General Equilibrium Effects in Space:

Theory and Measurement*

Rodrigo Adao Costas Arkolakis Federico Esposito
Chicago Booth Yale Tufts

January 2023

Abstract

We document that estimates of the differential effect of the China shock measured by Autor et
al. (2013) are much larger than those implied by existing quantitative frameworks. We develop a
reduced-form representation of spatial models in which changes in regional outcomes combine: (i)
each region’s ‘‘shift-share’” exposure to shocks in its excess labor demand, and (ii) the reduced-form
effect that this exposure has directly on that region, and indirectly on other regions through spatial
links. We use this representation to uncover the roots of the disconnect. The estimated employment

losses are larger and more dispersed than those implied by existing quantitative frameworks.
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1 Introduction

International trade shocks do not affect all regions of a country in the same way. A recent wave of empirical
work in international economics has exploited variation in regional exposure to trade shocks to evaluate
their differential impact on regional outcomes — see Topalova (2010), Kovak (2013), Autor et al. (2013)
and, for reviews, Autor et al. (2016) and Muendler (2017). This type of empirical strategy has become
a popular tool to uncover causal evidence about how labor markets adjust to trade shocks. However,
it suffers from the so-called “‘missing intercept”” problem: it may not recover the aggregate, general
equilibrium impact of the shock if regions are spatially connected — for example, when there are demand
spillovers or upstream and downstream relationships across regions.! In this paper, we propose a reduced-
form representation of a class of spatial models that incorporates general equilibrium links between regions,
and use it to estimate the differential and aggregate impact of the ‘“‘China shock” on U.S. regional markets.
We start by documenting that estimates of the differential effect of the China shock measured by Autor
et al. (2013) (henceforth, ADH) are an order of magnitude larger than those implied by existing spatial
frameworks used to quantify the shock’s aggregate impact. This disconnect is more substantial when we
extend ADH’s specification to also include spatial linkages in the form of the import competition exposure
of nearby regions and the regional shock exposure in term of (final and intermediate) consumption.
To address this disconnect, we first develop a reduced-form representation of a class of spatial
models. Our representation establishes that changes in regional labor market outcomes combine (i)
each region’s ‘‘shift-share’ exposure to shocks in its excess labor demand, and (ii) the reduced-form
effect that this exposure has directly on that region, and indirectly on other regions through spatial links.
We use our representation to uncover the roots of the disconnect, tracing it into how various economic
mechanisms affect the magnitude of the model’s reduced-form elasticities and, consequently, of its
predicted differential effects. The same reduced-form elasticities are sufficient to aggregate the exposure of
different regions to compute the shock’s general equilibrium impact in the model, provided that the spatial
linkages terms are included. This indicates that the credibility of the model’s aggregate impact is severely
undermined if it yields reduced-form elasticities that are inconsistent with their empirical counterparts.
An important empirical question is how to estimate these elasticities. We propose to use a specifica-
tion derived from our model’s reduced-form representation. It is a generalization of popular “‘shift-share”
empirical specifications that incorporates spatial links in general equilibrium through direct and indirect
effects. Identification of such effects relies on two assumptions. First, we assume that observed trade
“shifters” across sectors and foreign markets are randomly assigned. Second, we impose parametric
restrictions in the spatial model to characterize the (direct and indirect) reduced-form elasticities as a func-

tion of observed variables and a small set of unknown parameters. We use this specification to estimate

IThis is related to the problem that difference-in-difference empirical strategies do not recover the general equilibrium
effect of the “treated’”” on ‘‘non-treated” (Heckman et al., 1998). Muendler (2017) and Chodorow-Reich (2020) discuss
this problem for specifications based on cross-regional variation in shock exposure. Moretti (2011), Nakamura and
Steinsson (2018), and Chodorow-Reich provide comprehensive reviews of the literature.



the effects of the China shock: we find large direct effects and reinforcing indirect effects that, given our
parametric restrictions, arise from strong agglomeration forces, strong (weak) employment sensitivity to
wages (prices), and regional production and trade links. Our estimates imply employment losses from the
China shock that are larger and more dispersed than those implied by existing quantitative frameworks.
In Section 2, with exactly the same data and sample used by ADH, we document three facts about
how different mechanisms shaped the responses of U.S. Commuting Zones (CZs) to the China shock.
First, spatial links propagated negative shocks in labor demand across regions: employment and wage
growth were weaker in CZs geographically close to a CZ facing higher import competition. Second,
stronger import growth in (final and intermediate) goods consumed in a CZ did not generate relative
gains in employment and wages. Third, we do not find evidence that population responded to any
measure of regional shock exposure. We attest that these findings are robust to alternative specifications,
such as inference procedures, weighting schemes, control sets, exposure measures, and sectoral shifters.
This evidence leads us to document a substantial disconnect between the large empirical estimates
and the small quantitative predictions in the existing literature for the shock’s differential impact
across regions. In particular, the cross-regional variation in ADH’s estimates of the shock’s impact on
employment rates is several times higher than that of the predicted effects of quantitative spatial models
in the literature. Such a disconnect could potentially arise from the fact that these frameworks account
for spatial and production links, while the specification in ADH does not. However, this possibility is
inconsistent with the three facts that we document. Instead, we obtain even larger differential treatment
effects with our specification that intuitively approximates for regional exposure through such links.
Section 3 then proposes a reduced-form representation of a class of spatial models that allows us
to both understand the roots of the disconnect above and derive an empirical strategy to estimate
the differential and aggregate impacts of trade shocks in a unified way. We consider a multi-sector
gravity trade model (as in Costinot et al. (2011)) extended to feature local agglomeration forces in
production, as well as spatially immobile individuals who choose whether to work or not (similar to Kim
and Vogel (2021)). We show that, up to a first-order approximation, log-changes in labor outcomes
of regional market i, Y, following shocks in the fundamentals of the global economy 7 (e.g., trade costs

and productivity) combine direct effects and spatial indirect effects:

Y =Ba(0)0:(#)+ > _Bi;(0)i; (7)., (1)
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where 7);(7) is the shock-induced shift in each market’s excess labor demand, and ;;(8) is the reduced-
form elasticity of market ¢’s outcome to the shift in excess labor demand of market j. In our model,
7;(7) captures the market’s “‘revenue shock exposure,” i.e. how much its revenue responds to the
shock (holding constant wages and employment). It takes a shift-share form, as it sums the shocks in 7

interacted with pre-shock regional exposure shares. The reduced-form elasticities 3;;(0) capture how



much the shock exposure of a market directly affects its own outcomes, and indirectly percolates to
other markets. They are determined by the wage elasticity matrix of regional excess labor demand,
which depends on both pre-shock spatial links and parameters in 6.

This structural relationship yields the general equilibrium impact of trade shocks from the aggregation
of direct and indirect effects across regions. For any 7, we measure the shock exposure of each market
using outcomes observed prior to the shock. We then exploit the fact that the reduced-form elasticities,
governed by the parameter vector 8 for each given model, are sufficient to measure the shock’s general equi-
librium impact in the model: we aggregate the exposure of different markets using estimates of the direct
and indirect reduced-form elasticities that determine the shock’s differential effects across regions.? The
flip side of this result is that a disconnect between the (direct and indirect) reduced-form elasticities pre-
dicted by a given model and their empirical counterparts constitutes an empirical rejection of the model’s
reduced-form elasticities and, therefore, of its prediction for the shock’s general equilibrium impact.

To rationalize the facts discussed above, we leverage this theoretical result and the fact that the
shift-share exposure measure in ADH resembles a negative shock to revenue in our model. The theory
yields three insights. First, indirect reduced-form elasticities are increasing in bilateral trade links and
are positive when such links are strong enough. Thus, exposure to a negative revenue shock in a market
endogenously reduces labor demand in nearby regions with which trade links are stronger. Second, while
a higher pre-shock spending on imported goods that became cheaper directly affects the cost of living, it
does not have any impact on employment and wages when import prices do not affect non-employment
payoffs and production costs. Finally, reduced-form elasticities are increasing in the strength of both
agglomeration and labor supply responses. We show that these two forces stand in for a slew of other
micro-foundations of determinants of the slope of regional excess labor demand (see also the related
discussion in Allen and Arkolakis (2022)). The fact that Ricardian quantitative spatial models used
in the literature feature no agglomeration forces (i.e. a small response of labor demand to the trade
shocks) and weak or no labor supply responses can help to explain the disconnect highlighted above.

This structural relationship also forms the basis for a specification to estimate the general equilibrium
impact of observed trade shocks. In our model, observed changes in regional outcomes are the sum
of the predicted response to the observed shock, given by (1), plus a constant and a residual solely
determined by other unobserved shocks. If the observed shock is mean-independent from all unobserved
shocks, this structural relationship yields a specification for the estimation of both the direct and the
indirect reduced-form elasticities, ;;(0). We leverage our reduced-form representation under a specific
parametrization of the model to reduce the dimensionality of @ to a number of parameters that is feasible
to estimate in practice. We follow this approach because a type of dimensionality curse prevents the

non-parametric estimation of the reduced-form elasticities (that is, setting @ ={;;}), as we only observe

2We further show how our formulas can be easily integrated to recover the exact impact of the shock. We use this
integration algorithm to extend our empirical specification to account for non-linearities in the impact of the shock,
and show that the first-order approximation performs well in our empirical application.



outcomes for I markets, but there are I? reduced-form elasticities.?

Our empirical specification is a generalization of the type of shift-share empirical strategy used by
ADH. It not only contains the model-consistent measures of region shock exposure, but it also accounts
for the direct and indirect effects that arise in general equilibrium (as specified by our parametric
assumptions on the model). We argue that our reduced-form specification has three advantages. First, it
transparently connects the shock’s aggregate impact to the magnitude and sign of estimates of the direct
and indirect reduced-form elasticities. Second, it yields the most efficient estimator of 0 since it leverages
both the direct and the indirect effects of the observed shock. Third, it can be also used to evaluate
whether the model’s predicted differential effects are consistent with their empirical counterparts, when
implemented for outcomes that are not used for estimation.*

In Section 4, we generalize this framework to account for other channels highlighted in recent
quantitative trade and spatial models — for reviews, see Costinot and Rodriguez-Clare (2014) and
Redding and Rossi-Hansberg (2017). We allow for trade in final and intermediate goods, as well as
labor supply to depend on migration choices and import prices. These additional mechanisms yield
an extended version of (1) and, thus, an analogous empirical specification. The general model entails
three new theoretical insights. First, trade in intermediate goods introduces upstream production
relationships into the measure of ‘‘revenue shock exposure.” Second, higher usage of intermediates
plays a similar role to stronger agglomeration forces in amplifying the (direct and indirect) reduced-form
elasticities to revenue shock exposure. Third, the shift in excess labor demand now also incorporates
two measures of ‘‘consumption shock exposure:” one accounting for the downstream effect of import
cost shocks on sales, and another for the effect of import price shocks on labor supply.

In light of these results, Section 5 revisits the problem of estimating the impact of the China shock on
U.S. CZs. We rely on Chinese productivity shocks in manufacturing industries that we recover from Chi-
nese import growth in other high-income countries using the gravity structure of our model. We estimate
large reduced-form elasticities, direct and indirect, to revenue shock exposure. In our parametrization of
the model, such large reduced-form elasticities are a result of strong agglomeration forces, high use of inter-
mediate goods in manufacturing, and high sensitivity of employment to wages. We also find that the two
channels of consumption exposure create relatively weak employment responses to import price shocks.

Our estimated specification yields predictions that are consistent with the observed differential

3Note that this requires the structural spatial model used to parametrize Bi;(0) to be well-specified. If it is not, the
unobserved residual will contain part of the true impact of the observed shock and, thus, the moment conditions used
for estimation will no longer be valid. This is similar to the typical requirement that parametric assumptions imposed
in empirical models are valid.

4Compared to indirect inference procedures that match arbitrarily chosen moments, the empirical strategy based
on (1) has the advantage of leveraging a structural equation in the model and, as such, it provides estimates of the
(direct and indirect) reduced-form elasticities that are sufficient for aggregation. Indirect inference could lead to biased
predictions if the targeted moments are not closely related to estimates of the model’s reduced-form elasticities. For
instance, by targeting the estimated coefficient of the direct effect reported in ADH, one does not guarantee that the
model’s indirect effects are consistent with their empirical analogs. In contrast, our approach implies that responses in the
data discipline the magnitude of the reduced-form elasticities that determine the model’s predicted impact of the shock.



responses in both outcomes used in estimation (i.e., wage and employment rates across CZs), as well
as other outcomes not used in estimation (i.e., manufacturing employment share across CZs, and U.S.
exports and imports across sectors). However, this does not hold for a calibration of our model motivated
by the existing quantitative literature.® The alternative calibration predicts much smaller differential
effects as a result of the assumptions of no agglomeration forces, weak employment sensitivity to wages,
and strong employment sensitivity to import prices.

We conclude by using our estimated specification to measure the general equilibrium impact of the
China shock on U.S. CZs. We find a large variation in employment responses across CZs. On aggregate,
the China shock eliminated around 3 million jobs between 1990 and 2007. Due to our larger estimates of
the (direct and indirect) reduced-form elasticities to revenue exposure, we obtain differential and aggre-
gate losses in employment that are an order of magnitude larger than those predicted by existing quantita-
tive frameworks recently used to study the China shock —e.g., Caliendo et al. (2019) and Galle et al. (2021).
When we account for the compensating impact of the shock on the cost of living, we obtain only a small
change in the median real wage in the U.S. However, in contrast to the existing quantitative literature,
we estimate a large spatial dispersion in real wage responses, with declines for a large fraction of the CZs.

Our paper is related to the extensive literature summarized by Redding and Rossi-Hansberg (2017)
that relies on models with rich calibrated spatial links to quantify the aggregate impact of trade shocks.
Compared to this literature, the distinctive feature of our paper is the use of the model’s reduced-form rep-
resentation to accomplish two goals. Theoretically, to characterize measures of regional exposure to trade
shocks, and analyze the determinants of the magnitude and sign of the reduced-form elasticities of regional
outcomes to these exposure measures.® Empirically, to obtain a specification for the estimation of the
model’s reduced-form elasticities that yield the shock’s general equilibrium impact from the aggregation of
the shock exposure of all regions. Our approach provides a connection between the differential effects im-
plied by the theory and their empirical counterparts in the context of the China shock. This leads to larger
estimates of the shock’s general equilibrium impact on U.S. CZs, both differentially and on aggregate.”

We also relate to a growing literature estimating how regional markets respond to trade shocks —
see e.g. Topalova (2010), Autor et al. (2013), Kovak (2013), Pierce and Schott (2020). We show that

a wide class of models yields a specification that generalizes typical shift-share empirical strategies. Our

5Under this alternative calibration, our model’s predicted responses for the employment rate have the same dispersion
as those reported in Caliendo et al. (2019), and their correlation is 0.5.

60ur reduced-form representation exploits an intuitive excess labor demand characterization of a class of spatial
models, similar in spirit to those in Allen et al. (2020) and Bartelme (2018). In contemporaneous work, Bagaee and
Farhi (2019) provide a first-order approximation for the impact of productivity shocks on wages and welfare in open
economies linked through final and intermediate trade, without agglomeration forces and employment responses. Our
work is also related to the literature on sufficient statistics in international trade, such as Arkolakis et al. (2012), Bartelme
et al. (2020), and Kleinman et al. (2020).

"Recent evidence by Autor et al. (2021b) suggests that the impact of the China shock is highly persistent: differential ef-
fects remain large and stable over a decade after Chinese import penetration stopped growing. Similar findings are reported
by Dix-Carneiro and Kovak (2017) in the context of the Brazilian trade liberalization. Our model is consistent with these find-
ings as the responses to shocks in (1) are permanent. In contrast, the disconnect we uncover is unlikely to be driven by mech-
anisms that reduce employment only temporarily along a transition path, such as nominal rigidities or reallocation frictions.



specification is close in spirit to that in Kovak (2013), but accounts for a rich structure of spatial and
production linkages. In the presence of such links, it can be used for estimating regional differential
responses to economic shocks in general equilibrium and aggregated in a model-consistent way. Our
empirical specification also complements structural estimation strategies based on equilibrium relation-
ships between endogenous outcomes in spatial models: it provides additional moments that can be used
both to estimate the model’s reduced-form elasticities and to evaluate whether the model’s differential
predictions are consistent with those observed in the data.®

Finally, our paper is related to recent macroeconomic frameworks in which regional outcomes depend
on the region’s exposure to aggregate shocks and a “‘missing intercept’ containing the common, general
equilibrium impact of the shock on all regions — e.g. Nakamura and Steinsson (2014); Mian and Sufi (2014);
Beraja et al. (2019). As Chodorow-Reich (2020) points out, with this approach the measurement of the
shock’s aggregate impact ‘‘depends heavily, and sometimes non-transparently, on the ingredients in the
model as well as the particular parametrization.” Chodorow-Reich (2020) also argues that identification
with this approach relies on restrictive modeling assumptions that yield the Stable Unit Treatment Value
Assumption (SUTVA). In our environment, this is equivalent to the shock’s indirect effect being identical
in all regions — that is, 3;;(0) =/;(0) for all 7 in (1) —, which not only requires symmetry in spatial links
(e.g., frictionless trade), but is also inconsistent with the type of heterogeneous spatial spillovers that we
document for the China shock. We instead exploit the heterogeneous exposure of regions to exogenous

trade shocks to identify the parameters regulating both the direct and indirect reduced-form elasticities.”

2 Adjustment of U.S. Regional Markets to Trade Shocks:
Three Stylized Facts

We begin by extending the specification in ADH to establish three stylized facts. They indicate that
spatial links in goods and labor markets did not offset, but rather amplified, the negative differential
impact of Chinese import competition on U.S. CZs documented in ADH. Our findings point to a striking
disconnect between the large estimates of the differential impact of the China shock (in ADH and in our

extension of it) and their much smaller counterparts predicted by existing quantitative spatial models.

8This includes the so-called ‘“market access” approach (see e.g. Redding and Venables (2004); Donaldson and
Hornbeck (2016); Alder et al. (2015); Bartelme (2018)), based on the equilibrium relationship between endogenous
regional outcomes and the endogenous market access. Notice also that our empirical specification remains valid under
a flexible structure of spatial links and arbitrary unobserved shocks, while the measurement of market access requires
restricting spatial links and accurately observing all trade costs (before and after the shock).

9See also Donaldson (2015) for a similar discussion for the literature on trade and growth. SUTVA also rules out
heterogeneity in the direct ‘“‘treatment’’ effect of regional shocks, which also arises from spatial links as shown by Monte
et al. (2018). Two recent papers also document heterogeneous spatial indirect effects of regional shocks: Burchardi
et al. (2020) for the impact of immigration shocks on innovation, and Hornbeck and Moretti (2018) for the impact of
productivity gains on domestic migration.



2.1 Empirical Specification

Our empirical analysis evaluates the differential effect of the China shock across U.S. CZs on three labor
market outcomes: log of average weekly wage, log of employment rate, and log of working-age population.
We extend the empirical specification in ADH by introducing two new measures of shock exposure, in
addition to the ADH employment exposure of CZ i to import competition at period ¢ (IC?). In particular,
we also consider the impact of a geographic gravity-based measure of region 7’s indirect exposure to the rise
in import competition faced by nearby CZs (GCY), as well as the impact of a measure of CZ i’s expenditure

exposure to Chinese import growth (I EY). Using these measures, we estimate the following specification:

AY! =o' +B"ICI+BCGCI+ B P T B+ X[ A+ (2)

where Y} is a labor market outcome, o' is a time fixed-effect, and X7 is a set of regional controls. Our
sample and outcome definitions are identical to those used in ADH for 722 CZs in mainland U.S. over
1990-2000 and 2000-2007.

We now define the exposure measures used in equation (2). The next sections show how they
arise from a first-order approximation of various model specifications. As in ADH, CZ i’s employment

exposure to import competition is

[Czt = ZKE?SAMéhina,w (3)

where AM¢y,;,., , is the change in imports from China in the 4-digit SIC sector s for a set of high-income
countries divided by the U.S. initial employment in sector s, and 6';05 is CZ i’s employment share in
sector s in the pre-shock period ¢y.!% Our definition of IC! is identical to the shift-share instrumental
variable (IV) in ADH. Thus, 37¢ is the direct differential impact on the CZ’s labor market outcomes of
higher employment exposure to the growth of Chinese imports in other developed economies.
Our gravity-based measure of indirect exposure to the import competition faced by other CZs is
D;?
GCl= Z—Z = 1C, (4)
i Lak#i ik

where D;; is the bilateral distance between the population centroids of CZs ¢ and j. Our specification
has a “gravity” structure: GC! is higher if 7 is near CZs with higher import competition exposure.
The parameter § controls how much indirect exposure declines with distance — in our baseline, we use
typical estimates of the trade elasticity and set d =5. Accordingly, conditional on i’s import competition
5GC

exposure, is the spatial indirect differential effect of the shock exposure of nearby regions on ¢’s labor

market outcomes. It intuitively captures the net effect of different sources of spatial shock percolation

10We follow ADH by using 10-year equivalent changes in imports of eight high-income countries with trade data
covering the sample period (Australia, Denmark, Finland, Germany, Japan, New Zealand, Spain, and Switzerland),
and ten-year lagged employment shares (1980 for 1990-2000 and 1990 for 2000-2007).



in general equilibrium. These could be, for instance, labor demand spillovers from lower domestic sales
to nearby regions or labor supply spillovers due to in-migration from more negatively exposed CZs.!!

Finally, our measure of the CZ’s expenditure exposure to Chinese import growth is

]EfEZeE?SAMéhina,m (5)

where ef?s is the pre-shock share of sector s in the total gross spending of CZ i. [ E} captures the notion
that the expenditure shock in CZ i is stronger if 7 has a higher spending share on a sector s, eﬁ?s, in which

Thus, 3% is the differential
effect of higher expenditure exposure to the shift in world output supply caused by the China shock.

China expanded more the world output supply, as measured by AM¢y;,. -
Such an impact can be positive if either labor supply or labor demand rises when there is a positive
shock in the supply of goods used for final or intermediate consumption. Alternatively, the impact can
be negative if higher availability of Chinese imports in a sector induces firms in the region to strongly
substitute local labor for imported inputs.'? Notice that I E?, while arising from our model below, is
also closely related to the expenditure exposure measure proposed by Hummels et al. (2014), but it is

defined across regions instead of firms.

2.2 Data

To maintain our analysis close to that in ADH, our main data source is ADH’s online replication

package for all variables, except I E!. To compute this variable, we follow Gervais and Jensen (2019) by
to M.ty to to

to — Ss +2 k6 ay, Ei,k

BST 143,060,

of sector s in input spending of sector k, a}? is the ratio of input-to-labor spending in sector k, and £

) . o Mo -
measuring CZ ’s share of gross spending in sector s as e , where £, is the share

is the share of sector s in final consumption. We compute 5%’“ and £ from the BEA input-output
table, and a’;f from the NBER manufacturing database for manufacturing sectors and from the WIOD
database for non-manufacturing.'?

Table B.1 and Figure B.1 in Appendix B.1 present moments of the main variables used in our
empirical application. Our two new exposure measures vary considerably across CZs, but their standard

deviations are around half of that of ADH’s employment exposure to import competition. Despite being

HU'We use the gravity structure in (4) to approximate (and formalize in our model below) these two main sources of
cross-regional links, highlighted in recent spatial gravity models — e.g., Allen and Arkolakis (2014) and Donaldson and
Hornbeck (2016). Appendix B.1 shows that our results are robust to alternative specifications for GC!.

12For example, import supply shocks can have a positive impact on labor supply because cheaper imports increase
the opportunity cost of leisure. The ambiguous effect of input prices on labor demand arises from the productivity
and substitution effects of higher foreign input supply — e.g., as in Feenstra and Hanson (1999), and Grossman and
Rossi-Hansberg (2008). Our model below clarifies how these mechanisms affect regional exposure to trade shocks.

BQOur procedure imposes that input and final spending shares are the same in all CZs, and trade is balanced. In
Appendix C.1.2, we evaluate our procedure to construct eﬁf’s by running a regression of gross spending shares implied
by shipment inflows in the Commodity Flow Survey (CFS) on our measured spending shares when aggregated for states
and CFS commodity groups. We obtain a coefficient close to 1 and an R? of 0.95.



Table 1: Differential Impact of the China Shock on U.S. CZs

Change in average Change in log of Change in log of
weekly log-wage employment rate working-age population
(1) (2) 3) (4) () (6)
IC!  -0.471%%F  -(.383%** -0.519%**  _0.369*** 0.273 0.127
(0.127) (0.113) (0.089) (0.079) (0.180) (0.155)
GC! -0.606*** -0.691%+* 0.348
(0.156) (0.155) (0.212)
IE! 0.077 -0.154 0.418
(0.164) (0.143) (0.294)
Differential treatment effect (percentage points):
-1.78 -3.52 -1.97 -4.16 1.03 2.44

Notes: Pooled sample of 1,444 Commuting Zones in 1990-2000 and 2000-2007. All endogenous variables are multiplied by 100. All specifica-
tions include the following two sets of controls. Regional controls in ADH: period and census division dummies, manufacturing employment
share in 1990, college-educated population share in 1990, foreign-born population share in 1990, employment share of women in 1990, employ-
ment share in routine occupations in 1990, and average offshorability in 1990. Additional controls: CZ’s share of spending in manufacturing
in 1990 (32, €l ), and CZ’s indirect exposure to manufacturing employment share in 1990 (X i%id Zsl;g, with z;; ED{f/Z,CDi_I;’). Differ-

51,8
ential treatment effect: difference between the estimated treatment effects of CZs in the 75" and 25" percentiles of the empirical distribution
of the estimated treatment effects. Robust standard errors in parentheses are clustered by state. *** p<0.01, ** p<0.05, * p<0.10

constructed with the same sector-level shifters, the different exposure shares used to compute each
measure imply that regions are not equally exposed to them. The correlation across CZs is 0.53 between
IC! and GCY, but it is only 0.16 between IC! and I E!.

2.3 Results

Table 1 reports estimates of our baseline specification, which includes ADH’s largest control set (de-
scribed in Table 1’s note), as well as two extra pre-shock controls: the share of gross spending on
manufacturing, and the gravity-based measure of indirect exposure to the manufacturing employment
share of nearby CZs. They control for potential confounding effects of exposure, through our two
additional channels, to the secular manufacturing decline in the period.

In columns (1), (3) and (5), we first estimate the regression in (2) using only IC! to replicate ADH’s
findings. The estimates indicate a relative decline in both the average wage and the employment rate of
(CZs with higher employment in industries experiencing stronger growth in Chinese import competition.
Compared to the CZ in the 25" percentile of the distribution of IC?, the CZ in the 75" percentile of the
distribution experienced changes in the average wage and employment rate that were 1.8 p.p. and 2.0
p-p. lower, respectively. These are large differential effects when we consider that the standard deviation
across CZs of changes in the average wage and the employment rate were 6.5 p.p. and 6.4 p.p., respectively.
Asin ADH, we find a non-significant impact of higher exposure to Chinese import competition on the
CZ’s population, but this estimated impact is also relatively imprecise with a 95% confidence interval
between -0.09 and 0.63. Notice however that we reject substantial negative responses in local population.

We then turn to the full specification in (2) that also includes our two additional measures of exposure



to the China shock, GC! and I E}. In the second row of Table 1, we report the differential impact of being
close to CZs with higher exposure to import competition. Columns (2) and (4) show that the negative
impact of local shock exposure propagates to nearby regions: a CZ whose neighbors are more exposed
to Chinese import competition experienced relative declines in its average wage and employment rate.
The simultaneous reduction of wages and employment suggests that general equilibrium links spatially
spread the decline in regional labor demand and reinforce the effect of the China shock.'* In column
(6), we also estimate an indirect impact on population that is non-significant.

The third row of Table 1 reports the differential impact of higher spending exposure to the China
shock, TE!. For all outcomes, we find that the coefficients are not statistically different from zero.
Importantly, this is driven by lower point estimates with standard errors whose magnitude are similar
to those of the spatial indirect effects. Since I E! is based on gross expenditure shares, our findings are
consistent with weak differential responses in labor market outcomes to higher exposure to the input
supply expansion caused by the China shock. This is similar to the evidence in Pierce and Schott (2016a)
and Acemoglu et al. (2016a) of no differential growth in the national employment of industries more
intensive in inputs of sectors in which Chinese imports grew more.

To summarize, our empirical analysis yields three novel stylized facts. First, spatial links amplify the
negative impact of local exposure to import competition by generating relative reductions in the labor
demand of other nearby regions. Second, we find no evidence of attenuating responses on employment
and wages in regions more exposed to the positive shock in the supply of imported goods for (final and
intermediate) consumption. Third, we find no evidence of population responses to the CZ’s indirect
exposure to the shock in nearby CZs, in addition to the lack of population responses to the CZ’s
own employment exposure documented in ADH. Hence, the spatial links embedded in our two new
adjustment margins (namely, GC! and T E?) do not offset the differential negative impact of the China
shock documented by ADH. Instead, the gravity-based measure of indirect exposure implies even larger
differential effects on employment and wage rates across CZs, but neither margin induces significant
differential responses in regional population.

Our estimates are at odds with the small differential impact of the China shock across regions implied
by quantitative spatial frameworks in the literature. For instance, Caliendo et al. (2019) (henceforth
CDP) find that the China shock had a small impact on employment, both on aggregate and differentially
across U.S. states. In Figure 1, we compare the cross-state variation in the predicted employment
rate changes in CDP to those implied by the estimates in columns (3) and (4) of Table 1. The figure
shows a striking disconnect between the empirical estimates and the quantitative predictions for the
shock’s differential impact: those in CDP have a standard deviation of 0.05, while those implied by ADH

14 As we discuss below, Table B.3 shows that estimates are essentially unchanged when we follow ADH in their choices
of control set, data, sample, and weighting scheme, so that the only difference between our specification and theirs is
the inclusion of the gravity-based measure of indirect exposure to import competition. However, if we follow Autor et
al. (2021a) and restrict the sample to the period of 2000-2007, all estimates of direct and indirect effects become imprecise,
with the exception of the direct effect of IC! on the manufacturing employment share.
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Figure 1: Differential Impact of the China Shock on Log Employment Rate

Quantitative spatial model (CDP)

< Extended ADH
© ® ADH

T T T T
-3 -2 -1 0 1 2
Empirical specification in equation (2)

Notes: The figure compares the differential impact of the China shock on the log employment rate across U.S. states (multiplied by 100)
between 2000 and 2007 that are predicted by the quantitative spatial model in CDP (vertical axis) and the estimates of the specification in
equation (2) (horizontal axis). The red dots correspond to the state average of the predicted effects implied by the specification in column
(3) of Table 1, and the blue hollow squares correspond to their conterparts implied by column (4) of Table 1. The red line is the 45-degree
line. We obtain the predicted responses of CDP from their replication files. All variables are normalized to have mean zero.

(column (3) in Table 1) have a ten-times larger standard deviation of 0.54. The disconnect can also be
seen from the comparison between the estimated coefficient obtained from the ADH specification across
U.S. states when we set the dependent variable to be either the log-change in employment rates observed
in the data or those predicted by CDP. The coefficient is -1.07 when we use the observed changes in
the employment rate of U.S. states, but it is only -0.01 when we use the predicted changes from CDP.'5
Such a disconnect could potentially arise from the fact that the general equilibrium model in CDP
accounts for spatial linkages, while the specification in ADH does not. However, this possibility is at
odds with the even larger differential treatment effects implied by our extended empirical specification
that intuitively approximates for gravity-based spatial links, as shown by the blue squares in Figure 1.

A similar disconnect from the response patterns observed in the data also arises in other recent
quantitative models that predict small differential impacts of the China shock across U.S. CZs. For
instance, the model extension in Galle et al. (2021) with endogenous employment responses yields a
standard deviation of the predicted log-changes in employment rates across CZs of 0.08, which is again
much smaller than that implied by the estimates in ADH and in Table 1. As Table A.3 in Galle et al.
(2021) shows, these predicted differential effects are much smaller than those implied by the specification

in ADH: when regressing their predicted effects on the ADH exposure measure, one obtains a coefficient

5 Note that, compared to the estimates in Table 1, the estimated differential effect of the shock on the employment
rate is even larger when we use U.S. states instead of U.S. CZs. This implies that the disconnect is not a consequence
of the fact that CDP generate predictions at the state-level while ADH estimate their model across CZs.
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of -0.04 for the log employment rate and -0.08 for the log average wage. These coefficients are much
lower than the estimates reported in Table 1.

The disconnect we document is problematic and to some extent surprising because the analysis of
the spatial quantitative literature on the China shock is motivated exactly by the need to complement
the evidence of the differential effect in ADH with the general equilibrium channels of adjustment that
may affect the aggregate impact of the shock. However, existing models predict differential effects that
are an order of magnitude smaller than their empirical counterparts. This is true for both the original

specification in ADH and our extension of it that approximates for spatial links among markets.

2.4 Robustness and Additional Results

We now discuss the robustness of our baseline results. Appendix B.1 displays all the tables.

Employment Outcomes in ADH. In Table B.2, we follow ADH in the choice of the dependent
variables and focus on the change in the share of working-age population in manufacturing, non-
manufacturing, unemployed, and out of the labor force. For all outcomes, we estimate statistically
significant direct and indirect impacts of higher exposure to import competition. In Table B.3, we

report similar estimates when we exactly follow ADH’s specification, with the addition of GCY.

Alternative Empirical Specifications. Table B.4 shows that estimates are similar when we con-
sider only subsets of our exposure measures. We also document the absence of attenuating effects from
indirect exposure to import expenditure shocks in nearby CZs. Column (2) of Table B.5 indicates that
our estimates of the employment and wages responses to the CZ’s direct and indirect shock exposure
remain statistically significant at usual levels when we use the shift-share inference of Adao et al. (2019).
Columns (3)—(4) of Table B.5 report similar results when we control for state fixed-effects and lagged
population growth (as in Greenland et al. (2019)) to account for state-wide and persistent amenity
shocks. Column (5) of Table B.5 controls for the CZ’s initial manufacturing shares interacted with period
dummies, which absorbs period-specific manufacturing shocks. This reduces the estimated impact of
import competition on wages and employment, but only the direct effect on wages is not significant

at 10%. Column (6) of Table B.5 reports similar results when we weigh CZs by their population.

Alternative Shock Exposure Measures. In Table B.6, we document the same reinforcing pattern
of indirect responses to the shock exposure of nearby regions when we compute the gravity-based
measure in (4) while setting the distance decay to one or eight (columns (2)-(3)), adjusting for the size
of nearby CZs (column (4)), and excluding out-of-state CZs (column (5)).

Table B.7 considers alternative definitions of expenditure shock exposure. In column (2), we consider

two separate exposure measures of the form in (5) built with sectoral spending shares out of final and
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intermediate expenditure (respectively, I EF}! and [ ET}).'S We find that employment and wages do
not differentially respond in CZs with higher shock exposure in terms of either final or intermediate
expenditure. Column (3) reports similar estimates when we exclude input spending on the own sector
in the computation of the intermediate spending shares. Lastly, column (4) reports estimates when
we approximate for cross-industry supply links using the ‘‘Leontief expenditure shares” in Acemoglu
et al. (2016a). In this case, we find that higher exposure to cheaper inputs from China causes a relative
decline in the CZ’s employment rate.

Table B.8 considers alternative measures of the China shock in each sector. This addresses concerns
related to ADH’s specification of the shifters in terms of import growth in other countries, which may
be affected by productivity shocks in U.S. CZs or demand shocks in importing countries. In Panel A, we
use China’s exporter fixed-effect in each sector that we obtain from a gravity regression of log changes
in bilateral trade shares on sector-origin and sector-destination fixed-effects. In Panel B, we construct
exposure measures using the same sector-level NTR gaps used in Pierce and Schott (2016a). In both
cases, we find similar qualitative patterns of responses to higher (direct or indirect) exposure to Chinese

import competition.

Additional Migration Outcomes. Table B.9 investigates the impact of the China shock on gross
migration flows across U.S. CZs. All measures of exposure to the China shock did not have statistically
significant impacts on either the inflow or the outflow of migrants across CZs, but some of these estimates

are imprecise and cannot rule out a wide range of responses.

3 Theory of General Equilibrium Effects in Space

Motivated by the evidence above, we now propose a simple spatial model that we use to show that
the effect of a trade shock on each region can be expressed in its reduced-form: in terms of the regional
shock exposure and the effects that each region’s exposure creates directly on its own outcomes and
indirectly on other regions through spatial links. Based on this characterization, we develop an empirical
specification that allows us to estimate both the direct and the indirect elasticities to regional shock
exposure, as well as connect the observed differential effects of a trade shock on regional outcomes to
that shock’s aggregate effect on the economy. While our modeling choices are guided by the stylized
facts documented above, the next section shows how to extend our results to incorporate additional

mechanisms present in a wide class of quantitative spatial models.

16 A5 in the baseline, we construct intermediate spending shares using the national input-output table and the CZ’s
sectoral employment shares: the share of intermediate spending on sector s is eiff’s => k{%’toazoffok /> kafgoﬁfok. The
share of final spending on sector s in CZ i, e f‘;, is the share of average household expenditure in i’s state across 3-digit
SIC manufacturing sectors (constructed from the Consumer Expenditure Survey — see Appendix C.2.1).
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3.1 Environment

We consider a multi-sector gravity trade model with I segmented markets grouped into countries.
Each market comprises a product and labor market with a set of consumers and workers that face
the same product and labor prices.!” Let i € Z, denote a market in country c. In sector s of market
1, a representative competitive firm uses labor to produce a differentiated good with an endogenous
production cost of p; 5, and faces exogenous iceberg trade costs for selling to different destinations j
of 7 s. Each market is endowed with a mass of heterogeneous individuals, N;, that endogenously decide
whether or not to work by comparing the market’s wage rate w; to a government non-employment

transfer b;. Residents of market ¢ face an income tax rate of v;.

Gravity Trade Demand. Allindividuals in market 7 maximize the same nested Constant Elasticity
of Substitution (CES) preferences. We consider a Cobb-Douglas aggregator of sector-specific composite
goods where &; 5 is the constant spending share on sector s. The sectoral composite good is a CES
aggregator over the differentiated sector-specific products from different origins, with o >1 denoting
the elasticity of substitution across origins.!® Since markets are competitive, the price of market i’s
sector s differentiated good in market j is 7;; sp; . Thus, utility maximization implies that the bilateral

sales in sector s from 7 to j are

(Tij,spi,s)l_g

,Og',SE’a (6)
ZO(Toj,spo,s) ! ’ ’

where I is j’s total expenditure. The associated consumption price index in ¢ is

Xijs =558, E5 =

1
1—0o

P=]](Po)%, with Pio=|> (Toispos) 7| - (7)

This demand structure implies that market ¢’s revenue is the sum of sectoral sales to different
destinations, R; =) ;s Nijs- These sales, in turn, are a function of bilateral trade costs, 7;; s, and the
trade elasticity, 1 —o. To the extent that 7;; ; depends on distance, we show below that our model
features the type of spatial percolation in regional labor demand shocks that we documented in Section
2. This multi-sector gravity-based demand has become a standard way of modeling spatial links in the
trade literature — see e.g. Anderson (1979); Eaton and Kortum (2002); Costinot et al. (2010); Arkolakis

1"We define a product market as a set of consumers with access to the same products and prices, a common approach
in industrial organization (e.g., Berry and Haile (2014)). Similarly, we define labor markets as sets of producers that
face the same labor cost, as in neoclassical and gravity trade models (e.g., Dixit and Norman (1980), Costinot and
Rodriguez-Clare (2014)). We incorporate wage differences across sectors when markets are groups of sectors within
a region — for instance, when each region has two distinct markets, one for the set of manufacturing industries and another
for the set of non-manufacturing industries. We return to this point in Section 4.

18This demand specification greatly simplifies exposition, but we show below that our insights do not rely on
assumptions of either nested CES preferences or a single elasticity of substitution for all sectors.
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et al. (2012) and, for a review, Costinot and Rodriguez-Clare (2014).

Labor Supply. Individuals are heterogeneous and choose whether to be employed or not. If em-
ployed, individual ¢ supplies {(¢) efficiency units, obtaining an after-tax labor income of (1—w;)w;l(¢).
If non-employed, individual ¢’s income is (1 —v;)b;u(¢), with u(¢) denoting ¢’s non-employment income
potential. The pair (I(¢),u(t)) is drawn independently from a Frechet distribution with shape parameter

¢>1 and scale 1, so that the employment rate in market ¢ is

w; bi wf
=Pr|(1—v;)—1(1) > (1—v;) =~ =—.
ni=Pr|( UZ)PZ- ()= ( ”Z)Pi“(L) w? +b¢ ®

Up to a first order approximation, the log-change in the share of employed residents in market i is
Alnn; = ¢(1—n;)Aln(w;/b;) and, therefore, is proportional to the change in the ratio of the market’s
wage rate to the return of the non-employment outside option, with a sensitivity controlled by ¢. Under
this specification, a reduction in market’s labor demand leads to a decline in both wages and employment
rates, in line with the evidence in Section 2.'° This structure of selection of heterogeneous individuals into
employment is a standard way of modeling changes in the extensive margin of labor supply —e.g., see Heck-
man and Sedlacek (1985), Rogerson (1988), Mulligan and Rubinstein (2008), and Chetty et al. (2013a). It
is also consistent with the evidence in Autor et al. (2013) and Pierce and Schott (2020) that the number of
recipients of different types of government transfers increases in regions more exposed to the China shock.

The presence of heterogeneous individuals allows us to incorporate in our analysis a salient feature
of the data: individuals with lower initial income are more likely to become non-employed when exposed
to higher Chinese import competition (see Autor et al. (2014)). This is true in our model because
individuals differ in their efficiency, implying that the wage rate w; is not identical to the observable
average log of labor earning, Inw;, used to document the wage responses in Section 2.2° Instead, our

model yields the following equation:

Alnw; = Alnw; — %Alnni. (9)

The employment rate in our model also depends on the reservation wage, b;. In our baseline

specification, we take the simplest approach of assuming that, in every market 7, non-employment

19Kim and Vogel (2021) impose similar assumptions to model the choice of labor force participation of heterogeneous
workers. The same employment rate expression arises if we relax the Frechet assumption as in Adao (2016), but that
would introduce an additional parameter to control selection forces in wages. All our results are identical if u(¢) is a
private benefit of not working rather than an income potential. Appendix A.5 shows that an expression for the change
in the employment rate in terms of changes in w;/b; also arises in a competitive search environment in which firms post
vacancies with a given wage and workers decide whether to search for a job. In this case, the employment rate elasticity
also depends on the efficiency parameter of the matching function (as in Kim and Vogel (2021)).

29Several models used to study the impact of trade shocks on regional economies cannot account for this fact since
they miss either non-employment or heterogeneity in worker efficiency — e.g., Burstein et al. (2019); Caliendo et al. (2019).
Adao (2016) and Kim and Vogel (2021) constitute recent exceptions.
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benefits do not respond to trade shocks and are exogenously set in terms of a common numeraire function
of wages: b;=b;Q({w;};), where (.) is homogeneous of degree one and w; = %ﬁjm. Thus, through
the proper specification of Q({w;};), our model can replicate the evidence in Chodorow-Reich and
Karabarbounis (2016) that changes in the aggregate non-employment payoff (i.e., average changes in
b:iQ2({w;};)/P;) are positively, but only partially, correlated with changes in the aggregate real wage
(i.e., average changes in w;/F;). In Section 5, we use their evidence to specify Q({w,};) so that the

non-employment payoff, b;/ P, =b;Q({w;};)/P;, is a function of real income in different markets.?!

Production Technology. We start with a simple structure of production where, in each sector s
of market ¢, output is proportional to the representative firm’s endogenous employment choice, L; ,,

as well as to a term capturing economies of scale that are external to the firm and increasing in the

market’s employment rate. Specifically, the production function is Q; s = (7™ )Y L; s and, thus, the unit

production cost is

pis=w; “b}". (10)

Agglomeration forces may arise from a variety of economic mechanisms such as entry externalities
(e.g., Krugman (1991)), Marshallian production externalities (e.g., Ethier (1982) and Kucheryavyy et
al. (2016)), and search frictions (see Appendix A.5). The importance of this mechanism to analyze
regional responses to local shocks in labor demand has been emphasized by several recent papers —e.g.,
Greenstone et al. (2010), Kline and Moretti (2014), Dix-Carneiro and Kovak (2017), and Peters (2019).%2
Our specification captures the combination of these economic forces in a reduced-form way through
the combined strength of agglomeration and labor supply forces in 1¢ and, thus, our functional form
choice is guided by its convenient implication that the pass-through from wages to prices is the constant
1—1¢. As shown below, this connects the combined strength of agglomeration and labor supply forces
in ¥ ¢ to the curvature of the regional labor demand function. In Section 4, we substantially generalize
the structure of production by introducing intermediate inputs. Such an extension implies that the

pass-through from wages to prices decreases with the intermediate input share in production.

Equilibrium. To analyze the equilibrium, we characterize the labor demand in market ¢. Since labor

is the only factor of production, this is simply given by the sum of sectoral revenues in equation (6)

2n Section 4, we specify b; =b; P (Q({w;};))!~* and show that the impact of import expenditure exposure on labor
market outcomes is increasing in A\. Given the evidence in Section 2, our estimated A is close to zero in Section 5, which
roughly corresponds to our baseline specification of b;. Thus, our estimates and the evidence in Chodorow-Reich and
Karabarbounis (2016) reject that the non-employment payoff is invariant to shocks (i.e., that b; /P; is constant as imposed
in Caliendo et al. (2019) and Galle et al. (2021), in which case A would be one).

22This channel is absent in recent quantitative spatial frameworks based on the Ricardian model of Eaton and Kortum
(2002) used to quantify the impact of trade shocks on regional economies — e.g. Caliendo et al. (2019), Lyon and Waugh
(2019), Galle et al. (2021), and Kim and Vogel (2021).
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(after substituting for the production cost in (10)):

—0o 7&7,‘{70'4*1
w; "b;

Ri= Zzzws Hbli U—i—lf Ej’ (11)

ooys W,

where k=(0—1)(1—1¢) is a parameter determining the sensitivity of labor demand to changes in the
wage rate of different markets (conditional on total spending). As such, & is a key determinant of the
differential responses in wages and employment to shocks in economic fundamentals. In our model,
the labor demand elasticity is lower if the trade elasticity, (o —1), is lower, or the combined strength
of the agglomeration and labor supply elasticities, 1@, is higher.

To solve for the equilibrium and simplify our analysis, we impose that the local income tax v; is set
such that the benefit payments equal the tax revenues in equilibrium: v;(W;+ B;) = B;, with W, and B;
denoting total wage and benefit payments in market 7, respectively. The market level spending is thus
E;=W,.*® Given our labor supply structure, total income in market i is given by W; = w; ( ¢—|—b¢) N, 0
where o=T'(1—1/¢) and I'(.) is the gamma function. This indicates that, in our model, ¢ determines the
elasticity of both employment and spending in each market to changes in the local wage rate. For this
reason, ¢ is also key to determine how labor market outcomes respond to shocks in economic fundamentals.

We then define the equilibrium as a wage vector that yields an excess labor demand of zero in every
market. Formally, consider a wage vector w={w,}, with w,, =1 for an arbitrary numeraire market

m. It is an equilibrium if D;(w|7)=0 for all 7, such that

1—

-

-0 —fiﬂf—a—i—l
w; "b;

(’lUlT Z <Z ZUS Iﬂ:bli o‘+1§ Hi_j) w;z) (w;ﬁ—i_l_}f(Q(w))(ﬁ)

ooys w,

°

where 7= {745 }.ds is a vector of bilateral trade costs, and I,_; is an indicator function that equals one
if, and only if, i=j. Note that when ¢)=0 and ¢— 1, equation (12) is isomorphic to the excess demand
function of a multi-sector gravity trade model with a fixed labor supply (see e.g. Costinot et al. (2010)).

3.2 General Equilibrium Effects of Trade Shocks in Space

We now study how exogenous changes in trade costs 7;; ; affect different markets. Given the definition
of 7;;5, our analysis applies also to productivity shocks when changes in trade costs are the same for
all destinations. We use 0 superscripts to denote variables in the initial equilibrium, z?; hats to denote
log changes in variables between the initial and new equilibria, Z; =1In(z;/2?); bold variables to denote
stacked vectors of market outcomes, z={z;};; and bar bold variables to denote matrices with bilateral

variables associated with origin ¢ and destination j, Z2={z;; }: ;.

23This assumption is not important for our results. In Section 4, we show that an arbitrary structure of (endogenous
and exogenous) transfers across markets only determines how E; depends on wages in different markets. In addition,
our empirical findings below are similar when fiscal transfers are endogenous (as specified in Appendix A.2.6).
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The response of the wage rate in each market to changes in trade costs follows directly from the
total differentiation of the equilibrium definition in terms of excess labor demand. This yields the two
key objects in our analysis. The first is the partial equilibrium shift in the excess labor demand caused

by the shock (holding wages constant),
7(7)=(R") ™ (Vine D (w°|7°)) 7, (13)
where R is the diagonal matrix of initial revenues. The second is the ‘‘spatial links’” matrix,
7°=—(R") (Vi D (w°|7°)), (14)

which captures the elasticity of a market’s excess labor demand to wages in different markets. Written

as such, our analysis is a traditional comparative statics exercise in general equilibrium, as in Arrow
and Hahn (1971)and Mas-Colell et al. (1995).

We can express the wage response (in terms of the economy’s numeraire) to trade shocks as

Fow=mn(7). (15)
In the rest of this section, we first establish that the excess demand shift in each market, 7;(7), takes the
form of a shift-share variable based on the sum of trade shocks interacted with market-specific exposure
shares. We then characterize the sources of spatial links embedded in 4°. We finally invert expression

(15) to characterize the reduced-form elasticities that are sufficient to compute the general equilibrium

impact of the shock exposure vector, 7(7), on market-level outcomes.

3.2.1 A Shift-Share Measure for Shocks in Excess Labor Demand

A log-linearization of equation (12) implies that 7);(7) takes the form of a shift-share variable:
H(F)=(1-0o Z&suzs (16)

where /7, is the initial share of labor in market i employed in sector s, and p; o(7) is the shift in the

demand for 7’s goods in sector s,
AN 0 ~ 0 =~
s (T) = E :rij,s (Tij,s_ E xoj,sTOLS) ) (17)
i o

with rf; .= X7 />0, X} , denoting the initial share of market j in market i’s sales in sector s. 7;(7) is the
market’s ‘‘revenue shock exposure’ since it is the sum across sectors of the shock to the demand for 7’s

goods in each sector, p; s(7), weighted by the sector’s initial share in i’s employment E . The sector-level
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demand shock p; (7) itself is the sum across destinations j of the impact of market i’s own trade shock
on the demand for its goods minus the demand shift caused by competitors’ trade shocks in that sector,

Note that all components of 7;(7) can be
24

weighted by the revenue importance of each destination rw s
computed with measures of the bilateral trade shocks and information on initial bilateral trade flows.

The excess labor demand shift in (16) is closely related to shift-share measures of exposure to sectoral
shocks used in the literature (such as that used in Section 2). To see this, consider a foreign shock
with an identical impact on the sectoral demand of all destinations: formally, 7,; ;=0 for all 0#F and
Crs=(1— o) Trjs for all j. Then, (s is the common impact, the “shift”’, that the shock in the

foreign country has on the sectoral demand of every other market, and thus
/i :_ngsé}_“ﬁ‘ (18)

If the foreign country becomes more productive in sector s (fps >0), then every other market suffers a nega-
tive shift in its excess labor demand, 7; <0 for i # F. The magnitude of this impact is proportional to the ini-
tial share of sector s in ¢’s labor demand, as measured by the ‘‘share” E?,s' In Section 5, we use the common
component of the growth in sectoral Chinese imports across destinations to link the movement in aregion’s

excess labor demand to its shift-share exposure to import competition (as defined in ADH and in Section 2).

3.2.2 Spatial Links in General Equilibrium

We proceed with the characterization of the spatial links in the economy: 4° in (14). This matrix summa-
rizes the spatial percolation of shocks in our model as it regulates how much wage changes in one market

affect excess labor demand in other markets. By defining ¢ =¢—(¢—1)n?, Appendix A.1 shows that

7@] (¢O+I€)H[l =517 pz] where plj_/rlj +I€Z€zs uls jd s+woz zd ¢0 gbd (19)

The first component of this expression is the own-elasticity of i’s excess labor demand to its wage,

which corresponds to the sum of the labor demand and labor supply elasticities, regulated by x and

9 respectively. Following the usual logic in supply-demand frameworks, a lower value of ¢?+x implies
stronger wage responses to the same shock.

The second component p?j is the cross-wage elasticity of excess labor demand. A higher p?j creates

a stronger dependence of outcomes in ¢ to labor demand shocks in j. Such a dependence arises from

three sources. The term r?j¢? captures the positive impact that an increase on j’s wage has on its total

expenditure (proportional to gb?) and, consequently, on the sales of ¢ (proportional to the share of j in i’s

24Note that, with a single sector, 7;(#) is the partial equilibrium (i.e. holding wages constant in all markets) change
in the firm market access. The concept of firm market access introduced in Anderson and Van Wincoop (2003) and
Redding and Venables (2004) is widely used to measure the revenue potential of a location in the literature (e.g., Redding
and Sturm (2008), Donaldson and Hornbeck (2016), Bartelme (2018)).
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revenue, 7"1]) The next term captures endogenous changes in excess labor demand arising from demand
substitution across suppliers due to changes in j’s labor cost. It is proportlonal to the sensitivity of

demand to wages x and, importantly, to the covariance between i’s sales ¢? and j’s market share

1,5 zd s
9, , across sectors and destinations. The last term is the impact on excess labor demand of changes
in labor supply due to the non-employment benefit’s numeraire and arises because of the heterogeneity

in the labor supply elasticity across markets — in fact, it is zero if n) =n® and, thus, ¢? = ¢° for all 4.

3.2.3 General Equilibrium Effects in Space and their Determinants

We now characterize the reduced-form elasticity of wages to trade shocks in general equilibrium. This
is a ‘“‘sufficient statistics’ characterization: it yields responses in terms of market-level measures of
shock exposure (determined by 7; in (16)) and market-to-market reduced-form elasticities to these
measures (determined by ;; in (19)). Both components are functions of variables observed in the initial
equilibrium, as well as parameters controlling the elasticities in the model. Appendix A.1 contains the
proofs of the results in this section.

Throughout our analysis, we impose sufficient conditions for equilibrium uniqueness given any 7.
This guarantees that our counterfactual analysis yields unambiguous predictions for the impact of shocks
in economic fundamentals. Following Arrow and Hahn (1971) T.9.12 (p. 234), we assume that the

excess demand system satisfies diagonal dominance: there exists {h; }i, >0 such that, for all i #m,*

hvii> ) Byl (20)

j?ﬁm’i

Theorem 1. (Sufficient Statistics for Reduced-Form Responses) Consider any shock to bilateral
shifters 7. If condition (20) holds, then (up to a first-order approzimation)

i =i (0IW°)i; ‘1’2&] 6w°) )0 (7). with By = ¢01 (H[z "’%J“’Z’Y ) (21)

JF#i d=2
Dire;freffect Spatial in?l?rect effect
where ’yi(;l) is the i-j entry of () such that ;= (¢ + k)~ p”ﬂ[w;ﬁm =(¢,k) is a parameter vector,
and W= {n?,w? {X s i yi 18 @ matriz of initial conditions.

Theorem 1 yields a set of sufficient statistics for counterfactual analysis in general equilibrium: the vec-
tor of excess labor demand shifts (i.e, 7; in (16)), as well as the reduced-form elasticities to such measures
(i.e., B;j in (21)). The formula for wage changes (in terms of the economy’s numeraire) in (21) aggregates

the direct effect of the market’s own shock exposure and the spatial indirect effect of the shock exposure of

25This assumption is weaker than the gross substitution property (i.e., v; > 0 and vi; <0 for all i # j) that yields
uniqueness of one-sector gravity trade models with exogenous labor supply (Alvarez and Lucas, 2007).
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all other markets, weighted by the reduced-form elasticities 3;; and 3;;, respectively. The aggregation for-
mula thus maps measures of shock exposure in partial equilibrium for all markets (i.e., the shifts in excess
labor demand) into general equilibrium responses of wages in each market. As a special case, it provides a
closed-form characterization (up to a first-order approximation) for the solution of the non-linear system
of equations for counterfactuals in gravity trade models (see e.g. Proposition 2 in Arkolakis et al. (2012)).
The reduced-form elasticity 3;; is a series expansion of the spatial links matrix 4°. Thus, spatial
spillovers are stronger between markets with tighter ties in terms of bilateral sales or competition, as
captured by p?j, and in terms of third-market connections in the network, as captured by the power
series term. Intuitively, any wage change necessary to restore market clearing in market j following an
exogenous shock to its labor demand will endogenously shift labor demand in all other markets ¢ through
changes in both j’s demand for ¢ products and j’s market share in other markets served by ¢. These
endogenous shifts in the labor demand of other markets must also be corrected in general equilibrium,
triggering the multiple rounds of adjustment summarized in the higher-order terms of the power series.
This generates a pattern of spatial percolation of regional shocks that is similar to that of the percolation
of shocks across production networks (Acemoglu et al. (2016b) and Carvalho and Tahbaz-Salehi (2019)).
The representation in (21) links our model to the evidence in Section 2: for foreign shocks in which 7;
takes the shift-share form in (18), the direct effect, 5;7;, is related to the direct impact of the market’s
employment exposure to import competition IC?, while the spatial indirect effect, > i Bi;N;, is related to
the impact of the gravity-based measure of exposure to shocks in other markets, GC?. This link between
the model’s predictions and the empirical evidence emphasizes the importance of measuring the magnitude
of both the direct and indirect elasticities in order to correctly quantify the aggregate effect of trade shocks
and, thus, also highlights the importance of solving the disconnect discussed in the previous section.
We can also use this characterization to rationalize our empirical findings. We first show that trade
links generate the type of reinforcing spatial indirect effects documented in Section 2 — that is, direct

and indirect reduced-form elasticities that have the same sign.
Corollary 1. If k>0 and maXi7j|n?—n9| is low enough, then v;; >0 and B;; >0 Vi,j.

Consider again the same foreign productivity gain introduced in Section 3.2.1 (éps > (), while setting
the foreign wage to be the economy’s numeraire (5; =0 for all 7). This leads to a negative shift in i’s excess
demand (7; <0, for all i # F'), which then has a negative effect not only on the labor demand in that market,
but also on all other markets (/5;; >0). Intuitively, the negative demand shift pushes down ¢’s wage
(relative to the foreign country) and, consequently, also the trade demand in all other markets j through
losses in both their sales to i (captured by r?iqﬁg) and their market share in all destinations (captured
by >, a5 s34 4701 ) In this case, spatial links between regions reinforce the negative direct effect of an
import competition shock. The bound on the dispersion of n? guarantees that these demand channels
are not overturned by labor supply changes due to the impact of wages on the non-employment payoff.

Second, we investigate the determinants of the size of the reduced-form elasticities to understand
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the drivers of the large differential effects estimated in Section 2. To do so, it is useful to focus on the
special case in which the spatial indirect effects are identical, which arises when labor supply elasticities

and trade links are the same in all markets.

Corollary 2. Assume that markets have the same labor supply elasticity ((;50 #°) and trade links
Z gs 1,5 7,8
(6]8 68} z_]s 1,5; dZE—SH_X]) Then,

w; = #(boﬁi(%)Jrﬁ such that 1= Z],ﬁ_(ﬁonj( ) (22)

The direct reduced-form elasticity (k+@°) ! is positive, increasing in 1¥¢ and decreasing in o, and the

indirect reduced-form elasticity 3; is positive and increasing in j’s size.

The differential direct impact of shock exposure on wages, (k+@°)~!, is decreasing in the labor
demand elasticity, x. In fact, our estimates below indicate that the disconnect documented in Section
2.3 arises in part from the high value for the labor demand elasticity implied by Ricardian spatial models
(in which k=0 —1 due to the lack of agglomeration forces, 1) =0). The corollary also indicates that
market j’s (symmetric) impact on other markets is proportional to its size.

In addition, the symmetry in spatial links gives rise to an ‘“‘endogenous’ fixed-effect, 77, comprising all
the spatial indirect effects of the shock in general equilibrium. Hence, Corollary 2 establishes sufficient
conditions for wage changes in a market to be a linear combination of its shift-share shock exposure plus
a common fixed-effect. This special case thus yields a tight connection between our characterization and
empirical shift-share specifications that followed Bartik (1991). The frameworks proposed in Nakamura
and Steinsson (2014) and Beraja et al. (2019), given the absence of trade costs, are akin the case of
identical spatial linkages across markets considered in Corollary 2.

Lastly, we characterize the importance of the expenditure shock exposure. While it does not matter

for responses in wages and employment, it does affect changes in the price index.

Corollary 3. Consider any shock to bilateral shifters 7. If condition (20) holds, then (up to a first-order

approzimation)

Pi=) iy (#)+if (%) where (23)

A ~ K K
:Zgi,s‘xgi,sTOi,& and SEZ(xSZE+ (1—E>w2> ﬁoj (0|W0) (24)

The price index change combines two effects. The first term, i ﬁg n;(7), measures the impact of
the shock on the market’s consumption cost through the endogenous changes in production costs arising
from the wage responses in Theorem 1. The second term, 7 (7), measures the shock’s impact on the
exogenous component of consumption costs. It is the average change in bilateral trade shifters of a

destination market, weighted by its final spending share across sectors and origins. To gain intuition
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for this term, consider again the foreign sectoral shock introduced in Section 3.2.1 for which /¢ (7) is a
shift-share variable based on sectoral spending shares, 7 oc —23&73@,5. In this case, the price index falls
more in markets with a higher initial spending share on sectors in which the foreign country experienced
stronger productivity growth. In the absence of intermediate goods, final and gross spending shares
are equal, implying that ¢ is proportional to the import expenditure exposure I E; used in Section 2.

Two comments are useful at this point. First, in this simple model, consumption cost exposure does
not affect wages and employment across markets. While this is consistent with the evidence in Section
2, Section 4 shows that the sensitivity of labor supply to the consumption price index controls how
much 7 (7) affects labor market outcomes. Second, changes in the real wage, w;/P;, combine the direct
impact of the shock on consumption costs, measured by /¢ (), with the terms-of-trade effects implied
by the shock, measured by > (8;;— )i (7).26

3.3 From Theory to an Empirical Specification

In this section, we use Theorem 1 to derive an empirical specification that yields the general equilibrium
impact of observed trade shocks on regional outcomes. We consider two observed equilibria that differ
because of the realization of random shocks, 7;; 5, and assume that we observe a component of these
shocks, %{;‘f’j. Without loss of generality, we can define the unobserved component of the shocks as
Funbs — 2 #9PS o that

=S ) (25)

°%) is the impact of 7°” on market i’s sector s demand (defined in (17)).

where 0% = (1—0) p;4(7
We show in Appendix A.1.6 that by combining the decomposition in (25), the wage response in (21),
and the supply relationships in (8)—(9), we obtain a structural relationship between changes in observed

labor market outcomes and market exposure to observed and unobserved shocks:

a 5OV) 0 sob
= + Kl 0y 29%% |+
s s (s

where 3(6|W") = (n)B; + (1 — n?) 3, wyby) and B(8IW’) = ¢(1 — nd) (B — 3o wiBy). with
Bij = Bi;(0]W") given by (21). In this expression, o and v} are, respectively, the average and idiosyn-
~ unbs 27

Alnw;

Alnn; V]

(2

] | (26)

cratic changes in wages generated by the unobserved component of trade shocks 7 a" and v}
are similarly defined for changes in the employment rate.

Through the lens of our model, both the residuals (v,") and the constants (o*,a™) are not functions

26Note that in our framework the welfare of an individual corresponds to real wage (if working), or to real benefit
from non-employment (if not working). Even in a setting with a representative agent with endogenous labor supply,
it is easy to show that the equivalent variation associated with a trade shock is proportional to the change in the real
wage (see Appendix B.3.1 of the old version of our paper, Adao et al. (2020a)).
27 —1 0 ~ ¢ ~unb _ 0 ~unb
Formally, o > BEOIWO) Eli; (7%%)] and v =37, 81 (8|W?)ij; (T477%) —a.
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of the observed shocks in ZObS. Because of this property, knowledge of the reduced-form elasticities

©(0]W") and £75(8|W") is sufficient to compute both the differential and the aggregate impacts
in general equilibrium of the observed shock exposure of markets on employment and wages. Thus,
estimates of the reduced-form elasticities based on equation (26) can be aggregated in order to obtain the
general equilibrium impact of the observed shock. The flip side of this observation is that a disconnect
between the model’s reduced-form elasticities and their empirical counterparts constitutes a rejection
of both the differential and aggregate predictions of the model.

To take equation (26) to the data, we impose the following assumption.

Assumption 1. For all markets and sectors, (i) the observed shock has the same expectation, E| Z‘;b§|W0] =

7% and (ii) observed and unobserved shocks are uncorrelated,

CO,U(Aobs Aunbs‘wo) (27)

1357 Tod,k

This assumption guarantees the causal interpretation of estimates in the literature on the impact
of trade cost shocks on trade flows, firms, industries, or regions (see e.g. Autor et al. (2013), Kovak
(2013) and Pierce and Schott (2016a)). It is equivalent to the quasi-random assignment of shocks that
yields identification of shift-share specifications — see Adao et al. (2019). Since this assumption is not
testable, how reasonable it is must be evaluated in each particular application. We return to this point
below in the context of the China shock.?

As shown in Appendix A.1.7, the orthogonality assumption in (27) implies that the unobserved

residuals in (26) are orthogonal to measures of market-level exposure to the observed shocks:

vy hZ Py hiZ;
J J

sobs Zobs)

=0 for any real matrices {h},hi;};, (28)

177

where Z; = => 0

computed by settmg all observed shocks to their expected value. The use of de-meaned shifters avoids

09 (25 is market j’s exposure to the de-meaned shock, with 2% = (1—0);,5(7°%)
identification threats arising, even under (27), from markets being more exposed to all types of shocks.

We now discuss a number of advantages of using (26) and (28) for empirical analyses of the aggregate
and differential effects of observed trade shocks. First, our specification links in a transparent way the
shock’s impact in general equilibrium to exposure measures and reduced-form effects (direct and indirect).
Equations (26) and (28) then connect such an impact to moments in the data associated with the elasticity
of market-level outcomes to the shock exposure of different markets. The empirical content of (26) and
(28) is a significant departure from the common approach of computing the shock’s general equilibrium

impact using calibrated spatial models — either in quantitative frameworks with rich calibrated spatial

281t is easy to allow for shocks in b; (akin to labor supply or amenities shocks) to affect outcomes through the definitions

of v and v!". In this case, in addition to condition (27), we must assume that Coov(7, Z‘;bss,b W) =
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links (as in Redding and Rossi-Hansberg (2017)), or in frameworks combining an empirical strategy
of the form in (22) and a calibrated spatial model to quantify the common ‘‘missing intercept” (as in
Kovak (2013); Nakamura and Steinsson (2014); Mian and Sufi (2014); Beraja et al. (2019)).
Second, (26) and (28) can be used to estimate the parameter vector 6 and, therefore, };(0|W0) and
Z(0|WO). Intuitively, identification comes from how market-level outcomes directly and indirectly
respond to the shock exposure of markets with stronger (bilateral and higher-order) cross-market links
in 7;; (as defined in (19)). Formally, it follows from applying the usual rank condition for non-linear
moment conditions in Newey and McFadden (1994) and Chen et al. (2014) to the specification in
(26) that is non-linear in .2 In addition, we show in Appendix A.1.8 that the estimation of 8 with
(26)—(28) is more efficient than using ‘“‘intuitive” instrumental variables for structural relationships
between endogenous outcomes. Formally, we build on Chamberlain (1987) to derive the optimal
moment conditions in the context of our general equilibrium model: that is, we characterize the weights,
{hi5,his } 5, that minimize the variance of the GMM estimator of € based on (26)—(28). The efficiency

gains arise because the optimal weights {h¥.

YR
with @ as well as its indirect exposure to other markets in general equilibrium.

h; }; rely on both market i’s own shock exposure associated

Third, (26) and (28) can be used to evaluate whether spatial models generate predictions that
are consistent with the actual regional responses to observed shocks. Specifically, for a given 6,
the predicted response in any labor market outcome Y; to the observed shock can be written as
YM(Z|o,W°) =>; Y (0)W°)Z; and, therefore, the observed log-change in the outcome, Vi, is

Vi—a¥ 10" VM (ZI0WO) 40, BV (2]0,W°)=0. (29)

Under the null hypothesis that the model is well specified, the pass-through coefficient from predicted to
actual changes in any outcome is one (i.e., p¥ =1). Intuitively, if the orthogonality condition in (27) holds,
an estimated coefficient larger than one means that the predicted responses in the model must be re-scaled
by a large coefficient to match the differential impact of the observed shock across markets and, therefore,
are too small. The opposite holds if the estimated fit coefficient is small and/or non-significant.3°

Importantly, this additional moment has the advantage of relying exactly on the reduced-form

YLeveraging the facts that (26) is additive in the residual and that 6 only enters (26) through func-
tions that are multiplicative on the random variables 2;?’25, identification of @ follows from the rank of
D (h}?V@B%(ﬂW),h%Veﬂzi(OD/VO))E[ZjZd|WO] being equal to dim(6). Notice that, since E[Z;Z4W"] # 0 for
some j and d is a weak condition (as it includes j =d), identification essentially relies on all entries of 8 being associated
with heterogeneous (direct and indirect) reduced-form effects across markets. In other words, we cannot identify
parameters that are only associated with a common component of the reduced-form effect on all markets ¢. This
condition is weaker than the Stable Unit Treatment Value Assumption (SUTVA) that yields identification of the direct
reduced-form elasticity to local shock exposure in structural models with a common ‘‘missing intercept’” — see result
2 of Chodorow-Reich (2020). SUTVA rules out that shock exposure of a region differentially affects outcomes in other
regions, as we documented to be the case for the China shock in Section 2.

39This type of “‘slope’ test for evaluating the model fit has a long tradition in international economics — e.g., see Davis
and Weinstein (2001) and Costinot and Donaldson (2012). Recently, Kovak (2013) and Adao et al. (2020b) use a version

of it to evaluate model predictions for how factor prices respond to trade shocks.
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elasticities that are sufficient for the computation of the model’s counterfactual predictions in general
equilibrium. Therefore, a fit coefficient very different from one constitutes a rejection of the predicted
differential responses of the model and, given the discussion above, also undermines the credibility of
the model’s aggregate predictions. Note that this is possible even when @ is structurally estimated,
as predicted reduced-form responses to observed shocks may not be consistent with their estimated
counterparts — for example, see the discussion in Section 2.3. Moreover, in contrast to the type of
statistical decompositions proposed by Kehoe et al. (2017), the estimation of the fit coefficient does
not depend on how much of the cross-market variation in the outcome of interest is driven by other
shocks, because the orthogonality condition in (27) guarantees the identification of the impact of the
observed shock while holding other unobserved shocks constant.

Fourth, it is worth mentioning that (26)—(28) remain valid under a flexible structure of spatial links
and arbitrary unobserved shocks. Such a flexibility is in contrast with the ‘“‘market access’ approach
in Donaldson and Hornbeck (2016). In such a setting, market access is an endogenous variable obtained
from solving the general equilibrium model under restrictive assumptions on the economy’s spatial links
— specifically, symmetric trade costs that are fully observed before and after the shock.?’ Even under
these assumptions, one cannot simply aggregate the empirical specification to compute the general
equilibrium impact of changes in market access as it also involves an endogenous common component
that is not separately identified from the constant.

Finally, our empirical strategy is distinct from an indirect inference procedure that calibrates
parameters to match arbitrarily chosen moments generated in the model with simulated shocks. Such a
procedure may yield biased estimates of the (direct and indirect) reduced-form elasticities if the chosen
moments are not closely related to the model-implied relationship in (26), or the model replicates the
chosen moments mostly through other unobserved shocks instead of the observed shock of interest. In
contrast, our strategy is not subject to these concerns because we derived it from the model’s predictions
for the impact of the observed shock.

So far, we have discussed the advantages of using equation (26) for empirical analysis. The use of
this expression is, however, subject to two important caveats. The first is that the separability of the
unobserved residuals (¢,1]"), which is necessary for the derivation of the moment conditions above,
follows from the log-linearization of the model around the initial equilibrium. This raises the concern
that equation (26) may be a poor approximation for the model’s predictions depending on the application.
We propose, and implement below, two ways of addressing such a concern that rely on the exact solution
for the model’s predictions that we obtain with the integral of our formulas (as described in Appendix

A.3.3). First, once the model has been estimated, we attest the quality of the linear approximation by

31Donaldson and Hornbeck (2016) point out that “‘the calculation of market access (via equation (9)) requires the
measurement of all trade costs.” This is true even if one extends their environment to obtain expressions in terms of
changes in market access. In this case, knowledge of initial trade flows subsumes knowledge of initial trade costs, but it
is still necessary to observe all components of bilateral trade shocks (in our notation, 7unbs =0). In gravity trade models,

identifying 7 typically requires assuming symmetric shocks, as in Head and Ries (2001).
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showing that it yields predictions that are similar to the exact predicted impact of the observed shock.
Second, to account for non-linear responses to the observed shock, we show that the estimates of 8 are
similar when we extend equation (26) to use the integral of our first-order formulas for the impact of the
observed shock. Thus, results are robust to removing any ‘“‘approximation error”” from the structural
residual in (26). Appendix B.2.2 presents further details about the implementation of these procedures.

Lastly, one may also be concerned that we specify the reduced-form elasticities as parametric
functions of the data in WY and the parameters in 8. We follow this approach because a type of
dimensionality curse prevents the non-parametric estimation of the reduced-form elasticities in (26),
as we only observe outcomes for I markets, but (34) has I? reduced-form elasticities.** Thus, as in any
structural framework, the derivation of (26) requires the spatial model to be well specified. In case it
is not, additional channels will be included in the residuals and the constant, which would lead to the
violation of the exclusion restriction in equation (27) and the mis-measurement of the aggregate effects.
To explore additional channels previously highlighted by the literature, we extend our methodology

to a broader set of models in the next section.

4 Other Margins of General Equilibrium Effects in Space

We now extend the empirical specification in Section 3.3 for an economy with trade in intermediate

goods as well as a labor supply that depends on migration choices and consumption prices.

4.1 Environment

Labor Supply with Endogenous Population. Each country ¢ has a continuum N, of workers.
Individuals have heterogeneous preferences for the amenities of different markets and draw market-
specific amenities {a;(¢) };ez, independently from a Frechet distribution with shape parameter 9 and
scale ;. As before, we assume that, conditional on residing in market 7, individuals independently draw
a realization of their income potentials (I(¢),u(¢)) from the same Frechet distribution used in Section 3.
Thus, the employment rate is given by n; in (8), and the average log wage by Inw; in (9). Worker ¢ chooses
in which market i € Z, to reside based on expected payoffs, U; (1) =a;(¢) ow? (w? +bf’)% /P;. This implies
a location choice similar to that of recent spatial frameworks (Allen and Arkolakis, 2014; Redding, 2016):

1

o 1-¢
B (i +b)
= p=, $0 b | pd\IiL
Zjelc(i)yjpj w; (wj+b.) 3

J

32This procedure effectively projects the reduced-form elasticities onto observable variables regulating the strength
of spatial links. It is similar to the common practice in demand estimation of specifying cross-price demand elasticities
in terms of observable variables (Berry, 1994; Berry et al., 1995).
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Population in market ¢ (and consequently labor supply) is higher whenever the per-capita real income
in 7 is higher relative to that of other markets in the country. ¢ controls the sensitivity of a market’s
population to changes in its relative per-capita real income and, as we formally show below, the type of
responses in population to regional shock exposure studied in Section 2.

We further generalize the model by introducing a parameter that controls the sensitivity of the
payoff of not working to local prices: b; =b; P*(Q({w;};))!~*. When X is higher, the same decline in
import prices has a stronger positive impact on the relative payoff of working and, consequently, on
labor supply. Thus, A\ determines the magnitude of the responses of wages and employment to shocks
in the supply of imported goods (such as those that we investigated in Section 2). Note that, in the

limit case of A=1, labor supply becomes a function of the market’s real wage.

Gravity Trade in Final and Intermediate Goods. We follow the gravity trade framework with
intermediate inputs of Caliendo and Parro (2015) and Costinot and Rodriguez-Clare (2014). We
maintain sectoral gravity trade links across markets: sector s of origin 7 has a representative competitive
firm that produces a differentiated tradable good at a cost of p; s and faces iceberg trade costs of 7;; 5 to
sell to j. In each sector and destination, the differentiated products of all origins are combined to produce
a composite non-tradable good, using a CES aggregator with elasticity . These sectoral composite
goods are inputs for the production of the final consumption good and the tradable differentiated goods.

The production function of the final consumption good is a Cobb-Douglas aggregator of the sectoral
non-tradable composite goods with shares ; ,, so that the final good price is still given by (7). In addition,
we assume that the production function of the differentiated good of sector s is Cobb-Douglas between la-

M
1,8

bor and an intermediate input aggregator, with spending shares of afs and a;", respectively. The interme-
diate input aggregator in sector s, M; s, is also a Cobb-Douglas function of the sectoral non-tradable com-
posite goods, with fleS denoting the share of intermediate spending on sector k ( %S >0and ), %8 =1).
We maintain the assumption of external economies of scale associated with the market’s employment rate

(as regulated by an elasticity ¢).3* From cost minimization, the production cost in sector s of market i is

M

Pis = (w;) TP (MYl (b)Y with  PM =TIy (Pyy) e, (31)

Notice that, relative to the model of Section 3, the pass-through of wages to production costs is now
M

a function of the share of intermediate goods in production. Given the same value of ¥¢, a higher a;’
will lower the sensitivity of labor demand to the local wage, since input prices also depend on the labor
cost in other markets through input purchases. As we formally show below, this mechanism generates
wage responses to a given shift in excess labor demand that are larger when the share of intermediate

goods in production is higher.

33The general specification of the model in Appendix A.3 also features an elasticity of productivity to population.
We set this elasticity to zero in this section because we cannot estimate it given the lack of population responses to the
China shock documented in Section 2.
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Finally, in Appendix A.2, we define the equilibrium wage vector in terms of an excess labor demand

system: D;(w|7)=0 for all . All the remaining derivations for this section are in the same Appendix.

4.2 An Extended Reduced-Form Representation

We now extend the empirical specification in Section 3.3, and characterize how the presence of inter-
mediate goods changes our measures of shock exposure. Consider first the shift in market-level sales

caused by the shock (holding constant all endogenous variables), the ‘‘revenue shock exposure’ defined

N oInR; ~ .
as 771R<T) — Zs,o,d alrll?—fis Tod,s-

771 1 g Zgz S :ul S +Nz s( )) Where /Lz S szs ]k::u] k 7A- BU = Z (,FU>d’ (32)

d=1

_XM

and 7V = [rg’] wis gk with ¥ ik =X,/ Ris denoting the share of revenue in sector s of market i, R; ,

coming from its intermediate sales to sector k of market j, X} . Here, p; <(7) is the same shock to

ij,sk*
the demand for goods of sector s of market i defined in (17). Since the demand shift for the products

of a sector-market affects its input purchases, it also generates revenue shifts for upstream sectors and

markets that we capture in the series expansion of the upstream matrix of revenue shares, #V.

dlnPM £
We also consider the shock’s impact on input costs, 75 (7) =", , 4 T Tod i

o0
M D _
ni,s( luz ] +szs jklu] k: where Mz s Zx]z kgz ksTﬂ k> b = Z (33)
d=1
and 2P =[x gjk]w & with 22 =05 kXﬂ M o/aM R;  denoting the share of input expenditure in sector s

from ¢ that corresponds to input purchases from sector k of market j. This “input shock exposure’ has
again two terms. f; 5( ) is the direct impact of the shock on the unit input cost of sector s from market
1, which by Shepard’s lemma is simply an average of the shocks across sectors and markets, weighted by
the spending shares on them. In addition, cost shocks in other sectors and markets have a downstream
impact on the cost of production in sector s from ¢ through its intermediate input purchases, with
weights given by the series expansion of the matrix of intermediate cost shares, 2.

Our theoretical exposure measures are closely related to measures of upstreamness and downstream-
ness (in levels) for open economies suggested by Fally (2012). They are the open economy analogs of the
Leontief matrices controlling shock percolation across sectors in a closed economy network model (see
Acemoglu et al. (2016b) and Carvalho and Tahbaz-Salehi (2019)), and related to the forces highlighted
in the open economy model of Bagaee and Farhi (2019).

Theorem 1 still holds in this general setting and, as in Section 3.3, the changes in any labor market
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outcome }A/; € {Alnw;,Alnn;, AlnN; } have the following reduced-form representation:

Y a +ZBYR 9’WO obs +Z/8 9|WO obs _i_ZBl};iW O‘WO ( Obs)—l—ViY, (34)

where we now define the parameter vector and the matrix of initial conditions as 8= (¢,1,\,9,0) and
WO ={n? w? {X? s ist i@ ,5}37{ P M rsti- Under Assumption 1,

Y AR (A obs Y ~C (A obs
th UG th iy (7

YZhZﬁ%MS A°bS>] =0 (35)

for the de-meaned shock, 7°7° =#°" —7°% and any real matrices {hYR hyc,{hzi\/[} }i-

Equations (34) and (35) generalize the empirical specification in Section 3.3. As such, (34)—(35)
inherit all the properties outlined in Section 3.3. However, (34) yields three additional insights.

The first term in (34) is the analog for this general model of the reduced-form responses in (26)
for the simpler model of Section 3. Not only trade in intermediate goods requires the measurement of
upstream revenue exposure (i.e., >, €0 u¥ (7) in (32)), but it also alters the reduced-form elasticities to
revenue shock exposure (i.e., WY includes final and intermediate spending shares). In particular, higher
intermediate input usage plays a similar role to stronger agglomeration forces in amplifying reduced-form
elasticities by flattening the labor demand curve. We formalize this intuition in Appendix A.2.5 by
showing that, in a symmetric economy, the labor demand elasticity is instead k= (o —1)(1—¢—a™)
and wage responses are increasing in x.

The second term indicates that shocks in the price of imported final goods, 7 (#°7), also affect labor
market outcomes in this more general framework. This follows from the impact that such shocks have
on both the non-employment payoff (as regulated by A) and the allocation of individuals across markets
(as regulated by ). Formally, we can write B )\ﬁYCA+19BYC§ Thus, when A and 9 are higher,
the impact of consumption exposure on labor market outcomes is also stronger. In fact, BYC =0 for
the labor supply structure of Section 3 that entails A=9=0.

The last term captures how outcomes respond to shocks in the cost of imported inputs, 7} M (gobsy,
Such responses arise from two channels. When input costs fall in a market, the market’s labor demand
increases due to market share gains in all destinations. Moreover, input cost shocks affect labor supply
through changes in the consumption price index across markets.

Notice that the representation in (34) links our model to the evidence in Section 2. For the same foreign
shock CA'RS of Section 3.2.1, the import expenditure exposure in (5) is a weighted average of the regional
exposure to shocks in the cost of final and intermediate goods.?* Thus, the evidence in Section 2 suggests
that any potential gain in wages and employment created by declines in consumption costs, 7 and ﬁf‘fs{ , are

not strong enough to offset the negative impact caused by revenue losses due to import competition, .

#Formally, Zs €, SCFs CXZk i kaz kM, k(&) +(1 _Zkgg,ka?,k)nic(&) with a; :a%g/af,h
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Generality of the Empirical Specification. In Appendix A.3.1, we show that our results hold
for a general class of models encompassing most of the recent quantitative trade and spatial models
reviewed by Costinot and Rodriguez-Clare (2014) and Redding and Rossi-Hansberg (2017). We outline
general conditions that yield (34) with the same shift-share measures of exposure {ﬁjR,ﬁf,ﬁ%} that
satisfy (35). This characterization follows three steps: (i) specifying the observed and unobserved trade
shocks, (ii) solving for the first-order approximation of log-changes in observable outcomes, and (iii)

defining the reduced-form elasticities as a function of initial conditions and elasticities in the model.

5 The General Equilibrium Effect of The China Shock

Our theoretical analysis has established that the general equilibrium impact of trade shocks on regions
is intrinsically related to the reduced-form elasticities of regional outcomes to the shock exposure of

different markets. We now use our characterization of these elasticities to empirically investigate how
U.S. CZs were affected by the China shock.

5.1 Measuring the China Shock

We back out model-consistent sectoral demand shifts from ADH’s measure of the China shock —
that is, the per-worker growth in Chinese imports by eight developed countries between years t,
and t, AM{y,. .- Without loss of generality, we consider a decomposition of the shift in sectoral
demand triggered by the China shock into a common component and destination-specific compo-
nents: (1—0) G, ina;.sTChinaj.s zféhina,s+é’éhinaj,s such that the size-weighted average of £y, . is zero,
S ERE EChinags/ 2 E!° =0. Our observed measure of the China shock is the common sectoral component

J 08 J 08

CChina’s, which we back out from AM{ using the following relationship shown in Appendix A.4.1:

hina,s

to to t
AM?E _ ZjEjaS ét + ZjXChinaj,sAj,s (36)
China,s = Lto China,s Lto )
US,S US,S

where At is the destination-sector fixed-effect in a sector-level gravity regression for log-changes in
bilateral trade flows between years ¢y and ¢, and L% s 1s the U.S. employment in sector s at 1.3

The structural relationship in (36) indicates that the sectoral shifter used in ADH combines two
components. The first is proportional to the sectoral demand shift associated with shocks in China’s

trade costs, (3. E%, /L% S)(éhinw. The second is the average across destinations of changes in sectoral

3 s
demand, _; XtCOhma] AL/ LY ., which depends on changes in endogenous and exogenous variables

in the world economy. As illustrated in Panel A of Figure B.2 in Appendix B.2.1, AM¢;,., , and
(> E* /L S)Céhinw have a correlation of 0.96 and, thus, China’s productivity growth is the main

35We estimate At with a gravity equation that also includes origin fixed-effects (but not a constant). We consider
the same set of destlnatlons used by ADH, and weigh observations by trade flows at tg.
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driver of the cross-sector variation in Chinese imports by developed countries.?® This suggests that
shocks other than Chinese productivity have little impact on the measure AM¢;,, .. Indeed, Panel
C of Table B.8 in Appendix B.1 shows that the results in Table 1 are qualitatively similar when we
compute the shift-share exposure variables in (3)—(5) using ééhina’s instead of AM¢y, -

Our empirical specification requires Q:éhinw to satisfy Assumption 1. Given initial conditions, shocks
to Chinese productivity must be uncorrelated with other unobserved shocks in the world economy.
This is reasonable because the reduction in China’s trade costs has been largely driven by China’s
transition to a market-oriented economy in this period and China’s accession to the WTO in 2001 —
for discussions, see Hsieh and Klenow (2009), Brandt et al. (2012) and Autor et al. (2013). In addition,
Assumption 1 also requires observing the expected value of the shock, so that we can compute the
de-meaned exposure measures used in (35). To maintain our analysis close to ADH, we follow the

assumption implicit in their specification that the shock had the same mean across sectors and periods.37

. . “obs.t .
Thus, since all (de-meaned) exposure measures are a function of xf;’ STin ' we compute them by setting
X - 24l . .. .
(1=0) 2 00 Tt 55 = Coninas — (1/25) 4 1/CEnina,s for all j. This implies that the de-meaned revenue

exposure (without intermediate production) in (28) is Z; = _ngg,s<§gjhina,s_ (1/28 )ZS,)t,CAéhina’s,).

5.2 Measuring the Spatial Links

Next, we discuss the specification of the variables in W' necessary to compute the reduced-form
elasticities for any given 8. We consider links between 722 U.S. CZs and 52 foreign countries in 152
SIC 3-digit manufacturing sectors, and one non-manufacturing sector. Appendix C presents details
about the data construction procedure.

We first construct bilateral trade flows in each sector. We use trade data from UN Comtrade
assembled by CEPII to measure country-to-country trade flows in each sector. We use the gravity
structure of our model to impute domestic sales in each sector by combining bilateral trade flows and
information on domestic sales in aggregate sectors obtained from Eora MRIO. Second, we distribute
U.S. domestic and international trade flows across CZs using again the gravity structure of our model.
Specifically, we first split U.S. Census data on imports and exports for each industry-country across
(CZs using measures of each CZ’s share in that industry’s national spending and production. We then
impute bilateral trade shares across CZs using a gravity specification estimated with bilateral shipment

data from the Commodity Flow Survey (CFS). Since our baseline model imposes trade balance, we

36Panel B of Figure B.2 shows that the correlation between AMY.. , and Chyy., , is lower, because (i, , is not
normalized by U.S. sectoral employment. However, some of the sectors in which China caused the strongest demand
shifts are also those in which per-worker imports from China grew at the fastest pace, including toys, clothing, and
furniture (see Table B.10 in Appendix B.2.1).

3TBorusyak et al. (2018) argue that, since the realized growth in Chinese imports was stronger after 2000, this
assumption raises the concern that estimates may capture confounding shocks to manufacturing that were also stronger
in the second period. As a robustness, Appendix B.2.2 reports that our point estimates are similar but less precise when
we implement their preferred specification that allows the shock’s expected value to vary across the two periods.

32



adjust market sizes to balance trade flows given the bilateral trade shares.3®

For U.S. CZs, we obtain final expenditure shares from the Public-use Micro-data from the Consumer
Expenditure Surveys. For foreign countries, we use the final spending shares from the BEA input-output
matrix. We also use the BEA input-output matrix to specify the sectoral intermediate cost shares for
all markets. Finally, we set the share of intermediate inputs in total cost in each sector and market
by assuming that a% =a;ap! with @) obtained from the NBER Manufacturing database, and selecting
a; to match observed value-added in each market.

To specify the numeraire function of non-employment benefits Q(w), we use the evidence in
Chodorow-Reich and Karabarbounis (2016) that the non-employment payoff in the U.S. (the average
change in b;/ P; across U.S. CZs) varies substantially over the business cycle, exhibiting a correlation
of 0.64 with annual changes in the U.S. per-capita real income (the average change in w;/P; across
U.S. CZs).® We match this correlation by setting Q(w) as the geometric average of income in the
U.S. and the World, Q(w) = (Wys(w))®(Ww(w))*~“. As shown in Appendix A.4.2, this implies that
w§° = %;‘:O) = @MO/Wéosﬂjers +(1 —@)VV;O/W&(} with © =0.62, where W° is j’s GDP at to. In all
other countries, we simplify our analysis by imposing that labor supply is exogenous.

5.3 Estimation of Reduced-Form Elasticities

Table 2 presents the estimates of 8 obtained with a GMM estimator based on (34)—(35) using the pooled

sample of 722 U.S. CZs in 1990-2000 and 2000-2007. Because ééhinw already accounts for the trade

elasticity, we do not estimate this parameter and set it to five (i.e., 0 —1=>5), a typical value in the

literature (see Costinot and Rodriguez-Clare (2014)).%! In all specifications, we use the same control
set in Table 1, and use the weights suggested by the optimal moment conditions in Appendix A.1.8:

hi M =VeBL T (O|W), Wi =Vep (O|W™), hT=VeB Y (O]W™). (37)

In Panel A of Table 2, we consider the most general version of the model in Section 4. The first

column reports an estimate of ¢ equal to 4.4. In our model, this parameter controls the (Marshallian)

38Table C.3 in Appendix C.1.2 reports validation tests using the CFS data. Regressions of actual on predicted trade
flows across states and SCTGs yield coefficients close to 1 and R? of 0.48-0.83.

39We impose that final and intermediate spending shares are the same across countries because we are not aware
of any comprehensive dataset that includes this information for all countries and 3-digit SIC sectors considered in our
empirical application. Figure C.1 in Appendix C.2.2 shows that our calibration procedure almost exactly matches the
observed shares of value added across U.S. CZs and foreign countries.

40Compared to annual fluctuations, changes over longer horizons in the non-employment payoff are even more volatile
(e.g., the dispersion is three times higher for ten-year changes), but the correlation with changes in real income remains
similar (e.g., it is 0.51 for ten-year changes).

41This is without loss of generality for the simple model in Section 3 as reduced-form elasticities only depend on the
labor demand elasticity k = (6 —1)(1 —1¢). The choice of o affects the estimate of ¥, but does not alter the model
predictions. In the more general model in Section 4, reduced-form elasticities depend separately on o and v, but it is
hard to separately identify these parameters in practice as they have similar effects on the model’s predictions.
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Table 2: Estimates of the Structural Parameters

0] Y A 0
Panel A: Model with intermediate production in Section 4
4.39 0.05 0.21 -0.19
(1.28) (0.02) (0.32) (0.27)
Panel B: Model with intermediate production in Section 4
4.16 0.05 0 0
(1.23) (0.01) -
Panel C: Model without intermediate production in Section 3
2.53 0.35 0 0
(0.37) (0.05) - -

Notes: Panels A and B report GMM estimates of @ implied by the specification in (34) and (35), with the weight matrix in (37). Panel
C reports GMM estimates of @ implied by the specification in (26) and (28). Pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All
specifications also include the baseline control vector used in Table 1. Standard errors in parentheses are clustered by state.

labor supply elasticity, which corresponds to ¢(1—n'). Given that the median employment rate across
CZs is 0.7, our estimate implies that the typical CZ has a labor supply elasticity of 1.3. This is similar
to the labor supply elasticity implied by the ratio of the estimates of employment to wage responses to
import competition reported in Table 1. Our point estimate of the Marshallian labor supply elasticity
is closer to existing estimates based on market-level variation across regions and countries, but it is
higher than estimates of the Hicksian elasticity based on micro-level responses of individuals — see Adao
et al. (2019) and, for a review, see Chetty et al. (2013b).

The second column reports an estimate of ¥ equal to 0.05, which implies strong agglomeration forces:
the median elasticity of production costs to regional employment across CZs is ¢/(1—ni) =0.17, a
value similar to that implied by the models in Krugman (1980) and Krugman (1991) given our trade
elasticity of five. Our large agglomeration elasticity is consistent with evidence on regional responses
to local demand shocks in the U.S. and Brazil (Kline and Moretti, 2014; Dix-Carneiro and Kovak, 2017)
and regional labor supply shocks in Germany (Peters, 2019), and is in the upper range of the sectoral
scale elasticities at the country-level in Bartelme et al. (2019).

In the third column, our estimate of A is positive, but not statistically different from zero. The
point estimate of 0.21 for A implies that a decrease of 1% in the local price index is associated with a
median increase in labor supply across U.S. CZs of A¢(1—mn;) =0.28%. In line with the discussion in
Section 4, such a small, non-significant estimate of A follows from the evidence in Table 1 that higher
expenditure exposure to the China shock had small, non-significant impacts on wages and employment
across CZs. The fact that we reject A=1 at usual levels indicates that our estimate is consistent with
the evidence in Chodorow-Reich and Karabarbounis (2016) that the non-employment payoff in the
U.S., b;/ P;, responds to shocks in labor demand and supply.

Finally, the fourth column reports a negative and imprecise estimate of the elasticity of location

choice to real wages, 9. Since 1 is proportional to the reduced-form response of population to regional
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Table 3: Reduced-form Elasticities and Shifts in Excess Labor Demand for U.S. CZs, 2000-2007

Reduced-form Elasticity Shift in Excess
Direct Indirect Labor Demand
Bii Bij i
Percentiles of empirical distribution, Full Model of Section 4

10" percentile 0.288 0.000 -0.071
50" percentile 0.314 0.003 -0.027
90" percentile 0.395 0.039 -0.009
99*" percentile 1.138 0.494 -0.001

Notes: The table reports the percentiles of the empirical distribution for the 722 U.S. CZs of the reduced-form elasticities in 2000 and the
shift in excess labor demand in 2000-2007 implied by the model in Section 4 for the estimates in Panel A of Table 2.

shock exposure (see Part C of Appendix A.2.4), our estimate of ¥ follows from the evidence in Table
1 that the differential impact of higher exposure to Chinese import competition on regional population
is not statistically different from zero, with a positive point estimate. Our result is consistent with a
growing body of literature documenting that recent shocks in regional labor demand in the U.S. triggered
weak population responses over ten-year horizons — see Molloy et al. (2011), Autor et al. (2013), Cadena
and Kovak (2016), Yagan (2019), and Benguria (2020).

Panels B and C of Table 2 present estimates of two restricted versions of the model. Panel B reports
similar estimates of ¢ and 1) when we shut down the two additional margins of labor supply responses
introduced in Section 4 (i.e., A\=19=0). Panel C reports estimates of ¢ and ¢» when we consider the
simpler model in Section 3 that ignores intermediate production (i.e., a% =0). In this case, the estimate
of ¢ is lower, but not statistically different from that in Panel A. However, the higher estimated
suggests a much stronger agglomeration force than that implied by the estimate in Panel A. This is
a consequence of the fact that, as discussed in Section 4, a higher share of intermediates in production
yields a flatter labor demand function for any given value of ©¢. Thus, accounting for intermediate
inputs in production is essential for the model to simultaneously generate reasonable agglomeration
forces and reduced-form elasticities that are consistent with those in the data. As discussed in the
next section, the direct implication of this argument is that a Ricardian setting without intermediate
inputs and agglomeration forces (like that used by Galle et al. (2021) and Kim and Vogel (2021)) yields
reduced-form elasticities that are much smaller than our estimates.

Moreover, in Appendix B.2.2, we implement the two procedures described in Section 3.3 that use the
integral of our formulas to show that the first-order approximation of the model’s predictions performs
well in our application.

Lastly, using the estimated parameters in Panel A of Table 2, we report in Table 3 the reduced-form
elasticities, 3;;, and the shifts in excess labor demand caused by the China shock, 7;. We focus only
on the 722 U.S. CZs in the second period. The first column indicates that, for the median U.S. CZ, a 1%

increase in its excess labor demand triggers an increase in the local wage of 0.31%. There is substantial
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heterogeneity in this direct reduced-form elasticity across CZs, as it can be seen from the value of the
99 percentile, due to their distinct conditions before the shock (e.g., employment rate, openness and
size). The second column shows that the indirect reduced-form elasticities are positive and, thus, imply a
reinforcing spatial propagation of regional demand shocks. The median indirect elasticity of 0.003 is small,
but the combined spatial indirect effect may be relatively large as there are 721 CZs indirectly affecting
each region. A small subset of large or centrally-connected CZs create much stronger spatial indirect
effects: the 99*" percentile of the indirect reduced-form elasticity is 0.49. Lastly, the third column of Table
3 reports the percentiles of the shift in excess labor demand across CZs. Although the China shock reduced

the excess labor demand in most CZs, the magnitude of this reduction varied substantially across markets.

5.4 Evaluating the Fit of Different Specifications of Spatial Links

Our next goal is to evaluate which specifications of spatial links imply predicted responses to the China
shock that are aligned with those observed across U.S. CZs. To do so, we estimate the fit coefficient
in (29) for different outcomes and specifications.

We start in Table 4 with the predicted responses implied by the specification in Panel A of Table 2.42
Columns (1) and (2) present the estimates for the two labor market outcomes used in the estimation
of the reduced-form elasticities in Section 5.3: the changes in the average log wage and the log of the
employment rate. It is thus reassuring, but not surprising, that we cannot reject that the fit coefficients
are one for these two outcomes.

In columns (3) and (4), we present estimates of the fit coefficient for the predicted responses in the
CZ’s sectoral employment composition (as derived in Appendix A.1.9). Since these outcomes were not
used in the estimation of 8, the fit coefficient of one is an over-identification restriction that we now
use for testing our estimated model.*®> Results indicate that our estimated model generates differential
responses in sectoral employment composition that are consistent with those observed following the
China shock. Column (3) shows that the estimated fit coefficient is close to one for the change in the
share of the CZ’s working-age population employed in manufacturing (the main dependent variable in
ADH). Finally, in column (4), we estimate the fit coefficient for the change in the share of manufacturing
in the CZ’s total employment. We again obtain a fit coefficient close to one, which indicates that the
results in column (3) are not only driven by the change in the employment rate used in estimation.

In addition, Table B.14 in Appendix B.2.2 investigates our model’s fit for changes in exports and

42Table B.13 in Appendix B.2.2 shows that results are similar for the different versions of the model in Table 2. We use
standard errors clustered by state that impose independence of residuals across states. Because our model’s predictions
take a shift-share form, Panel D in Table B.13 also shows that standard errors are similar when we allow for arbitrary
cross-market correlation in the residuals using the inference procedure in Adao et al. (2019). Because of the computational
burden involved with manipulating the high-dimensional matrices for the full model, we only implement this inference
procedure for the model without intermediate production.

43Note that there could be many reasons why our model may fail to match these non-targeted moments, as it does
not feature search frictions (e.g. as in Helpman and Itskhoki (2010)), mobility costs and amenity preferences (e.g. as
in Caliendo et al. (2019)), or sector-specific human capital (e.g. as in Burstein et al. (2019); Galle et al. (2021)).
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Table 4: Fit of the Model for Labor Market Outcomes across U.S. CZs

Dependent variable: Change in

Average Log of Share of Manufacturing in
weekly employment working-age employed
log-wage rate population population
(1) (2) (3) (4)
Fit Coef. (p") 1.16 1.07 0.86 0.79
(0.48) (0.20) (0.17) (0.17)
p-value of Hy: p¥ =1 73.9% 70.5% 42.6% 21.4%

Notes: Estimation of (29) in the pooled sample of 1,444 CZs in 1990-2000 and 2000-2007. All specifications include the set of baseline controls
in Table 1. The regressor is the predicted impact of the (de-meaned) exposure to the China shock obtained from the model in Section 4 for
the estimates in Panel A of Table 2. Robust standard errors in parentheses are clustered by state.

imports across sectors of the U.S. (aggregated across all CZs). We again estimate fit coefficients close to
one. Hence, although U.S. trade outcomes were not used in estimation, our model’s predicted responses
for both U.S. exports and imports are consistent with those ob