4)

Change in average tariff (∆T̄i) -.61a -.03 -.10c -0.38a

(.24) (.05) (.06) (.15)
Home country-industry FE Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes
Destination market controls (ε̃) No Yes Yes Yes
Number of firms 67,954 120,738 130,262 96,565

Note: Standard errors clustered by home country-industry in parentheses. a p< 0.01, b p< 0.05, c p<
0.1.

19To be granted a patent, an innovation must satisfy three key criteria: it must be novel or new, it must involve an
inventive step, and it must be industrially applicable.
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6.3 Robustness

Finally we examine the robustness of our results.
Falsification test. A potential concern is that firms being exposed to countries with high tariff

cuts always have higher patent growth compared to other firms. To address this concern, we
perform a placebo test and regress knowledge growth during the 1980s, lnKi1988− lnKi1980, on
trade policy changes during the 1990s, ∆T̄i2000 − ∆T̄i1992.20 The results are shown in the first
column of Table 5: the coefficient of interest becomes noisy and close to zero, suggesting that
there are no differential pre-trends in patenting.

Country-level tariff data. Industry-level tariffs may not always be the relevant tariffs facing the
firm, because it may also be exporting or importing products associated with other 3-digit NACE
industries. We therefore test the sensitivity of our results using the simple average country tariff
instead of industry specific tariffs. The results, shown in the second column of Table 5, confirm our
main finding that a reduction of a firm’s tariffs increases innovative activity. The estimated effect
is similar in magnitude to our main specification and economically significant.

Regional trade agreements. Our main measure of tariffs is the applied MFN ad-valorem rate.
This masks the fact that many firms get preferential market access through regional trade agree-
ments (RTAs). Recognizing this, we calculate a firm-level measure of how exposed a firm is to
RTA’s. Specifically, we construct ¯RTAit in a similar way as the average tariff rate, T̄it above as a
weighted average of RTAs across all of firm i’s markets:

¯RTAit ≡ ∑
n∈Ωi

ωinRTAhn, (14)

where RTAhn = 1 if the home country h and country n have an RTA and zero otherwise.21 We then
add ∆ ¯RTAi = ¯RTAi2000− ¯RTAi1992 to the symmetric model. The results in column (3) of Table
5 show that the RTA variable is insignificant while our main variable ∆T̄i continues to be highly
significant and negative.

Triadic patents. Third, we restrict our sample to triadic patents. These are patents filed at the
three main patent offices, namely the European Patent Office (EPO), the Japanese Patent Office
(JPO) and the United States Patents and Trademark Office (USPTO).22 Triadic patents are com-
monly used in the literature to retain only highly valuable inventions and they provide a measure of
innovation which is robust to administrative idiosyncrasies of the various patent offices. However,

20The weighted average T̄it is now calculated using weights ωin based on a firm’s patent portfolio until 1980 (not
1985 as in the baseline). This is done in order to ensure that the weights ωin are not themselves determined by the
dependent variable lnKi1988− lnKi1980.

21As a matter of convention, for the firm’s home country we set RTAhh = 1.
22See Dernis and Khan (2004) and Martinez (2010) for additional information about how triadic patent families

are constructed.
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by limiting the analysis to triadic patents, the number of observations is reduced with around 94
percent. The results are shown in in column (4) of Table 5. We observe that the sample size is
reduced from around 133,000 to around 3,500 observations and the standard errors become very
large. The point estimate, however, has similar qualitative implications to our baseline results.

Balanced panel. In the baseline, we work with an ubalanced data set. This allows us to ac-
count for all innovation irrespective of whether the innovating firm remains, exits or is acquired
by another firm as result of increased competition due to trade liberalization. As a robustness test
we also estimate the symmetric model based on a balanced panel where our sample is limited to
firms that file at least one patent between 2004 and 2014. Thus, by construction, all firms survive
until the end of the sample period, i.e. year 2000. The estimated effect reported in column (5)
of Table 5 is negative and highly significant and substantially bigger. This may suggest that trade
liberalization did induce firm exit as well as M&As, although one would need data on actual exit
and M&As to corroborate this.

Destination country trends. The variable ε̃i was included in the regressions to capture patenting
trends in destination countries. An alternative empirical strategy is to include destination country
fixed effects in the regressions. Specifically, we rewrite model S in equation (6) to

∆ lnKi = ηi +β∆T̄i + ∑
n∈Ωi

γn + εi, (15)

where γn is a fixed effect for destination n, and we sum over all countries where the firm has non-
zero weights during the pre-period (the set Ωi). As an example, if all firms exposed to the Indian
market (but not necessarily headquartered in India) have high ∆ lnKi, then this will be controlled
for by γIndia. Identification of β then only comes from within-country, across-industry variation
in tariffs, i.e. that among firms exposed to the Indian market, some firms experience greater tariff
reductions because they belong to an industry getting large tariff cuts in India. Destination country
trends will therefore control for the possibility that firms exposed to India may patent more because
of unobserved factors specific to India (e.g., growth in market size or strengthening of IPR). The
estimated coefficient in column (6) in Table 5 shows that β is still highly significant, although the
economic magnitude is lower than in the baseline specification.
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Table 5: Robustness.
Dep. variable: ∆ lnKit Placebo Aggregate Accounting for Triadic Balanced Destination

tariffs (∆T̄i) RTAs Patents Sample trends
(1) (2) (3) (4) (5) (6)

Change in average tariff .14 -.53a -.42a -2.64 -0.82a -0.24b

(.13) (.13) (.12) (2.15) (.12) (.14)
∆RTAi -.00

(.04)
Home country-industry FE Yes Yes Yes Yes Yes Yes
Firm controls Yes Yes Yes Yes Yes Yes
Destination market controls Yes Yes Yes Yes Yes No
Destination country trends No No No No No Yes
Number of firms 61,777 129,042 131,308 3,410 72,374 133,402

Note: Standard errors clustered by home country-industry in parentheses. a p< 0.01, b p< 0.05, c p< 0.1.

7 Conclusions

We set out to analyze the impact of the global decline in tariffs during the 1990s on firms’ inno-
vation. It is an issue that so far has not been the subject of rigorous analysis despite its relevance.
Our results show that the Great Liberalization of the 1990s had a large positive net impact on in-
novation. Overall, our estimates suggest that six percent of innovation globally during this time
period can be attributed to trade liberalization. Our findings underscore the importance of trade
liberalization for firms’ long term performance and for aggregate economic growth and it points
to large dynamic gains from trade; gains that are typically not observed and therefore neglected in
empirical analyses.

Our estimates are robust to a set of econometric issues, and in particular we provide evidence
in support of patents being a useful measure of innovation. Our methodology also allows for
a decomposition of the import competition from the market access effect of trade policy, and
we provide evidence that both market access and import competition matters for the innovation
response. While the results are directly relevant for the analysis of trade policy, they also add to
the broader literature on the effects of competition on innovation.
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Appendix

A PATSTAT

We use patents from PATSTAT to measure a firm’s knowledge stock. To construct our data set we
need to deal with a set of issues:

Identify unique firms/patent holders. As described in the main text, for each patent application
in PATSTAT we know the exact name of the patent applicant(s). However patentee names that
appear in patent documents may vary both within and across patent systems. Inconsistencies might
be due to spelling mistakes, typographical errors, name variants, etc. In order to identify unique
patent holders, we use the ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table (EEE-
PPAT). This table was developed by EUROSTAT in collaboration with ECOOM (K.U.Leuven)
and Sogeti, and provides harmonized patent applicants’ names obtained through an automated
algorithm.23 These harmonized names have been included in PATSTAT TLS906_PERSON table
since October 2011. We use the variable “HRM_L2_ID” from this table.

Patent families. To construct the knowledge stock variable we use patent counts. In principle,
an applicant may decide to patent an invention in one or more countries, depending on where
he seeks IP protection, and he can do so contemporaneously or at subsequent times after the first
application. Therefore, simply counting the number of patent filings for each patentee would result
in double counting the number of unique inventions belonging to each firm. To avoid this problem,
we look at patent families. A patent family identifies and groups all subsequent patent filings
originating from the same initial (priority) application; hence it comprises all patents protecting
the same invention.24An example can be helpful to clarify the main idea behind patent families.
Suppose a German firm develops a new invention and patents it in Germany. Subsequently, it
decides to seek protection for the same invention in US and in Japan and files a the same patent
to the USPTO and at the JPO. These three applications clearly protect the same invention and
thus belong to the same patent family. For the purpose of our analysis these three applications are
counted as one. Notice also that a patent family is a generic term: different definitions of how to
group applications can be applied, depending on the specific purpose. Throughout our analysis we
use DOCBD patent families.25

Assigning patents to firms. We identify the list of patent applicants from PATSTAT table
TLS207_PERS_APPLN. Applicants have “APPLN_SEQ_NR” greater than 0. The same table

23For more information on the method developed to arrive at harmonized patentee names see
https://www.ecoom.be/nl/eee-ppat and Magerman et al. (2006) and Peeters et al. (2009).

24The OECD Patent Statistics Manual defines patent families as “the set of patents (or applications) filed in several
countries which are related to each other by one or several common priority filings”(OECD, 2009, Ch.4, p.71).

25See also Dernis and Khan (2004) and Martinez (2010) for an overview of different types of patent families and
how they are constructed.
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provides the correspondence between each applicant and the patents he owns. We use this built in
link to assign patents to firms. Technically, patentees can be private business enterprises, univer-
sities/higher education institutions, governmental agencies, or individuals, but for simplicity we
call them firms throughout the paper. At this point, one clarification is required. It is possible that
several applicants co-own the same patent. In this case we proceed by assigning the patent to every
co-owner of the patent application.

Identify home country of firms. In order to identify the home country of a firm we use PER-
SON_CTRY_CODE from TLS906_PERSON in PATSTAT. One difficulty is that the information
on the applicant’s country is not always reported. Firms without information on home country are
dropped in what we refer to as the sample. Notice that a firm may be associated with more than one
country. We have 42574 of such cases. When this is the case, we let home country be the one with
the highest frequency in the data. We consider each applicant’s home country as its headquarter
country.

EU and the Single market. The Single market was established in 1992. To account for this we
treat all firms with home country among the EU 15 as if the belonged to one single country.

Identify the industry affiliation of a firm. PATSTAT assigns one or more industries j (NACE
revision 2) to each patent application p. Industries are given weights wp j that sum to one for a
given application (table TLS229). We let the industry affiliation of a firm be defined by the main
industry of a firm being the industry that obtains the maximum weight across all of the firm’s
applications, max∑p wp j during the pre-period.

B Tariff Data

The main source of tariff data is the UNCTAD Trade Analysis and Information System (TRAINS),
which contains tariffs at the most disaggregated level of the Harmonized System (HS) for more
than 150 countries. From this database we extract the average ad-valorem industry-level tariff
(NACE 3-digit) Tn jt for industry j, country n, for year t over the period 1992 to 2009.

Details on construction First, we convert 6-digit HS codes to a the 6-digit HS Combined (HSC)
nomenclature using a World Bank correspondence table.26 In some cases, a 6-digit tariff line is
missing in year t, but non-missing previous or later years; in these cases we interpolate to get a
non-missing observation in year t. We also extrapolate tariffs in those cases where tariffs exist
in 1995 but not in 1992-1994, or 1994 but not 1992-1993, or 1993 but not 1992. Tariff data for
all EU member countries are also manually added to the database, as EU tariffs are not listed
for individual EU countries in the raw data. Note, that as pointed out above, we control for the
establishment of the Single market in 1992 by treating the EU 15, i.e. countries that were part of

26http://wits.worldbank.org/product_concordance.html
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Figure 5: Average Tariffs
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Note: The figure shows average tariffs for high- and low income countries according to the
World Bank 1995 definition, using our final tariff data set. Average tariffs are calculated as
the simple average across countries. 3-digit NACE tariffs are aggregated to country level
tariffs using simple averages.

the EU before the Single market was established or became part of it right after, as one country.
Second, we balance the raw data and drop all HSC-country combinations that are not available for
all years 1992-2009. This is done to eliminate the possibility that average tariffs change simply due
to sampling issues. Third, we aggregate the data to NACE revision 2 3-digit codes. To do so, we
first aggregate to 4-digit ISIC revision 3.0 by using a correspondence table from the World Bank.
This is then converted to 4-digit ISIC revision 3.1, then to 4-digit ISIC revision 4, which is again
converted to NACE revision 2. The last three conversions use correspondences from the UN.27 In
cases where several ISIC revision 3.1 codes are associated with a single NACE revision 2 code, we
take the simple average across the ISIC codes. In some cases, a firm has a missing industry code
or a 2-digit code instead of a 3-digit code. In those cases, we use the simple average tariff across
all industries, or across 3-digit codes within a 2-digit industry, Tnt = (1/N)∑ j Tn jt , instead.

The final tariff data set contains data for 96 countries, 128 3-digit industries and 12,174 country-
industry combinations. Figure 5 shows average tariffs for high- and low income countries in our
final tariff data set.

27http://unstats.un.org/unsd/cr/registry/regot.asp?Lg=1
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C Trade Policy During the 1990s

Launched in Punta del Este, Uruguay, on 20 September 1986, the Uruguay Round of Multilat-
eral Trade Negotiations was formally concluded in Marrakesh, Morocco, on April 15 1994, when
125 Governments and the European Communities, accounting for more than 90 percent of world
trade, concluded a historical agreement to reform international trade. As stated in the Marrakesh
declaration,28 the Uruguay Round achieved a global reduction by 40 percent of tariffs and wider
market-opening agreements on goods. In addition, participation in the Uruguay Round was con-
siderably wider than in any previous multilateral trade negotiation and, in particular, developing
countries played a notably active role in it. While only few developing countries took part in earlier
GATT rounds, and trade barriers reduction was negligible,29 the Uruguay round achieved impor-
tant tariff reductions in both developed and developing countries. The Uruguay Round implied
commitments to cut and bind tariffs on the imports of goods. The tariff reductions agreed on were
explicit on both the timing and magnitude in cut. The deadlines for cut ended in 2000.

The major results of the Uruguay Round were the individual commitments of the contracting
parties to cut and bind their custom duty rates on imports of goods. It is important to note that the
phase-in of tariff reductions were agreed on during the negotiations. This feature of the Marrakesh
Agreement implies that tariff reductions were pre-determined and therefore unlikely to be corre-
lated with contemporaneous shocks, or to be driven by political pressure arising from the effects
of trade liberalization.

For non-agricultural products the agreed tariff reductions were implemented in five equal in-
stallments.30 The first cut was made on the date of entry into force of the WTO agreement, and the
following four on 1 January of each subsequent year.31 Over the five years, this process led to a
40% tariff cut on average on industrial products in developed countries, from an average of 6.3%
to and average of 3.8%.

In addition to tariff cuts, the number of “bound” tariffs32 increased significantly, from 78% to
99% in developed countries, from 21% to 73% in developing countries, and from 73% to 98% in
transition economies.

28https://www.wto.org/english/docs_e/legal_e/marrakesh_decl_e.pdf
29Exceptions are represented by the East Asian NICs.
30Unless it is otherwise stated in a Member’s Schedule.
31see Marrakesh Protocol to the General Agreement on Tariffs and Trade 1994for more information.
32Bound tariffs are duty rates that are committed under WTO. Raising them above the bound rate is possible but

hard: the process involves a negotiation with the most affected countries and it possibly requires a compensation for
their loss of trade.
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D Approximation of the Knowledge Production Function

The expression K̂i =
(

∑n∈Ωi ωinτ̂
βn
n êin

)1/(k−1)
can be approximated by equation (5) in the main

text, ∆ lnKi = ∑n∈Ωi βnωin∆Tn +∑n∈Ωi ωin∆ lnein.

Proof. The term

∑
n∈Ωi

ωinτ̂
βn
n êin = ∑

n∈Ωi

ωineβn∆ lnτn+∆ lnein

≈ ∑
n∈Ωi

ωin (1+βn∆ lnτn +∆ lnein)

= 1+ ∑
n∈Ωi

ωin (βn∆ lnτn +∆ lnein) ,

where we used the fact that ln(1+ x)≈ x⇐⇒ 1+ x≈ ex for x close to 0. Hence,

∆ lnKi =
1

k−1
ln

[
1+ ∑

n∈Ωi

ωin (βn∆ lnτn +∆ lnein)

]
≈ 1

k−1 ∑
n∈Ωi

ωin (βn∆ lnτn +∆ lnein)

=
1

k−1

(
∑

n∈Ωi

βnωin∆Tn + ∑
n∈Ωi

ωin∆ lnein

)
,

where we used ∆ lnτn = ∆ ln(1+Tn)≈ ∆Tn for Tn close to 0.

E Patent and Sales Weights

This section provides empirical evidence that trade and patent flows are highly correlated.
Patents and Imports We aggregate the patent data to the country-pair level, where the source

country is the location of the applicant firm and the destination country is the location of the patent
office. level and consider the source country of patent flows. We calculate the share of patents filed
in country s that come from firms headquartered in country r, relative to all other foreign patents
filed in country s,

χrst =
Patents from r to s at time t

∑k 6=s Patents from k to s at time t
(16)

Similarly, by using trade data from CEPII, we calculate the import share ψrst as the share of trade
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from r to s relative to s’ total imports

ψrst =
Import from r to s at time t

∑k 6=s Imports from k to s at time t
(17)

Figure 6 shows the import and patent inflow shares on the horizontal and vertical axis, respectively,
on log scales, for four major economies, the U.S., Germany, Japan and Great Britain in year 2000.
There is a high degree of overlap; typically the top three countries on the import side are also
the top three countries on the patent side. In Figure 7 we plot all country pairs in our sample for
the year 2000. We see that there is a strong log linear relationship between bilateral patenting
and trade, with a linear regression slope of 0.80 (s.e. 0.02). Finally, we show that the patent flows
adhere to a gravity model. Table 6 shows results when regressing the number of patents from r filed
in s on distance and GDP in r and s (all in logs). Column (1) uses only the year 2000 cross-section
sample, while column (2) uses all years from 1965 to 2006 and includes year and country-pair
fixed effects. Just as for trade flows, bilateral patenting falls with distance and increases with the
size of the home and destination country.

Figure 6: Import and Patents Shares.
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Note: The vertical axis shows the share of patents filed in U.S./Germany/Japan/Great Britain belonging to
firms headquartered in source country r (log scales). The horizontal axis shows the share of total imports in
U.S./Germany/Japan/Great Britain coming from source country r (log scales). Year 2000.
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Figure 7: Bilateral Trade and Patenting.
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Note: The figure shows the number of patents and total trade from headquarters country r to destina-
tion country s in year 2000 (both in logs). The solid line is the local polynomial regression fit and the
gray area represents the 95% confidence bands. The linear regression slope is 0.80 (s.e. 0.02). The
population of firms is all firms in PATSTAT with non-missing headquarters country information.

Table 6: Patent Flows and Gravity.
Dep. variable: lnPatentsrst Year 2000 1965-2006(

(1) (2)

Distancers -.44a

(.03)
GDPr .68a .48a

(.02) (.05)
GDPs .50a .27a

(.02) (.04)
Year FE No Yes
Source-destination FE No Yes
R2 0.43 0.34
Number of observations 2,558 68,447

Note: Robust standard errors in parentheses. a p< 0.01, b p< 0.05, c p< 0.1.

Patents and Exports We use survey data for European firms from EU-EFIGE/Bruegel-UniCredit
data set (henceforth EFIGE) to calculate firm specific export shares to different country groups, and
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compare them to patent weights from PATSTAT.33 The EFIGE database consists of a representa-
tive sample of about 15,000 manufacturing firms (above 10 employees) across seven countries
(Germany, France, Italy, Spain, United Kingdom, Austria, Hungary). and provides information
on firms’ international activities. We use firms’ self-reported export shares for 2008 and for each
firm we construct weights for market exposure based on the share of sales to eight groups of coun-
tries:34 EU 15 countries, other EU countries, other European countries not EU, China and India,
other Asian countries, USA and Canada, Central and South America, and a residual category in-
cluding all remaining countries.35

We match the EFIGE data with firm level data from Amadeus, which in turn can be matched
with PATSTAT using the patent application number of each patent owned.36 We calculate weights
for market exposure based on firms’ patenting activity abroad that correspond to those we have
calculated for exports using patent applications for the period of 1998 to 2008. 37 Figure 8 shows
a kernel-weighted local polynomial regression of patent shares on export shares for firms with at
least one patent. Again we observe that there is a strong relationship between patent and trade
weights. The corresponding linear regression slope is 0.89 (s.e. 0.008).

33The EFIGE data set is described in Altomonte and Aquilante (2012).
34Specifically, we use the answers to two questions. D4 asks: “Which percentage of your 2008 annual turnover did

the export activities represent?” D13 asks: “If we assume that the total export activities equal to 100 which percentage
goes to each of the following areas: 15 EU countries area, Other UE countries, Other European countries not UE
(Switzerland, Norway, Russia, Turkey, Byelorussia, Ukraine, . . . ), China and India, Other Asian countries (excluded
China and India), USA and Canada, Central and South America, and Other areas.

35The weight for EU 15 is computed by summing a firm’s exports share to EU 15 area and the share of sales in its
home market.

36Specifically, from the variable patent application number in Amadeus we are able to construct the ap-
pln_nr_epodoc in PATSTAT, and to link each patent application in Amadeus to the same patent application in PAT-
STAT.

37When the application authority is EPO, we assume that the patent was filed in at least one of the EU 15 countries,
and include it in the EU 15 share. The motivation is that EPO filing is cost effective if the applicant wants to protect
an invention in 4 or more countries, so there must be at least one application filed in one of the EU15 countries. If a
firm does not have patents, then all its weights for all groups of countries are set to zero.
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Figure 8: Market Exposure Weights - Export and Patents.
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Note: The figure shows market exposure weights based on sales (2008) and patenting ac-
tivity (1998 to 2008). The solid line is the local polynomial regression fit and the gray area
represents the 95% confidence bands. The linear regression slope is 0.89 (s.e. 0.008).

F Persistence in Patent Weights

This section provides empirical evidence that patent weights ωin are highly persistent over time.
We calculate weights ωint based on all patents filed during three non-overlapping time periods,
t = 0: 1965-1985, t = 1: 1985-1995 and t = 2: 1996-2005. First, we calculate the likelihood of
continuing to patent in a country conditional on patenting there in t = 0 (i.e., the extensive margin).
We also calculate the likelihood of patenting in t = 0 and t = 1 conditional on patenting in the same
country in t = 2. We limitthe sample to firms that filed at least one patent after 2004, which ensures
that all firms exist throughout the the period in question. Table 7 reports the results. Even after
20 years, the likelihood of continuing to patent is high (44 percent). The same is true on the entry
side; conditional on patenting in a market in t = 2, the likelihood of patenting in that market 20
years earlier is nearly 40 percent. These conditional probabilities are an order of magnitude higher
than the unconditional probability of patenting in a market. The final row in the table shows that
the unconditional probability is roughly 4 percent. Second, we calculate the correlation in weights
conditional on patenting in that market in both t and t + 1 (i.e., the intensive margin). Figure 9
shows the expected weight in t = 1 and t = 2 conditional on a 1985 weight ωin0. Even after 20
years there is a highly significant and positive correlation between the weights.
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Table 7: Persistence in Patent Weights. Extensive Margin.
(1) t = 0 (2) t = 1 (3) t = 2

Conditional Probability of continuing P [pint | pin0] 1 0.44 0.44
- (.001) (.001)

Conditional Probability of entry P [pint | pin2] 0.37 0.39 1
(.001) (.001) -

Unconditional Probability of patenting P [pint ] .037 .033 .035

Note: Standard errors in parentheses.P [pint | pin0]) depicts the share of firm-destinations with posi-
tive patenting in t = 0 and period t relative to all firms-destinations with positive patenting in t = 0.
P [pint | pin2]) depicts the share of firms-destinations with positive patenting in t = 0 and period t
relative to all firms-destinations with positive patenting in t = 2.

Figure 9: Persistence in Patent Weights. Intensive Margin.
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Note: The figure shows the kernel-weighted local polynomial regression of weights ωint in
1995 or 2005 (vertical axis) on weights in 1985 (horizontal axis). The two lines represent two
separate regressions. Gray areas denote the 95 percent confidence bands. The sample includes
all pairs (ωint ,ωin,t+1) where both values are non-zero. The population of firms is described in
Section 4.2.

G Patents as a Measure of Innovation

There are different measures of innovations. We use patents count which is a measure based on
the output of innovation activity. An alternative measure is R&D expenditure which is based on
input rather than output. Here we examine the robustness of patenting as an indicator of innovative
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activity by looking at the correlation between patent applications and R&D expenditures. We rely
on the EFIGE survey data referred to above and match these with Amadeus and PATSTAT. This
leaves us with a sample of European manufacturing firms. EFIGE contains information of firms’
average investment in R&D activities as percentage of turnover for the period 2007-2009.38 Using
turnover data from Amadeus we are able to calculate average R&D expenditures for the same
period.

We proceed by calculating the correlation between firm level R&D expenditures (in logs) and
the number of patent applications (in logs) for each firm.In order to account for the lag between
the investment in R&D and the successful outcome of the R&D process and subsequent patent ap-
plication, we calculate the average number of patents applied for per year by a firm by considering
a window of six years. We include the survey period (2007-2009) and the three subsequent years,
until 2012. On the intensive margin, higher R&D expenditures are strongly correlated with a higher
number of patent applications. Figure 10 shows a kernel-weighted local polynomial regression of
firms’ R&D expenditures on number of patent applications. The relationship between the number
of patents filed by a firm and its investment in R&D is strong and positive. This relationship is not
monotonic. We notice a drop for firms with very high numbers of patent applications; but only a
minor number of firms file such a high number of patent applications per year. The corresponding
linear regression slope is 0.68 (s.e. 0.05).

On the extensive margin, we find that firms with at least one patent application spend on average
more on R&D than firms with no patents. We use firm level R&D expenditures and construct a
binary variable, which equals one if the firm has applied for one or more patent on average in the
period 2007-2012 period, and zero otherwise. Figure 11 shows the histogram of average R&D
expenditures for firms with positive patent applications and for firms that didn’t file any patent.
The shape of the distribution is very similar in the two groups, but for firms with patents the
distribution is shifted to the right, suggesting a positive correlation between R&D expenditures
and patenting. For high levels of R&D investments, there is a higher share of firms with at least
one patent application. Conversely, for low levels of R&D, the share of firms with no patent
applications is higher. We also run a correlation between firm level R&D expenditures and the
binary variable indicating whether, on average, the number of patent applications per year in the
2007-2012 period is positive. We repeat the same exercise for both the level and the log of R&D
expenditures. The results are reported in column one and two of Table 8 respectively. In both cases
we find a positive and strong correlation between R&D expenditures and patent applications.

38Calculation is based on the question C21 in EFIGE that asks: “Which percentage of the total turnover has the
firm invested in R&D on average in the last three years (2007-2009)?”
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Figure 10: R&D expenditures and patenting: Intensive margin
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Note: The figure shows the average number of patent applications per year and average
R&D expenditures per year (both in logs). R&D expenditures refer to the period 2007-
2009, patent counts are calculated over a six year window, from 2007 to 2012. The solid
line is the local polynomial regression fit and the gray area represents the 95% confidence
bands. The linear regression slope is 0.68 (s.e. 0.05).

Figure 11: R&D Expenditures and Patenting
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Note: The figure shows the distribution of firms’ R&D expenditures (in logs) for firms with
(white) and without (gray) patent applications in the period 2007-2009. .
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Table 8: R&D expenditures and patenting
Dep. variable: Patenting R&D expenditure Log R&D expenditures

(1) (2)

Patenting 3570.16c 1.28c

(584.17) (0.06)
Observations 6204 6074

Note: Standard errors in parentheses. a p< 0.01, b p< 0.05, c p< 0.1.The
table shows a regression of R&D expenditures on a binary variable indicating
whether the firm has any patent.
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Table 9: Patents characteristics
Filed Granted Proportion Citations Inventors IPC codes

patents patents granted (mean) (mean) (mean)
World Total 1767861 963471 0.55 2.07 2.12 3.08

United States 258299 210294 0.81 5.00 2.03 3.43
Japan 949400 375702 0.40 1.13 2.61 3.50
Germany 111102 63292 0.57 1.54 2.06 3.08
Great Britain 34381 13910 0.41 1.66 1.82 3.21
France 42595 31737 0.75 1.71 2.00 3.27
China 20427 16048 0.79 0.12 1.55 1.49
Italy 33194 25461 0.77 0.84 1.56 2.13
Canada 14709 9947 0.68 2.96 2.08 3.25
Mexico 294 82 0.28 0.77 1.85 1.78
Brazil 4568 421 0.09 0.14 1.32 1.42

The table shows the number of filed and granted patents and the average quality of patents as
proxied by the number of citations, inventors and IPC class codes in the final sample of firms
for the period 1992-2000. The first row displays overall statistics, the remaining part of the table
shows statistics for the ten biggest economies (nominal GDP) in 2000.

H Additional Tables
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