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Abstract

Gravity Equations are broadly used to estimate the determinants of
international trade flows. Empirical applications of the gravity equa-
tions are frequently criticized, because the estimated coefficients seem
to be overestimated. This study builds on a theoretical derivation of
the gravity equation provided by Anderson and van Wincoop (2003).
They conclude that exports not only depend on bilateral trade costs,
but also on bilateral trade costs relative to a measure of both countries’
trade costs to all other countries, so called multilateral resistances. In
this article I take a new theory-based index of comprehensive trade
costs between two countries to compute these multilateral resistances.
Then I use both the index for trade costs and the computed index for
multilateral resistances to estimate the theoretically founded gravity
equation and show how the values of the estimated coefficients melt.
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1 Background

In a general equilibrium framework with many countries trading composite

goods that are differentiated by country of origin, Anderson and van Wincoop

(2003) derive the following gravity equation:

Xij =
Yi · Yj
Yw

·
(

tij
Pi · Pj

)1−σ

. (1)

Here, Yi and Yj are the exogenously given GDPs of the countries, Yw the GDP

of the whole world, and σ is the elasticity of substitution. It is assumed that

σ > 1, which is supported by empirical evidence (see Anderson and van

Wincoop, 2004). Trade costs in terms of iceberg trade costs are indicated by

tij > 1. These iceberg cost can be interpreted as a tariff equivalent: selling a

good from country i in country j raises the price on country j’s market by

(tij − 1)%. Note that this modeling of trade costs reflects per Dollar trade

costs rather than total trade costs. This means that tij describes the average

mark up of trade costs on each Dollar of transport value. Furthermore it is

assumed that trade costs inside a country are benchmarked to one, tii = 1,

and that transport costs between two countries are symmetric, tij = tji.
1 Pi

and Pj denote the exogenously given multilateral resistances of the exporting

or the importing country, respectively. They are derived from a Dixit-Stiglitz

1 This symmetrie assumption could be relaxed, but because the empirical trade cost index

introduced in section 2 is a geometrical mean of trade costs and thus a symmetric measure

of trade costs, this assumption helps to simplify.
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price index and can be written as:2

Pi =

(∑
j

(
tij
Pj

)1−σ

· sj

)1/(1−σ)

, (2)

Pj =

(∑
i

(
tij
Pi

)1−σ

· si

)1/(1−σ)

. (3)

Multilateral resistances can be interpreted as an index for the overall accessi-

bility to trade of a country. In the second multiplier of gravity equation (1),

bilateral per Dollar trade costs tij appear in relation to the respective coun-

tries’ multilateral resistances.3 For illustration, imagine two countries lying

isolated from the rest of the world on one island in the ocean, far away from

the next continent. Bilateral average trade costs measured by iceberg-factor

tij might be low and this should guarantee for a higher trade volume between

both countries. But the relatively high trade costs to the complete rest of

the world have an additional positive effect on the bilateral trade volume.

If the same two island-countries were two small countries in the middle of a

huge continent with many huge countries surrounding them, multilateral re-

sistances were much lower and thus trade volume between the two countries

2 Note that Anderson and van Wincoop (2003) distinguish more precisely between mul-

tilateral resistances of exporting countries on the one hand and multilateral resistances

importing countries on the other hand. If trade costs are assumed to be symmetric be-

tween all countries (tij = tji), which is also a relevant assumption for this paper, it can be

shown that the export multilateral resistance of a country equals the import multilateral

resistance (Anderson and van Wincoop, 2003, p. 175).

3 Notably, the effect of multilateral price indexes was already stated in the first theoretical

derivations of the gravity equation (see Anderson, 1979; Bergstrand, 1985). But Anderson

and van Wincoop (2003) concentrated this issue on the elegant formulation of equation

(1) and were able to conclude that ignoring multilateral resistances leads to biased results.
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were lower, even if for the GDPs and tij the same levels are chosen.

The aim of this paper is to find a computational solution for multilateral re-

sistances. On its right hand side, the theory-based gravity equation (1) has

a directly measurable part, containing the GDPs, and an indirectly measur-

able part, containing trade costs and multilateral resistances. The indirectly

measurable part is usually complemented by replacing tij via proxy variables

(like distance, exchange rate volatilities, membership in a certain country

group and much more) and controlling multilateral resistances by fixed effect

dummies (country or country-pair dummies). In this paper I replace the in-

direct method to consider bilateral trade costs by a novel index (Novy, 2007)

that makes it possible to yield direct data for bilateral trade costs.

Recent work by Baier and Bergstrand (2009) pursues a similar aim. They

use a Taylor-series expansion to solve for multilateral resistances. But this

approach requires a normalization of the resistances to a reference country,

so that each computed multilateral resistance must be interpreted relative to

a certain country that has to be chosen in advance. In contrast, my approach

is able to compute direct absolute values for the multilateral resistances. A

normalization to a certain country is not necessary.

The paper is structured as follows. The calculation of the index for bilateral

trade cost is briefly described in section 2. The presence of direct data for

bilateral trade costs makes it possible to solve the multilateral resistances.

A procedure to do so is presented in section 3. With measures for trade

costs and multilateral resistances it becomes possible to estimate the gravity

equation (1) directly. The econometric model, the used data and the results

are described in section 4. Section 5 concludes.
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2 Computing average trade costs

Building on the theoretical framework of the gravity equation introduced by

Anderson and van Wincoop (2003), Novy (2007) derives an index for the

geometric mean of the bilateral trade costs between two countries:

tij =

(
XiiXjj

XijXji

) 1
2(σ−1)

. (4)

In this index trade barriers between two countries are a function of the ratio

between intra-national trade (Xii, Xjj) and international trade (Xij, Xji).

The higher the trade inside a country relative to the exports to the other

country, the higher are the bilateral trade costs, since σ is assumed to be

larger then 1. Note that this index is a comprehensive measure of trade

costs. These comprehensive trade costs can be decomposed into measurable

components and not measurable components.4

Because there are many sources to access the necessary data, equation (4)

makes it feasible to compute a theory-based index for the overall trade costs

between two countries. In this paper, I use a set of 23 OECD countries for

the years 1995 to 2005.5 The data source for bilateral exports is the bilateral

trade statistics of OECD’s Structural Analysis (OECD STAN). Following

4 See Anderson and van Wincoop (2004) for a comprehensive discussion of trade costs. They

decompose overall trade costs into three classes: transport costs, border related costs and

retail/wholesale costs.

5 The countries are selected so that the full data for the considered period is available. This

is necessary to make multilateral resistances comparable over time. The countries covered

by the data set are Australia, Austria, Canada, Denmark, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, Japan, Korea, Netherlands, Norway, Poland, Portugal,

Spain, Sweden, Switzerland, Turkey, United Kingdom and the United States.
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Novy (2007), intra-national trade flows are computed as a country’s total

production minus total exports. If it is available, the production data is

taken from the OECD STAN data (converted into US Dollars using the

OECD Financial Indicators annual exchange rates). Since there are many

missing observations (e.g. Turkey is completely not reported in this data set),

I compensate for the missing data by using data from the World Development

Indicators 2008.6

3 Computing the Multilateral Resistances

Multilateral resistances, as they are given by equations (2) and (3), become

computable if there is data for the world GDP shares of the countries i and

j, si and sj, as well as for bilateral trade costs tij. While GDP share data is

directly available from several data sources (like OECD STAN), trade costs

can be measured by the index presented in the previous section. Therefore it

is possible to compute multilateral resistances by solving the equation system

given by equations (2) or (3), respectively.

3.1 The equation system and its solution

To understand the algebraic structure of the multilateral resistance index,

it is useful to bring (2) in a form that shows the equation for each single

6 In appendix A this procedure is described in detail.
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country i, j ∈ {1, . . . , C}:

Π1 = 1
Π1
θ11s1 + 1

Π2
θ12s2 + · · · + 1

ΠC
θ1CsC ,

Π2 = 1
Π1
θ21s1 + 1

Π2
θ22s2 + · · · + 1

ΠC
θ2CsC ,

...
...

...
. . .

...

ΠC = 1
Π1
θC1s1 + 1

Π2
θC2s2 + · · · + 1

ΠC
θCCsC ,

(5)

where Πi ≡ P
(1−σ)
i and θij ≡ t

(1−σ)
ij . Note that θii = 1 since tii is assumed

to be 1 and that θij = θji due to the symmetric structure of the trade

cost index tij which is calculated as the geometric mean of bilateral trade

costs. In equation system (5), the world income shares si and the transport

costs (exponentiated by 1− σ) are known. Therefore it is possible to define

coefficients bij = θijsj. Dividing each equation of system (5) by the left hand

side and denoting the unknown 1/Πi = zi yields:

1 = z1· (z1b11 + z2b12 + . . . + zCb1C),

1 = z2· (z1b21 + z2b22 + . . . + zCb2C),
...

...
...

...
. . .

...

1 = zC · (z1bC1 + z2bC2 + . . . + zCbCC).

(6)

Solving this polynomial equation system is not trivial, but possible. Com-

puter algebra systems offer numerical algorithms for the solution of polyno-

mial equation systems, like e.g. the NSolve[]-statement of Mathematica.

Using these application with numerical examples has shown that there are

many solution vectors. Already in the case of C = 7 there are more than 100

solutions. But only one certain solution vector is economically of interest: a

solution with only real and positive numbers. The numerical examples have

also shown that there is always exactly one vector that consists exactly of

real and positive components. But in a computer output with more than

100 solutions it is hard to find this certain vector. The data set used in this
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study includes 23 countries, which makes it useful to construct an alternative

approach that finds only the relevant solution of the equation system.

The idea behind this algorithm is simple. An equation system is solved if

the left hand side equals the right hand side for each equation after inserting

numerical values for the unknowns. If we choose certain values for each Π

on the right hand side of equation system (5) which yield the same values

for each corresponding Π on the left hand side, these chosen values must be

a solution of the equation system. The pursued method to find these values

works as follows. Using equation system (5), we choose one singular value for

all the Πj on the right hand side, call it Π(0), and compute Πi(1) =
(

1
Π(0)

)
·(∑

j θij · sj
)

in a first round. Note that the value of Π(0) is the same for each

country j, meaning that the start value is independent the country. Then

we use the resulting Πi(1)-vector from this calculation to compute Πj(2) =(∑
i

(
1

Πi(1)

)
· θijsi

)
in a second round. This procedure is repeated until each

Πi converges, meaning that there are no (or negligibly little) changes after

several repeated recalculation rounds. In this case the value of each Π on the

right hand side equals the value of the corresponding Π on the left hand side:

we yield a certain value for each Πi on the left hand side that is equal to all

Πis plugged in on the right hand side equations. This must be one solution

of the equation system.

How do we choose the right value, Π∗(0)? Running the recalculation of the data

sample with too small values of Π(0) leads to an alternating sequence: the

results of the odd rounds of recalculation are too low, the results of the even

rounds are to high and so on. Running the recalculation of the data sample

with too high values for Π(0) leads to an adverse alternating sequence, where

the odd recalculation rounds yield too high and the even recalculations too
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low results. The closer Π(0) is to the optimal starting value Π∗(0), the smaller

is the amplitude of the recalculated values.

3.2 An illustrative example

An example shall help to understand this procedure. With some tricks, a

set of three polynomial equations can easily be transformed into a square

linear equation system which can be solved with Cramer’s Rule. This direct

solution is a reliable benchmark for the results from the numerical procedure.

Although the assumptions made to get the square linear system are not in

line with the definition of multilateral resistances, this example might help

to understand the mechanics of solving the equations.

Starting from equation system (6), define the unknown zij = zi · zj and

multiply each summand in the parentheses on the right hand side of (6) with

zi for the case C = 3, to get:

1 = z11b11 + z12b12 + z13b13,

1 = z21b21 + z22b22 + z23b23,

1 = z31b31 + z32b32 + z33b33.

(7)

Assume that bii = 0. Note that this assumption does not adequately reflect

the definition of multilateral resistances, but is necessary to get a symmetric

linear equation system. Following the assumptions of the economic model,

each bii is strict greater than 0 because tii = 1, σ > 1 and 0 < si < 1.

More precisely, this assumption ignores country i itself in the summation of

all countries to compute multilateral resistances as given by equation (2).7

7 Equation (2) becomes:
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Since zij = zji, because 1/(ΠiΠj) = 1/(ΠjΠi), it becomes possible to rewrite

equation system (7) into a square linear equation system:

1 = z12b12 + z13b13 + 0,

1 = z12b21 + 0 + z23b23,

1 = 0 + z13b31 + z23b32,

(8)

or in matrix form:
1

1

1


︸ ︷︷ ︸

1

=


b12 b13 0

b21 0 b23

0 b31 b32


︸ ︷︷ ︸

B

·


z12

z13

z23


︸ ︷︷ ︸

z

. (9)

Using Cramer’s Rule, this square linear equation system can easily be solved

for the three unknowns (z∗12, z
∗
13, z

∗
23):

z∗12 =
1

Π1Π2

=
−b13b23 + b23b31 + b13b32

b12b23b31 + b13b21b32

, (10)

z∗13 =
1

Π1Π3

=
b12b23 − b12b32 + b21b32

b12b23b31 + b13b21b32

, (11)

z∗23 =
1

Π2Π3

=
b13b21 + b12b31 − b21b31

b12b23b31 + b13b21b32

. (12)

From these solutions it is possible to compute the values for the wanted

multilateral resistances. Solving the system zij = 1/(ΠiΠj) for each Πi with

Pi =
(∑

j 6=i

(
tij

Pj

)1−σ
· sj
)1/(1−σ)

instead of
(∑

j

(
tij

Pj

)1−σ
· sj
)1/(1−σ)

.

The general theory-based case of transforming the polynomial equation system into a

linear equation system is presented in appendix B.
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i, j ∈ {1, 2, 3} yields

P1 = Π
1/(1−σ)
1 =

(√
z∗23

z∗12z
∗
13

)1/(1−σ)

, (13)

P2 = Π
1/(1−σ)
2 =

(√
z∗13

z∗12z
∗
23

)1/(1−σ)

, (14)

P3 = Π
1/(1−σ)
3 =

(√
z∗12

z∗13z
∗
23

)1/(1−σ)

. (15)

Note that a real solution for the multilateral resistances can only be obtained,

if there is no negative z∗ij. This condition depends on the values of the bij-

coefficients: tij, sj and σ.8

Now, we consider a numerical example for the three country model. First

we solve the equations using Cramer’s Rule to get a benchmark and then

we apply the numerical algorithm. We use the data for countries 1, 2 and

3 of table 1 as given with an elasticity of substitution σ = 8 and remember

that the impact of a country on its own multilateral resistances is ignored by

assumption (tii = 0) to provide a special case, where a simple solution of the

equation system is possible. Country 1 is the biggest country and has the

lowest trade costs. So we expect a low multilateral resistance. For country

3, the opposite should be the case.

We directly solve the multilateral resistances to obtain a reliable reference.

The values for the coefficients bij = t−7
ij sj can be directly computed from

table 1. Applying equations (10) to (12) yields the solution of the equation

8 All four determinants used for Cramer’s Rule, the main determinant and the three column-

replaced determinants, must be greater than 0, or all of them must be smaller than 0.

10



Country 1 2 3

GDP-share si 0.4% 0.35% 0.25%

Trade Costs tij

1 0 1.2 1.3

2 1.2 0 1.4

3 1.3 1.4 0

Table 1: Assumed data for the numerical example

system (9):

z∗12 = 6.399, (16)

z∗13 = 9.412, (17)

z∗23 = 12.047. (18)

Because no z∗ij is negative, it is possible to find real positive solutions for the

multilateral resistances by applying equations (13) to (15):

P1 = 1.122 (19)

P2 = 1.162 (20)

P3 = 1.228 (21)

Does the algorithm yield the same numbers for multilateral resistances? Un-

der the assumptions and with the numbers of table 1, we can write equation

system (5):

ΠA = 0 + 1
ΠB
· 0.098 + 1

ΠC
· 0.040,

ΠB = 1
ΠA
· 0.112 + 0 + 1

ΠC
· 0.024,

ΠC = 1
ΠA
· 0.064 + 1

ΠB
· 0.033 + 0,

(22)
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Now we choose a common value for all multilateral resistances, P(0) = Π−7
1(0) =

Π−7
2(0) = Π−7

3(0), insert this value for all the Π’s on the right hand side of

equation system (22) to obtain the values for the Π’s on the left hand side,

Π1(1),Π2(1) and Π3(1). In a further round, these values are used on the right

hand side to compute Π1(2),Π2(2),Π3(2) and so on. The results for different

start values P(0) are reported in table 2.

Four important outcomes can immediately be seen from the numbers of this

table. First, where the start value P(0) is 1.15 (third line), differences between

the single rounds of recalculation are relatively small, compared to the other

results. These differences grow both if the value for P(0) shrinks to 1.00 or

raises to 1.50. Second, if starting values are lower than 1.15 (line 1 and

2), results of an odd recalculation round are lower than those of an even

one. If a starting value larger than 1.15 is used (line 4 and 5), the opposite

is the case: the values after e.g. the 99th recalculation are always higher

than the values after 100 recalculations. Third, after many recalculations

the results alternate around singular values of P1, P2 and P3. The value after

97 recalculations is the same as after 99 recalculations, the value after 98 is

the same as after 100 recalculations. And fourth, after a sufficiently high

number of recalculations, the wanted values given by the direct solution of

the equation (19) to (21) lie always between the maximum and minimum

values of the alternating sequences.

Is it possible to find a start value P ∗(0), where no differences between the

single recalculation rounds appear anymore? To face this problem, a kind

of search algorithm is used. Start for example with P(0) = 1.00. The values

after 100 recalculations are larger than those after 99 recalculations. Repeat

the procedure with P(0) = 1.10 and then with P(0) = 1.20. In the latter case,
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the altering sequence changes: values after 100 recalculations are lower than

after 99. Now go down in 0.01 steps until the structure changes at 1.15, go

up in 0.001 steps and stop when the changes between recalculation 99 and

100 are small enough, measured e.g. by the sum of differences between the

values in the two last undertaken recalculation rounds. This procedure leads

to an optimal start value P ∗(0) ≈ 1.158672. The more exact this start value

is chosen, the closer the results of the numerical simulation fit the results of

equations (19) to (21).

Figures 1 and 2 finally illustrate the procedure graphically. Figure 1 starts

with values P(0) < P ∗(0). The amplitude first goes down, then up. Figure

2 with values P(0) < P ∗(0). The amplitude first goes up, then down. In

both cases, more distance to P ∗(0) increases the amplitude between the recal-

culation results (light gray and gray alternating sequences). Choosing the

optimal value P ∗(0) leads to a steady course of the three sequences (black bold

sequence). These sequences with the optimal values converge to the solutions

of the equation system.

3.3 Multilateral Resistances of OECD-countries

The numerical procedure is applied on the data set with 23 OECD Countries.

Because this panel data set comprises data of 11 years, it is necessary to

compute the multilateral resistances separately for each year. That means,

we must separate the data by year and find 11 different start values. The

algorithm to find these start values follows the same idea as described in the

example: start with 1, go up in 1 steps until the amplitude changes, then go
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down in 0.1 steps until the amplitude changes, then go up in 0.01 steps and

so on.9 The start value of the algorithm is 1. The first step size is 1. After

each change of the amplitude, the step size is set on one tenth of the step

size before. The number of recalculations with a certain start value is 100.10

It is necessary to choose a condition when the convergence is sufficient and the

program stops searching the optimal start value. As a measure of sufficiency

I choose the sum of all differences between the last and the penultimate

recalculation round. So we take the differences of all observations between the

100st and 99th recalculation round and sum it up. If this sum is lower than

±10−6 the accuracy of the simulated values is considered to be sufficiently

high. For some years a marginal amplitude remains. In these cases, the

algorithm is stopped when the step size arrives a value of 10−9.

Are these conditions for breaking the algorithm adequate? There are two

important requests on the simulation: (i) the amplitude, meaning the differ-

ence between odd and even recalculation rounds, should be zero and (ii) the

simulation must converge after less than 100 recalculations. Table 3 reports

some descriptive statistics over all 5,566 observations11 of the differences

between the last (100st) and certain recalculation rounds before with the

approximately optimal start value P ∗(0) resulting from the search algorithm

9 This algorithm is surely not the most efficient one. For larger data sets more advanced

programming efforts should be applied to minimize the runtime of the program.

10 To check the robustness of the simulation, the number of recalculations was extended up

to 150. The results remain exactly the same. The results also remain robust if other start

values or step sizes are used.

11 23 countries × 22 trade partners × 11 years = 5,566 observations.
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described above. The summary statistics of these differences between each

single realization of the 100st the 99th recalculation round (∆1 ≡ Pi100−Pi99)

are reported in the first line. If these differences differ from zero or a suf-

ficiently low number, there is still an amplitude and the start value found

by the algorithm is not yet adequate. As can be seen, mean and standard

deviation are not zero. But the values are very low: they become relevant

behind the sixth decimal place. So if these deviations from zero are due

to a remaining amplitude, they are so small that they can be neglected. It

is worthwhile to take a closer look at this amplitude. Table 4 shows that

there are only four values taken by ∆1 over the whole 5,566 observations:

−2.38 · 10−7, −1.19 · 10−7, 0 and +1.19 · 10−7. 63% of the obeservations take

exactly the value 0, the relativly “large” amplitude of −2.38·10−7 affects only

4% of the observations. Because −2.38 · 10−7 is two times −1.19 · 10−7 which

is the negative value of +1.19 · 10−7, it is not unlikely that this bias results

from a computational problem like a systematic rounding error caused by the

used software. The second line of table 3 shows that over the last 9 recalcu-

lation rounds these differences are the same. This means that the amplitude

is constant at least over the last 9 relacalculation rounds. Analyzing the am-

plitude yields the same results as described in table 4. The two last lines of

table 3 show that there is no change reported for the 5,566 realizations of the

multilateral resistances over the last 2 and the last 10 recalculation rounds:

∆2 and ∆10 are exactly reported as zero. This implies that the values have

(i) a sufficiently low amplitude and that (ii) the values have attained their

full convergence after less than 90 rounds of recalculation.

Table 5 describes the derived multilateral resistance data for the 23 countries

of the data set, comprised over the eleven years of observation. The country

15



with the lowest multilateral resistances is Canada. This result does not sur-

prise, because trade costs between Canada and the United States are very

low. The United States is the biggest economy in the set which guarantees for

a high weight (sj around 40%) in the summation. They have relatively high

multilateral resistances. From the definition of multilateral resistances given

by equation (2) or (3) it becomes obvious that multilateral resistances of a

country must be low, if this country has extremely low trade costs with an

extremely large country that has high multilateral resistances. Further coun-

tries with low multilateral resistances are the Netherlands, Germany, Ireland

and the United Kingdom. Countries with high multilateral resistances are

the mediterrian countries Greece, Portugal and Turkey, as well as the former

Eastern Block countries Poland and Hungary. Note that Poland, Turkey

and especially Hungary were able to decrease their multilateral resistances

over the period from 1995 to 2005, while the level of Greece did not change

over this time and Portugal even raised its multilateral resistances. Another

country with increasing multilateral resistances is the United States which

might be caused by the terrorist attacks of September 11th 2001. Figures

3 to 5 show the development of the multilateral resistances of some OECD

countries over the time period from 1995 to 2005.

4 Estimation of the Theory Based Gravity

Equation

The availability of data for average trade costs (tij) and multilateral resis-

tances (Pi and Pj) makes it possible to estimate a log-linear form of the
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theory-based gravity equation (1). Since there is evidence that per Dollar

trade costs are endogenously affected by policy variables as well as natural

trade cost barriers, and that they are reversely connected to bilateral export

volumes due to economies of scale in the trade sector, direct estimates of

equation (1) would be biased (see Rudolph, 2009a,b).

4.1 Econometric Model and Data

The standard approach of estimating the gravity equation is:

expij = π0 + π1gdpi + π2gdpj + π3pi + π4pj +
20∑
k=5

πkw
k
ij + εijt, (23)

where expij is the log of bilateral exports, gdpi and gdpj are the logs of the

exporting and importing country’s GDP. The exporting country is always

denoted by i, the importing country by j. Data source for exports and the

GDPs is the OECD Structural Analysis Data Base (OECD STAN). The

logs of the exporting or importing country’s multilateral resistances, as they

are computed in section 3, are denoted by pi and pj. These values result

from the calculations presented in the previous sections. The vector wkij

concludes the following trade cost proxies: freedom of trade index by the Bell

Foundation (trfi and trfj), geographic distance between the trading countries

in logs (dist), exchange rate volatility in logs (exvol), dummies for common

language (lang), common border (bor), EU membership of the exporting or

importing country (eui and euj), continental location without access to the

sea (landli and landlj), location on an island (isli and islj), membership in

the commonwealth of nations (cwni and cwnj) and former eastern block (ebli

and eblj).
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The data set includes 23 OECD countries over the period from 1995 to 2005.

Estimating this panel data set requires certain techniques to control for the

effects of the countries and the years. Therefore, three specifications will

be reported: (i) a pooled regression, where the panel data properties are

ignored, (ii) a least square dummy variable (LSDV) model with 23 dummies

for the exporting countries plus 23 dummies for the importing countries plus

11 dummies for the years (following e.g. Mátyás, 1997; Anderson and van

Wincoop, 2003), and (iii) a LSDV model with 23 × 22 = 506 country pair

dummies plus 11 year dummies (see Cheng and Wall, 1999; Baltagi, Egger,

and Pfaffermayr, 2003, for a discussion of the adequate panel specification of

gravity equations).

Since we have constructed data for bilateral trade costs and multilateral resis-

tances, the estimation of the standard gravity specification is not adequately

based on the theory of Anderson and van Wincoop (2003). One problem of

estimating the theory-based gravity equation (1) directly is that trade costs

are exogenous. Changes in policy variables like freedom of trade or member-

ship in a group of countries like the EU do not affect export levels between

two countries directly. But they affect trade costs between the two countries

directly and changes of those bilateral trade costs affect bilateral trade vol-

umes. Ignoring this endogeneity of trade costs may lead to biased estimates.

Following Rudolph (2009b) I also estimate the simultaneous equation model:

expij = α0 + α1gdpi + α2gdpj + α3tij + α4pi + α5pj + uijt, (24)

tij = b0 + b1expij + b2pi + b3pj +
19∑
k=4

bkw
k
ij + vijt, (25)

with the trade cost index tij introduced in 2. To study the impact of intro-

ducing the multilateral resistances into the equation system, I first estimate
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both equations (24) and (25) without multilateral resistances, second only

equation (24) with multilateral resistances12 and third both equations with

multilateral resistances.

4.2 Empirical Results

Table 6 presents the results of estimating the standard gravity equation (23).

The first two columns show the pooled regression that ignores the presence

of panel data, columns (3) and (4) the country-year fixed effects model and

columns (5) and (6) the country-pair-year fixed effects model. Columns (1),

(3) and (5) display the reference case, where the effect of the multilateral

resistances is assumed to be zero (or assumed to be completely captured by

the fixed effects, respectively). In the results of columns (2), (4) and (6) the

effects of the computed multilateral resistances are contained. An analysis

of the residuals shows that in the case of the country-pair-year fixed effects

model the residuals are closer to zero and that they are distributed indepen-

dently from the endogenous variable expij in comparison to the other speci-

fications (figures 6 and 7). This indicates that the model with the country-

pair-year fixed effects has the best properties to fit the model. The estimated

coefficients of the multilateral resistances affect the exports negatively. Es-

pecially the coefficient of the exporting country’s multilateral resistances has

a high effect on trade flows. Note that the negative sign of these effects is

not in line with the theory of Anderson and van Wincoop (2003), described

in section 1. Controlling for the multilateral resistance index lowers the es-

12 In the theory proposed by Anderson and van Wincoop (2003), multilateral resistances only

enter the gravity equation but not the trade cost equation.
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timated effects of the other exogenous variables, as can be seen immediately

from the comparison of the results in columns (5) and (6).

Again, note that the standard gravity model does not exactly reflect the

theory presented above, since constructed data for bilateral trade costs and

multilateral resistances is available. Table 7 shows the results of the theory-

based simultaneous equation model with country-pair-year fixed effects using

a 2SLS estimator.13 As a reference case, column (1) displays the results with-

out multilateral resistances. In column (2) it is assumed that multilateral

resistances affect the gravity equation (24), but not the trade cost equa-

tion (25). In column (3), it is additionally assumed that bilateral trade costs

depend on multilateral resistances. Multilateral resistances have a highly sig-

nificant effect on both exports and trade costs. Comparing columns (1), (2)

and (3) shows that introducing multilateral resistances lowers the estimated

coefficients in both simultaneous equations.

Note that the multilateral resistances of the importing country (pj) foster

trade while the multilateral resistances of the exporting country (pi) enhance

trade in this specification (upper part of table 7). Because the theory of An-

derson and van Wincoop (2003) postulates that the effect of trade costs tij

on exports must be seen in relation to multilateral resistances pi and pj, we

would expect a positive sign for both coefficients and not only for the import

country coefficient. To adjust the empirical model to the theory of equation

13 Using a 3SLS estimator for the country-pair-year fixed effects specification with its 517

dummy variables was not feasible. Table 7 only presents the results of a country-pair-year

fixed effects estimation because this specification has the best fit of the model compared

to pooled regression and country-year fixed effects. The results of the other specifications

are available on request.
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(1), I comprise pi and pj to pp = pi · pj. The results of this restricted model

are shown in columns (4) and (5). Here, the coefficient of the multilateral

resistances’ product has a highly significant impact on both, the exports via

the gravity equation and the trade costs via the trade cost function. If the

product of multilateral resistances (the trade barriers of two certain coun-

tries to all countries) increases and everything else (explicitly the trade costs

between the two countries) is kept constant, exports between these two cer-

tain countries increase, because it becomes relatively more expensive for both

countries to trade with the rest of the world than with each other. This is

exactly the logic of the multilateral resistances introduced by Anderson and

van Wincoop (2003). On the side of the trade costs, we find that there is a

positive relationship between trade costs to all countries and trade costs to

another country. If the product of two countries’ multilateral resistances is

high, this is positively correlated with the “bilateral resistances” meaning the

bilateral trade costs of these two countries. The coefficients of the remain-

ing exogenous variables do hardly differ from the model with unrestricted

multilateral resistances. Controlling directly for comprehensive trade costs

and multilateral resistances clearly reduces the estimated effects of the other

exogenous variables in the model.

5 Conclusion

In their theoretical foundation of the gravity equation, Anderson and van

Wincoop (2003) found that trade costs in gravity equations must be seen

relatively to the trading countries multilateral resistances that reflect the

countries’ trade barriers to all other countries in the model. Neglecting this
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issue leads normally to (normally upward) biased estimates. It became com-

monplace in the empirical literature applying the gravity equation to control

for multilateral resistances by country or country-pair dummies.

This paper shows a way to quantify multilateral resistances. With an index

for comprehensive bilateral trade costs, proposed by Novy (2007), it becomes

possible to solve the equation system that defines multilateral resistances.

Since a direct solution is not possible or feasible, respectively, a numerical

procedure has been developed to compute multilateral resistances. The idea

of this procedure is to find an optimal common start value for all countries’

multilateral resistances, so that the equation system converges after repeated

recalculations. The procedure works with OECD data. For all 11 calculations

(for 11 years) the equation systems converge. The calculated values of the

multilateral resistances are plausible.

Values for trade costs and multilateral resistances make it possible to es-

timate the theory-based gravity equation by Anderson and van Wincoop

(2003) directly. Since trade costs should be endogenous and also depend

on the bilateral exports they explain, the estimation should be done with

a simultaneous equation model. The results of this estimation show that

the computed multilateral resistances have a significant influence on both,

bilateral exports and bilateral trade costs. It also appears that multilat-

eral resistances clearly reduce the estimated effects of the other exogenous

variables in the model.
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A Construction of the Trade Cost Index –

Details

The trade volume inside a country (Xii and Xjj), or the domestic trade, can

be interpreted as the country’s production minus the sum of the exports into

all countries. Since export data is measured in gross shipments while GDP

data is based on value added and, additionally, contains services that are not

considered in the export data, GDP is not suitable to calculate this index.

Instead, following Wei (1996) and Novy (2007), production data for goods ex-

tracted from the OECD STAN Database is used and converted in US Dollars

using the OECD Financial Indicators annual exchange rates. Unfortunately,

production data is not available for some countries. Furthermore, Turkey is

not considered in this data set at all. Therefore, missing values of production

were constructed over the following three steps.

In a first step, I assume that in countries with higher productivity (measured

by per-capita-income, source: World Development Indicators, WDI, 2008)

the relation value added to production is higher. So, I calculate the elasticity

of the value added/production-ratio with respect to per-capita-income using

ordinary least squares. In a second step, I compute the missing data points

from the estimated values of this regression if there is no data for production,

but data for value added in the OECD data.

There are still many missing data points and Turkey is still omitted from

the data. So, in a third step, I take the value added data from the World

Development Indicators 2008 and, using an adjusted regression (intercept =

0) between OECD and WDI data, I find that OECD data systematically is
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95% of the WDI values. Consequently, I multiply WDI data for value added

by factor 0.95 and pursue the same procedure as in the first and the second

step to compute missing production estimates for the case that there is no

value added data available in the OECD STAN database, but in the WDI

database.

Another crucial issue is the elasticity of substitution between the countries’

composite goods, σ. In a survey of the empirical literature, Anderson and

van Wincoop (2004) find that this elasticity takes values between 5 and 10.

Thus, following Novy (2007), the elasticity of substitution is set σ = 8.14

With the data and the assumption about σ, the logs of trade cost index, tij,

can be computed.

14 A sensitivity analysis with σ = 5 and σ = 10 leads to exactly the same results.
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B Multilateral Resistances as a linear equa-

tion system

In a set of many countries (1, . . . , i, j, . . . , C), the linearized equation system

in analogy to (6) becomes the following structure:

1 = B · z

with the left hand side vector of dimension C × 1

1> =
(
11, . . . , 1C

)
,

the vector of the unknowns zij = 1/(ΠiΠj) of dimension C·(C+1)
2
× 1

z> = (z11, z12, . . . , z1C , z22, . . . , z2C , z33, . . . , zCC) ,

and the coefficient matrix of the dimension C × C·(C+1)
2

:

B =


b11 b12 · · · b1C

b21 b22 · · · b2C

. . . . . . b33 · · ·

bC1 bC2
. . . · · · bCC

 .

This linear equation system consists of more unknowns than equations since

C·(C+1)
2

> C. Thus, this equation system is underdetermined and an un-

derdetermined linear equation system has usually infinitely many solutions.

Therefore, it is not tractable to pursue the linearization of the polynomial

equation system (6).
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C Numerical Results of the Three-Country-

Example
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Figure 1: Simulation Results for the three countries’ multilateral resistances,

upward approximation: P(0) = 1.125 (light gray, large amplitude), P(0) = 1.15

(gray, small amplitude), P(0) = P ∗(0) = 1.158672 (black, steady course).
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Figure 2: Simulation Results for the three countries’ multilateral resistances,

downward approximation: P(0) = 1.175 (light gray, large amplitude), P(0) =

1.165 (gray, small amplitude), P(0) = P ∗(0) = 1.158672 (black, steady course).
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D Numerical Results with data of 23 OECD-

countries

Difference Mean Std. Dev. Min. Max.
∆1 = Pi100 − Pi99 −4.19 · 10−8 7.33 · 10−8 −2.38 · 10−7 1.19 · 10−7

∆1 = Pi100 − Pi99 −4.19 · 10−8 7.33 · 10−8 −2.38 · 10−7 1.19 · 10−7

∆2 = Pi100 − Pi98 0 0 0 0
∆10 = Pi100 − Pi90 0 0 0 0

Table 3: Amplitude and convergence of the simulation.

Value Frequency Percentage Cumulation
−2.38 · 10−7 242 4.35 4.35
−1.19 · 10−7 1,650 29.64 33.99

0 3,498 62.85 96.84
1.19 · 10−7 176 3.16 100.00

Total 5,566 100.00

Table 4: Descriptive statistics of ∆1 = Pi100 − Pi99.
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Country Min. Mean Max. Std. Dev.
Australia 1.444 1.483 1.519 0.022
Austria 1.371 1.399 1.424 0.017
Canada 1.002 1.041 1.123 0.035
Denmark 1.402 1.424 1.437 0.012
Finland 1.487 1.495 1.516 0.008
France 1.287 1.308 1.342 0.017
Germany 1.209 1.244 1.292 0.027
Greece 1.660 1.679 1.703 0.013
Hungary 1.451 1.510 1.632 0.061
Ireland 1.222 1.276 1.377 0.051
Italy 1.358 1.370 1.386 0.008
Japan 1.322 1.361 1.442 0.033
Korea 1.314 1.345 1.398 0.026
Netherlands 1.151 1.206 1.244 0.028
Norway 1.434 1.448 1.469 0.011
Poland 1.500 1.579 1.640 0.043
Portugal 1.623 1.637 1.651 0.008
Spain 1.418 1.442 1.479 0.018
Sweden 1.337 1.356 1.386 0.016
Switzerland 1.332 1.356 1.389 0.016
Turkey 1.551 1.613 1.703 0.047
United Kingdom 1.241 1.269 1.313 0.020
United States 1.442 1.506 1.542 0.028
Total 1.002 1.406 1.703 0.150

Table 5: Summary statistics of the multilateral resistances by country, over
11 years.
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Figure 3: Countries with low Multilateral Resistances 1995 to 2005.
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Figure 4: Countries with high Multilateral Resistances 1995 to 2005.
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Figure 5: Multilateral Resistances of Australia, Japan, Korea, and the U.S.,
1995 to 2005.

E Estimation Results
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Figure 6: Basic Case – Residuals of the three panel specifications (without
multilateral resistances)

Figure 7: Basic Case – Residuals of the three panel specifications (with
multilateral resistances)
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(1) (2) (3) (4) (5) (6)
gdpi 0.864 0.789 0.368 0.288 0.310 0.233

(0.010)*** (0.010)*** (0.092)*** (0.094)*** (0.031)*** (0.030)***

gdpj 0.818 0.817 0.840 0.808 0.698 0.672
(0.010)*** (0.010)*** (0.106)*** (0.107)*** (0.031)*** (0.030)***

trfi -0.734 -0.816 0.765 0.798 0.915 0.651
(0.223)*** (0.211)*** (0.218)*** (0.216)*** (0.075)*** (0.073)***

trfj -0.378 -0.511 -0.020 -0.004 0.214 -0.065
(0.211)* (0.196)*** (0.197) (0.198) (0.075)*** (0.073)

dist -0.909 -0.875 -1.100 -1.101 – –
(0.015)*** (0.015)*** (0.024)*** (0.024)*** – –

lang 0.500 0.452 0.419 0.414 – –
(0.045)*** (0.050)*** (0.041)*** (0.041)*** – –

bor 0.322 0.341 0.115 0.116 – –
(0.047)*** (0.046)*** (0.042)*** (0.042)*** – –

exvol -0.037 -0.025 -0.014 -0.014 -0.019 -0.006
(0.010)*** (0.008)*** (0.007)** (0.007)** (0.004)*** (0.004)

eui 0.088 0.022 0.569 0.397 0.541 0.398
(0.028)*** (0.027) (0.079)*** (0.081)*** (0.028)*** (0.027)***

euj 0.066 0.113 0.084 0.032 0.072 0.063
(0.028)** (0.028)*** (0.075) (0.077) (0.028)** (0.027)**

landli 0.109 -0.031 -2.511 -1.282 – –
(0.034)*** (0.033) (0.299)*** (0.333)*** – –

landlj 0.194 0.169 0.712 0.229 – –
(0.036)*** (0.034)*** (0.190)*** (0.291) – –

isli 0.405 0.514 -0.013 1.147 – –
(0.031)*** (0.033)*** (0.109) (0.194)*** – –

islj 0.018 0.006 -0.082 0.257 – –
(0.039) (0.038) (0.117) (0.193) – –

cwni -0.389 -0.820 -1.464 -1.698 – –
(0.036)*** (0.044)*** (0.146)*** (0.150)*** – –

cwnj 0.282 0.281 -0.024 0.038 – –
(0.043)*** (0.045)*** (0.289) (0.290) – –

ebli -0.503 -0.327 -2.701 -1.045 – –
(0.055)*** (0.054)*** (0.284)*** (0.350)*** – –

eblj -0.152 -0.163 0.426 0.451 – –
(0.054)*** (0.051)*** (0.156)*** (0.154)*** – –

pi – -2.853 – -4.668 – -4.296
– (0.132)*** – (0.627)*** – (0.212)***

pj – 0.014 – -1.358 – -0.604
– (0.123) – (0.595)** – (0.220)***

Const. -12.435 -8.738 -5.274 -1.554 -11.407 -4.550
(1.214)*** (1.158)*** (3.902) (3.961) (0.631)*** (0.703)***

Obs. 4782 4782 4782 4782 4782 4782
R2 0.81 0.83 0.89 0.90 0.98 0.98
Robust standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 6: Basic Case – Estimates of the Standard Gravity Specification.
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(1) (2) (3) (4) (5)
gdpi 0.344 0.284 0.284 0.351 0.351

(0.022)*** (0.020)*** (0.020)*** (0.021)*** (0.021)***

gdpj 0.465 0.566 0.566 0.482 0.482
(0.022)*** (0.020)*** (0.020)*** (0.021)*** (0.021)***

tij -5.982 -7.293 -7.293 -7.219 -7.219
(0.208)*** (0.383)*** (0.383)*** (0.402)*** (0.402)***

pi – -0.929 -0.929 – –
– (0.271)*** (0.271)*** – –

pj – 3.972 3.972 – –
– (0.280)*** (0.280)*** – –

pp – – – 1.402 1.402
– – – (0.262)*** (0.262)***

Const. 3.741 2.590 2.590 3.123 3.123
(0.713)*** (0.591)*** (0.591)*** (0.620)*** (0.620)***

expij -0.032 -0.059 -0.008 -0.062 -0.009
(0.002)*** (0.002)*** (0.003)*** (0.002)*** (0.003)***

trfi -0.084 -0.042 -0.049 -0.037 -0.048
(0.008)*** (0.007)*** (0.008)*** (0.007)*** (0.008)***

trfj -0.101 -0.073 -0.052 -0.070 -0.052
(0.008)*** (0.007)*** (0.008)*** (0.007)*** (0.008)***

exvol 0.003 0.002 0.001 0.002 0.001
(0.000)*** (0.000)*** (0.000)** (0.000)*** (0.000)**

eui -0.028 -0.005 -0.025 -0.002 -0.024
(0.003)*** (0.003)* (0.003)*** (0.003) (0.003)***

euj -0.041 -0.029 -0.027 -0.028 -0.028
(0.003)*** (0.002)*** (0.003)*** (0.002)*** (0.003)***

pi – – 0.497 – –
– – (0.026)*** – –

pj – – 0.543 – –
– – (0.024)*** – –

pp – – – – 0.518
– – – – (0.016)***

Const. 2.283 2.522 1.045 2.549 1.052
(0.046)*** (0.040)*** (0.065)*** (0.040)*** (0.065)***

Obs. 4782 4782 4782 4782 4782
Standard errors in parentheses
* significant at 10%; ** significant at 5%; *** significant at 1%

Table 7: Simultaneous Equation Model – Country-pair-year fixed effects.
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