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Abstract

The adaptation of Hansen (1982) generalized method of moments (GMM) by Feen-

stra (1994b) is widely implemented in international trade to estimate elasticities of

substitution in the presence of a complicated simultaneous equations problem without

exogenous regressors. Asymptotically, the proposed estimator is both consistent and

efficient. Consistency relies heavily on the panel nature of the data that are gener-

ally used in estimation and the assurance that time approaches infinity. Staiger and

Stock (1997) and Hallett and Ma (1993) levy critiques of biases in the presence of weak

instruments and small sample biases in GMM. Each critique may apply to Feenstra

(1994b)’s estimator. To address possible inefficiencies of the proposed estimator, I cre-

ate a monte carlo experiment which; 1) examines the asymptotic volatility and small

sample biases along both time and product dimensions, 2) investigates the inclusion of

measurement error and its effect on small sample biases, and 3) discusses the affect of

the constrained GMM estimation by Broda and Weinstein (2006). I observe that the

consistency of the estimator is suspect for low numbers of time periods, but the struc-

tural form of the elasticity of substitution derived from the constructed parameters

drastically mitigates small sample biases observed in the coefficient estimates.

∗I wish to thank Ankur Patel for immeasurable help with this project, and Robert Feenstra for his
guidance. Any remaining errors or omissions are our own. Email: asoderbe@ucdavis.edu.
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1. Introduction

In the 15 years since Feenstra (1994b) developed a method to quantify the gains or

losses to consumers facing an ever changing set of varieties, much attention has been given

to implementing his strategy to evaluate the gains predicted by a host of theory including

Krugman (1979) and Melitz (2003) from opening international trade. As standard in new

trade theory, Feenstra begins with a representative consumer’s utility function that is CES

in its preferences. Using this assumption he derives an exact price index, which takes into

account changing variety sets over time. His derivation demonstrates the importance of

consistently estimating a demand side elasticity of substitution across varieties, and proposes

an estimation technique that he proves is both asymptotically consistent and efficient. The

estimator corresponds to Hansen (1982) generalized method of moments (GMM), which

proposed well defined identification conditions for consistency that Feenstra (1994b) utilizes

in an instrumental variables (IV) framework.

The basis of my study lies in the relatively small estimated F-statistics produced us-

ing Feenstra (1994b)’s original data (see Table 1). The classic IV problem addressed by

these estimates seems to suffer from weakly correlated instruments in the first stage regres-

sions. Staiger and Stock (1997) generates a host of results showing the detrimental effect of

weak instruments on the ultimate estimation of parameters of interest using two-stage least

squares (TSLS).1 Their observation warrants further analysis of the fundamental structure

of estimation used by Feenstra (1994b) and whether or not the imposition of a well defined

structural model will mitigate some of the biases documented by Staiger and Stock (1997).

Broda and Weinstein (2006) advance the estimation procedure by developing a con-

strained GMM estimation technique when the structural parameters cannot be calculated

with estimates of the constructed parameters. This frequently used addition brings the sim-

ulations of Hallett and Ma (1993) to the forefront. Hallett and Ma (1993) constructs various

monte carlo studies examining inefficiencies in standard algorithms used to evaluate GMM

1The literature addressing weak instruments is vast. An excellent heuristic work is Hahn, Hausman and
Kuersteiner (2004), but I focus mainly on Stock and Yogo (2005) which refines tests for weak instruments.
I discuss and investigate the existence of weak instruments in detail in Section 5.
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problems. The grid search method developed by Broda and Weinstein (2006) is less com-

putationally intensive (and conceivably less pervaded by inefficiencies) than the algorithms

examined by Hallett and Ma (1993). Even though the methodology used allows for the eval-

uation of each GMM value in a specified range rather than relying on an algorithm choosing

the direction of evaluation, Hallett and Ma (1993)’s findings give added support of a study

addressing the possibility of subtle biases that may exist.

A concern when using trade data is the necessary use of unit values in place of actual

prices. It has been demonstrated that unit values are rife with measurement error. Feenstra

(1994b) adapts his estimator further to allow for classical measurement error. In more

recent work, Broda and Weinstein (2006) extend the estimator to allow for more general

forms of measurement error. I will investigate whether, the presence of measurement error

substantially slows down the asymptotics of the estimator and which of the two procedures

generate the most palatable results.

Recreating the estimation procedure along with data satisfying the assumptions laid

forth in Feenstra (1994a), I construct a monte carlo experiment examining the asymptotic

properties of the resulting parameter estimates. I find that the estimates of the parameters

used to calculate the elasticity of substitution suffer from small sample biases of up to

125%, and seem to converge relatively slowly. However, the calculations of the elasticity

of substitution drastically mitigate the biases of the constructed parameters. At most I

observe a bias of around 10%, and a rapid convergence rate. Since modern international

trade data are limited by the adoption of the Harmonized System which frequently restricts

samples to 1990 and onward, these results are encouraging for those concerned foremost with

obtaining estimates of σ. My results, on the other hand, are worrisome for practitioners

interested in estimating supply side elasticities.2 The structural form of the variable does

not seem to alleviate the biases or slow convergence rate observed in simulated estimates

of the constructed parameters. Finally, I show that the biases observed are likely a result

of weak instruments in small samples, and that the estimates of elasticities of supply are

2For example, Broda et al. (2006) which relies on estimates of import supply elasticities to investigate if
countries set higher tariffs on more inelastically supplied goods.
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considerably improved by implementing a modified limited information maximum likelihood

technique.

The paper proceeds as follows. The subsequent section thoroughly discusses the theory

behind the construction of the estimating equation, and the Assumptions required for con-

sistency. Section 3 details the data generating process I use and how it compares to some

actual data. Section 4.1 discusses my initial simulation results, which are expanded upon in

4.2 to allow measurement error. I then examine the consistency of my results across vari-

ous parameterizations of the data and implement a modified limited information maximum

likelihood estimation as robustness checks in Section 5. Section 6 concludes.

2. Supply, Demand, and Estimation

The standard in new trade theory is to assume consumers follow a CES demand system

that can be characterized by a representative consumer, à la Krugman (1979). Feenstra

(1994a) adheres to this assumption, and specifies,

U(xit) =

(∑
i∈It

(bitxit)
σ−1
σ

) σ
1−σ

. (1)

The elasticity of substitution is denoted by σ, which is assumed to be larger than 1 . The

set of varieties available in time t are denoted by It ⊂ {1, ...., N}, and xit are the aggregate

quantities of each of these varieties i consumed in period t. The value of consumption is

scaled by a taste parameter bit, which is allowed to be random. The resulting demand

equation is,

sit ≡
pitxit∑
i∈It pitxit

=
bσ−1
it p1−σ

it∑
i∈It b

σ−1
it p1−σ

it

= bσ−1
it p1−σ

it c(pt, It, bt)
σ−1,

which is coupled with the supply equation from Monopolistically Competitive exporters,

pit =

(
σ

σ − 1

)
exp(νit) x

ω
it.

4



Market shares and prices of imports are denoted by sit and pit, respectively . The import

supply elasticity is given by ω ≥ 0, and νit embodies a random technology factor assumed

independent of bit.

Taking logs and first differences of the market equations yields,

∆lnsit = φt − (σ − 1)∆lnpit + (σ − 1)εit and,

∆lnpit = ψt − ρεit + δit where, ρ ≡ ω(σ − 1)

1− ωσ
∈
[
0 ,

σ − 1

σ

)
.

There is an intuitive correlation between price and market share fluctuations. Various sources

of randomness become apparent in the equilibrium equations above. The intercepts,

φt = (σ − 1) ln

[
c(pt, It, bt)

c(pt−1, It−1, bt−1)

]

ψt = ω

(
φt + ∆ln

(∑
i∈It pitxit

)
1 + ωσ

)

are time specific random effects that capture changes in consumers’ tastes embodied by the

vector bt. Changes in consumers’ tastes are assumed to be random, and are allowed to

change over time. The error term from the demand equation is driven by the random taste

parameter such that,

εit = ln

(
bit
bit−1

)
which satisfies,

Assumption 1.

• E[εit] = 0,

• εit ⊥ εjs ∀ t ∈ Ωi, s ∈ Ωj, i 6= j,

• εit is stationary with variance σ2
ε,i and plim

Ti→∞

1
Ti

∑
t∈Ωi

ε2it = σ2
ε,i.

Similarly, the supply error is driven by random technology shocks such that,

δit =
νt − νt−1

1 + ωσ
which satisfies,

Assumption 2.
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• E[δit] = 0,

• δit ⊥ δjs ∀ t ∈ Ωi, s ∈ Ωj, i 6= j,

• δit is stationary with variance σ2
δ,i and plim

Ti→∞

1
Ti

∑
t∈Ωi

δ2
it = σ2

δ,i,

• δit ⊥ εjt ∀ t ∈ Ωi, s ∈ Ωj, and plim
T→∞

1
T

∑
t∈Ωi∩Ωj

δitεjt = 0.

Each error varies across time and product space, yet are crucially assumed to be in-

dependently determined. Utilizing Assumptions 1 and 2, Feenstra (1994a) eliminates the

time specific random elements by choosing a reference good k, and differencing across all

equations i 6= k over each time period. This results in the system of equations,

∆klnpit≡ ∆lnpit −∆lnpkt = −ρ εkit + δkit

∆klnsit≡ ∆lnsit −∆lnskt = −(σ − 1)∆klnpit + (σ − 1)εkit (2)

= (σ − 1)(1− ρ)εkit + (σ − 1)δkit.

Fluctuations of differenced prices and shares are driven solely by the demand and supply

errors for each good-time pair. Intuitively, elasticity scaled taste and technology shocks drive

fluctuations in market outcomes between variants.

Relying on the assumption of independence between the errors, one can multiply the

equations for the differenced errors together. Dividing by (1 − ρ) yields the tractable esti-

mating equation,
Yit = θ1X1it + θ2X2it + uit where, (3)

uit =
εkitδ

k
it

(1− ρ)
, Yit ≡(∆klnpit)

2,

X1it≡(∆klnsit)
2, and X2it ≡(∆klnsit)(∆

klnpit).

Correlation between the regressors and the error term is obvious, as uit consists of the error

terms of the variables used to construct the regressors. An interesting feature of estimating

this type of supply and demand system, is that there are no exogenous regressors in the

theory or estimating equation. Feenstra (1994b) demonstrated that by taking advantage of

the panel nature of the data, one can use an IV regression with product indicators as the
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instruments3 to get consistent estimates of,

θ1 =
ρ

(1− ρ)(σ − 1)2
and, θ2 =

2ρ− 1

(1− ρ)(σ − 1)
.

The estimation procedure notably corresponds to Hansen (1982)’s method of moments

where the moment condition, E[uit] = 0, is approximated by choosing the parameters which

minimize the weighted sum of squares residuals. Consistency relies on T → ∞, and the

assurance that the vectors X̄1i and X̄2i are not asymptotically proportional. Explicitly,

Feenstra (1994b) specified that the variances of the errors must satisfy,

Assumption 3.

•
σ2
ε,i + σ2

ε,k

σ2
ε,j + σ2

ε,k

6=
σ2
δ,i + σ2

δ,k

σ2
δ,j + σ2

δ,k

, for some countries i 6= k and j 6= k.

Using the consistent estimates of θ1 and θ2 I can calculate,

ρ̂ =
1

2
+

1

4
− 1

4 +
θ̂22
θ̂1

 1
2

for θ̂1, θ̂2 > 0, or

ρ̂ =
1

2
−

1

4
− 1

4 +
θ̂22
θ̂1

 1
2

for θ̂1 > 0 and θ̂2 < 0,

resulting in, σ̂ = 1 +

(
2ρ̂− 1

1− ρ̂

)
1

θ̂2

, (4)

which are consistent estimates of the underlying parameters σ and ρ. To correct for assumed

heteroskedasticity I run a two-step IV procedure, where the first step is the IV process

outlined above. Then using the estimated residuals, ûit, I weight Equation 3 by 1
ŝi

where, ŝ2
i =∑

t
û2
it

Ti
. One of the contributions by Broda and Weinstein (2006) was to expand the estimator

to handle scenarios where Equation 4 does not yield economically feasible estimates, or

cannot be evaluated with θ1 and θ2. A grid search over the set of economically feasible

3The IV estimation is equivalent to estimating Ȳi = θ1X̄1i + θ2X̄2i + ūi with WLS, which Feenstra
(1994b) demonstrates is consistently estimated with the proper weighting scheme.

7



values of σ and ρ to minimize the GMM objective function implied by the IV estimation is

proposed. Explicitly, values for σ̂ and ρ̂ are chosen at equally spaced intervals to minimize

G∗(ρ, σ)′WG∗(ρ, σ), where G∗(ρ, σ) is the sample analog of the moment condition, G(ρ, σ) =

Et[uit] = 0, ∀ i, and W are the optimal weights.

2.1. Controlling for Measurement Error

In practice the econometrician observes unit values, rather than actual prices in trade

data, which are expected to contain Measurement Error (measurement error). The result is

that standard estimates are no longer consistent. However, by assuming measurement error

is stationary with equal variance across products the estimation technique can be corrected

quite simply. Suppose log change unit values are given by,

∆lnUVit = ∆lnpit + µit differencing from the reference good, yields

∆klnUVit = ∆klnpit + µkit which by Equation 2, (5)

= −ρ εkit + δkit + µkit where µit satisfies,

Assumption 4.

• µit is stationary measurement error with equal variance, σ2
µ, across all products i =

1, . . . , N ,

• µit ⊥ δit and εit ∀ t ∈ Ωi.

We can readily see the consequences. measurement error adds another random element to

observed prices, and naturally increases the dispersion of price data. Applying Assumption

4, I can rewrite Equation 3 as(
∆klnUVit)

2 = 2σ2
µ + θ1

(
∆klnsit)

2 + θ2

(
∆klnsit)

(
∆klnUVit) + vit, where

vit = uit +
[(
µkit)

2 − 2σ2
µ

]
+ 2

(
∆klnpit)

(
µkit)

− θ2

(
∆klnsit)

(
µkit).

Replacing prices with unit values containing this simple form of measurement error, results

in a system of similar form to that seen in Equation 3. By applying the same regularity

conditions as before, simply including a constant in the estimation procedure will yield

consistent and efficient estimates of the constructed parameters.
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3. Data Generating Process

I first choose values of the parameters for the underlying elasticities, σ and ω,4 then I

generate data that satisfy Equations 2 and 3 and fulfill Assumptions 1 through 3. I draw

variances for εit and δit uniquely for i = 1, . . . , N from a Uniform distribution with large

enough support to ensure heteroskedasticity. I scale down the chosen variance, then draw

values across time such that5

εit ∼ N [0, σ2
ε,i] where, σ2

ε,i ∈ (0, 9) ,

δit ∼ N [0, σ2
δ,i] where, σ2

δ,i ∈ (0, 9) .

Choosing a reference product k, I can difference the errors, substitute them into Equation 2,

and produce Equation 3. Finally, I randomly eliminate observations to generate a pseudo-

unbalanced panel.6

These variances seem arbitrary (and extreme) at first glance, but my choice of parameter

values make for a relatively clean comparison between my generated data and certain prod-

ucts used by Feenstra (1994b). Using the data originally employed by Feenstra (1994b),7

Table 1 reproduces estimates for most of the differentiated products examined in Table 1 of

Feenstra (1994b). Steel Bars and Typewriters produce similar parameter estimates to those

of my generated data. The key difference between the two goods is the presence of measure-

ment error. Steel Bars estimate a precise zero for θ0, which suggests measurement error is

4I arbitrarily fix σ = 3 and ω = .5, which imply ρ = .4. These values appear to be inconsequential for
generating my results (I present evidence in Section 5), thus I choose values similar to previous estimates
using actual data.

5Specifically, I make draws of variances from a Uniform∈[0,100] distribution, and scale down these
possible variances by a factor of 0.03. I have explored many combinations of variance intervals for εit and δit,
and have noticed the interesting, and desirable, fact that Feenstra (1994b)’s estimation strategy is free of scale.
It turns out that one can scale up or down the variance of the error terms and produce identical Monte Carlo
estimates, and that only changing the relative magnitude of the variances will yield quantitatively different
results. However, the quantitative differences appear to produce no qualitative disparities, except in extreme
cases.

6The goal I have in mind is to generate data similar to those used in practice. The basis of Feenstra
(1994b)’s empirical portion estimating variety gains is in the time series variation produced by having data
containing new and disappearing varieties (i.e. an unbalanced panel of trade data). As one may expect,
there are slight gains in precision when going from an unbalanced to a balanced panel of data, yet these
gains are notably insubstantial.

7I would like to thank Robert Feenstra for the generous provision of his original data and code.
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not prevalent in these data. On the other hand, the positive and significant estimates of θ0

yielded by Typewriters allude to the existence of measurement error in these data.

Figure 1 compares Kernel Density estimates of a random draw of my generated data with

their similar counterpart in the actual data. The effect of measurement error is immediately

clear when we compare estimates of each good’s Y and X2 across the panels of Figure 1.

For visual ease, I truncate the distribution of Y and X2 for Typewriters.8 Even with my

truncation, the data for Steel Bars appear more concentrated around zero, and seem to have

a considerably lower variance than the data for Typewriters. This result is supported by

the theory, which proposes that including measurement error leads to greater dispersion in

observed log prices.

The data I generate produce distributions of the variables in Equation 3 similar to those

estimated from actual data. The only obvious shortcoming in my data are their inability to

match the variances of Y and X2. Figure 2 shows the increase in the variances of Y and

X2 from the inclusion of measurement error.9 I am not concerned with this disparity, as

the length of the tails estimated by Kernel Densities using actual data appear to be driven

solely by outliers. If we were convinced the differences documented in Figure 1 were under-

lying departures between the data, they suggest that θ̂0 may be underestimated for both

Typewriters and Steel Bars, since I can generate data more closely matching each good’s es-

timated distribution of Y and X2 by simply increasing the variance of the measurement error

I impose. I will explore this possibility in Section 4.2 with my discussion of the asymptotic

effect of measurement error on the coefficient estimates.

4. Simulation Results

4.1. Base Case - No Measurement Error

In a theoretical vacuum (free of measurement error), I estimate Equation 3 using the

described IV method. Figures 3 and 4 are produced from averaging estimates over 100

8I truncate my kernel density estimates at Y = 8 and X2 = 6. It is extremely rare, less than 1% of all
observations, that the data lie beyond my levels of truncation.

9Prices do not appear in the Equation producing X1, thus theoretically the distribution with or without
measurement error is identical.
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monte carlos for various levels of T and N where the simulated data produce estimates such

that Equation 4 can be applied. They highlight the importance of T in the convergence

of the estimates σ̂ and ρ̂.10 The number of varieties observed by the econometrician, N ,

does not appear to have a detrimental impact on the asymptotics of my estimates for small

values, nor does it appear to aid in convergence for larger values. Thus, I fix N = 55 for the

remainder of my analysis. The Armington (1969) assumption utilized by Feenstra (1994b),

conceptually supports the parameterization of N , as it specifies varieties to be differentiated

by import source, which is bounded by geography.11

With N fixed, the bias of the average estimated coefficients where Equation 4 is satisfied

from 100 monte carlo simulations across various levels of T are presented in Figure 5.12

The results suggest small sample biases upwards of 60% for the constructed coefficient θ̂1.

These estimated biases are doubled by θ̂2, and the rate of convergence to the actual values

for both coefficients is extremely slow. The remarkable feature of this estimation are the

diametrically opposing results from the calculations of σ̂. The largest bias is observed for the

smallest sample when T = 5, but this is a meager 10%. Even more extraordinary is the fact

that σ̂ seems to converge almost instantaneously to its true value, reaching a bias of less than

1% by T = 15. The extreme small sample biases of the constructed parameters is clearly an

undesirable property. Yet, bearing in mind that the true purpose of most applications using

this methodology is the ability to back out accurate estimates of σ, these results are superb.

The ability of the structural calculations of σ̂ to mitigate biases does not seem to carry over

to ω̂, which consistently produces estimates biased in a manner nearly identical to those of

θ̂1. This somewhat detracts from attributes of σ̂, and warrants caution to those relying on

10I have produced analogous figures for θ̂1, θ̂2 and ω̂, yielding the same results. Since σ and ρ are derived
from θ1 and θ2 and used to derive ω̂, it is intuitive that the qualitative results are analogous.

11The specific number of varieties I choose is reasonable, if not generous, when compared with the trade
data used in previous works. See Blonigen and Soderbery (2009), Imbs and Mejean (2008), Gaulier and
Mejean (2006), Broda and Weinstein (2006), for recent evidence of the number of varieties within goods
using more modern trade data than Feenstra (1994b)’s original study, which documents a maximum of
N = 62 varieties.

12I forego the classic comparison if 2SLS and OLS because the bias from OLS is such that Equation 4
cannot be satisfied for nearly each simulation and the Monte Carlo estimates rely on Grid Searched values,
which I demonstrate in Section 4.3 perform well.
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consistent estimates of ω.

To further understand the alleviation of the small sample biases of the constructed pa-

rameters by σ̂ I utilize the formula

σ̂ = 1 +
θ̂2 +

√(
θ̂2

)2

+ 4θ̂1

2θ̂1

if θ̂1 > 0 and θ̂1 + θ̂2 < 1, (6)

derived by Imbs and Mejean (2008), and equivalent to that in Feenstra (1994b) to calculate

σ̂. This additional form of σ allows me to directly calculate the general bias of σ̂. I will

assume the conditions of Equation 6 are satisfied, and let σ̂ = σ + Bσ, θ̂1 = θ1 + Bθ1 , and

θ̂2 = θ2 +Bθ2 . For added simplicity I further assume Bθ1 , Bθ2 < 0, as simulated in Figure 5.

I can then write the percentage bias of sigma bounded such that,

∣∣∣∣ σ̂ − σσ
∣∣∣∣ =

∣∣∣∣Bσ

σ

∣∣∣∣ <
∣∣∣∣∣∣∣∣
Bθ2

θ̂2

− Bθ1

θ̂1

−

√(
θ̂2 −Bθ2

)2

+ 4
(
θ̂1 −Bθ1

)
−
(

1− Bθ1
θ̂1

)√(
θ̂2

)2

+ 4θ̂1

θ̂2

∣∣∣∣∣∣∣∣ .
(7)

These bounds give a revealing look into how the structural form of calculations of σ̂ mitigate

the potential biases in estimates of the constructed parameters. Using my estimates from

Figure 5 when T = 15, Equation 7 suggests
∣∣ σ̂−σ
σ

∣∣ < .144. Even if the bias of σ̂ approached

this upper bound, it would be significantly less in absolute value than the 45% and 124%

biases I simulate for θ̂1 or θ̂2 respectively.

4.2. The Effect of Measurement Error

To introduce the problem of measurement error generally faced by the practitioner, I

draw µit ∼ N [0, 0.15]. These random draws of measurement error satisfy Assumption 4, and

are used to produce data using Equation 5. The underlying data are identical to each monte

carlo replication from Section 4.1 with the theoretical adjustments caused by measurement

error. Comparing Figure 6 with Figure 5, the added inefficiency caused by the inclusion of

unobserved measurement error considerably slows the asymptotic convergence and increases
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small sample biases of each estimated variable. The ability of σ̂ calculations to relieve the

biases of the simulated coefficients is lessened for the two smallest samples. With measure-

ment error, σ̂ reaches a maximum bias of 70%. In contrast, the bias was simulated as a

modest 10% for the analogous data without measurement error. However, the convergence

of σ̂ is still rapid, and approaches a zero bias by T = 25. It is important to note that Figure 6

presents only estimates where the simulated data satisfy Equation 6. Only about 10% of all

estimates satisfy this condition for T = 5, and this fraction increases almost linearly to 80%

when T = 85. Thus, the grid search becomes an extremely important tool for estimation in

the presence of measurement error.

4.3. Grid Search

I implement the grid search proposed by Broda and Weinstein (2006) by constraining the

potential values of σ̂ and ρ̂, such that σ̂ ∈ [1, 4σ] and ρ̂ ∈
[
0, σ̂−1

σ̂

)
.13 Grid searched estimates

are averaged along with the estimates from Figures 5 and 6 to generate Figure 7. Panel (a)

presents the effect of grid search in the absence of measurement error. The grid search is

moderately important in small samples. Approximately 35% of my simulations require its

use for estimation in the smallest sample. This fraction decreases exponentially until T = 55

where the grid search is unnecessary.

There are slight improvements in the estimation of σ̂ over a low bias baseline, but the grid

search actually increases small sample biases in estimates of the average ω̂. Since the use of

the grid search is predicated upon Equation 4 producing theoretically infeasible results, which

only occurs in my simulations when samples are small, Hallett and Ma (1993)’s study of small

sample biases in GMM estimation comes to the fore. The grid search used is most similar to

the “simple” method to evaluate the GMM problem they study. They demonstrate a drastic

deterioration in the performance of this estimator when used to estimate more difficult

distributions. I cannot refute their findings with my simulations for ω̂, yet it appears that σ̂

13Naturally, the econometrician does not know the value for the upper bound I have specified, and is
forced to expand their grid. For example, Broda and Weinstein (2006) choose the interval σ̂ ∈ [0, 131.5].
One may be concerned by choosing a much finer grid, I am biasing my grid searched estimates toward the
actual value. Reassuringly, in my simulations it is exceedingly rare for σ̂ to attain the upper bound of my
constraint.
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is accurately chosen by the proposed GMM method.

The importance of the grid search method when faced with measurement error is paramount.

Panel (b) of Figure 7 highlights that over 90% of my simulations can only be evaluated using

the grid search for the smallest sample. This value decreased slowly, only reaching zero for

values T ≥ 125. Including the grid search estimates substantially improves (diminishes) the

accuracy of the average simulated estimates of σ̂ (ω̂) in small samples.

5. Robustness Checks

Since the distributions of the data are vulnerable to drastic parameter changes affecting

their form, my results may hinge upon the choice of parameter values. For robustness I

estimate the model without measurement error across various parameter values. Table 2

presents simulation results for small, medium, and large samples across various parameter-

izations of the underlying variables. It is clear that the qualitative results of the estimator

discussed in the previous sections hold true. The quantitative results show some variation

across underlying parameters, but remain comparable throughout.

Staiger and Stock (1997)’s simulations suggest that for IV problems suffering from weak

instruments, limited information maximum likelihood (LIML) estimates show some improve-

ment over standard 2SLS. Using Staiger and Stock (1997)’s “rule of thumb” to evaluate the

estimated first stage F statistics in Table 1 suggest the instruments from actual and sim-

ulated data are likely weak. However, the “rule of thumb” becomes less tractable when

multiple instruments are present. In response, Stock and Yogo (2005) derive a distribution

that utilizes the Cragg and Donald (1993) test for weak identification to assist in identifying

weak instruments. Figure 8 shows the progression of the average Cragg-Donald F statistic

along T . As I increase T the test is more likely to reject the weak instrument hypothe-

sis, supporting the idea that the bias of the estimator decreases as the instruments become

stronger, which naturally occurs along the T dimension.

In Figure 9 I investigate possible gains from changing the estimation strategy. As sug-

gested in Stock and Yogo (2005) and others, I estimate the problem using Fuller (1977)’s
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modified LIML.14 Beginning with data generated free of measurement error in Panel (a),

LIML appears to vastly improve my estimates. Estimates of σ slightly improve, and the

small sample biases, along with the slow rates of convergence, all but disappear for esti-

mates of ω. The inclusion of measurement error dampens the gains of the modified LIML.

Figure 8 shows the adverse effect of measurement error on the strength of the instruments.

Without measurement error the weak instrument hypothesis was rejected by the average

simulation at the stringent level (5% maximal Fuller relative bias) for T above 35. With

measurement error this does not occur until T exceeds 100, and for a less stringent level

it takes T exceeding 75. Comparing Panels (a) and (b) of Figure 9 demonstrates that the

introduction of measurement error muffles the beneficial effects of LIML for estimates of

both σ and ω, likely because of how it weakens the instruments. The small sample gains,

while promising, still yield biases of ω̂ upwards of 20%.

Finally, modified LIML estimates using Feenstra (1994b)’s original data are reported

at the bottom of Table 1. As suggested by my simulations, estimates of the θ′s change

considerably. This is likely a response to the presence of weak instruments, as supported by

the inability of any good to reject the weak instrument test proposed by Stock and Yogo

(2005). The significant changes in ω̂ are also expected, but the magnitude of the differences

in σ̂ across techniques comes as somewhat of a surprise. One explanation may lie in the

differences across θ̂0. The modified LIML suggests that the data for each product possess a

larger degree of measurement error than initial estimates using 2SLS suggest, and the gains

of modified LIML may be magnified from better recognition of the measurement error.

6. Conclusion

Using monte carlo simulations I have thoroughly investigated the hurdles faced by prac-

titioners applying Feenstra (1994b)’s method for estimating structural elasticities underlying

common international trade models. I demonstrate that small sample biases are a significant

feature of estimates of the constructed parameters, and likely arise from weak instruments.

Yet, and most importantly, the biases are practically eliminated by the structural form of σ

14I include grid searched values when necessary.
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but not ρ. Furthermore, the pragmatic existence of measurement error in prices adversely

affects the estimates, but ultimately has little bearing on the qualitative results. Broda and

Weinstein (2006)’s grid search methodology appears to further improve the performance of

σ̂, especially in the presence of measurement error.

The body of my results are reassuring to those interested in obtaining demand side

elasticity estimates using the prescribed methodology. The performance of σ̂ is clouded by

disappointing supply-side estimates. Applying the modified LIML estimator to account for

the apparent weak instrument problem persistent in small samples does suggest that supply-

side elasticity estimates can be improved upon. However, in the most practical application of

my experiment when measurement error is accounted for, even the modified LIML technique

produces significant small sample biases for estimates of ω. Estimation should ultimately

be dictated by the problem being addressed with the understanding that LIML does not

fully resolve small sample concerns. Since trade data are generally limited to small sample

sizes by convention, my results are a valuable demonstration of some small sample properties

driving Feenstra (1994b)’s estimator that are both advantageous and worrisome.
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A. Figures and Tables

Figure 1: Kernel Density Estimates Comparing MC Data with Actual Data
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Figure 2: Kernel Density Estimates Analyzing the Effect of Measurement Error on the
Monte Carlo Data Generating Process
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Figure 3: Contour Plot Examining σ̂−σ
σ Without Measurement Error.
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Figure 4: Contour Plot Examining ρ̂−ρ
ρ Without Measurement Error.
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Figure 5: Asymptotic Properties Without Measurement Error
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Figure 6: The Asymptotic Effect of Measurement Error
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Figure 7: Asymptotic Properties with the Inclusion of Grid Searched Estimates
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Figure 8: Stock and Yogo (2005) Test for Weak Instruments
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Figure 9: Comparing the Asymptotic Properties of 2SLS and Modified LIML
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Table 1: Comparing the Estimates of Feenstra (1994b) with Similar Monte Carlo Data.

Estimate Knit Shirts Steel Bars Steel Sheets TV Receivers Typewriters Monte Carlo1 Monte Carlo2

2SLS:

θ̂0 0.0436∗∗ −0.0003 0.0079 0.0576 0.0410∗ − 0.0656

θ̂1 0.0684∗∗∗ 0.0509∗∗∗ −0.0015 0.1446∗∗∗ 0.1739∗∗∗ 0.0948 0.0249

θ̂2 0.1235∗∗ −0.2537∗∗ −0.3166∗∗∗ 0.9313∗∗∗ −0.1712∗ −0.3568 −0.4231

σ̂ 5.829 3.592 4.206 8.378 2.956 2.884 3.148

ω̂ 0.0731 0.0727 −0.0049 0.0599 0.1274 0.0932 0.0378

ρ̂ 0.6148 0.2550 −0.0154 0.8873 0.3995 0.2401 0.0921

T 22 22 22 16 22 25 25

N 62 16 30 16 26 50 50

Obs. 651 220 353 133 312 691 691

F Statistics Used to Identify Weak Instruments:

FX1 3.81 4.73 2.17 5.19 3.49 10.40 10.59

FX2 1.13 1.31 1.59 2.42 1.47 6.15 4.98

FCragg−Donald 1.00 1.09 1.23 1.98 0.81 2.42 1.49

FStock−Y ogo CV
3 1.89 3.47 2.51 3.47 2.68 1.97 1.97

Modified LIML:

θ̂0 0.1290 −0.0775 −0.0334 0.1989 −0.2065 − 0.0403

θ̂1 0.1234 0.1548 −0.0014 0.1828 0.5681 0.1637 0.1695

θ̂2 −0.6669 −0.6918 −1.4329 1.0108 −1.2598 −0.1751 −0.1756

σ̂ 2.223 2.150 1.698 7.387 1.620 2.995 3.077

ω̂ 0.0993 0.1121 −0.0010 0.0683 0.1969 0.1230 0.1135

ρ̂ 0.1557 0.1699 −0.0007 0.8817 0.1794 0.3884 0.3624

Notes: Significance levels, ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001, calculated using Standard Errors reported in Feenstra (1994b).
Standard errors are not calculated for simulated or modified LIML estimates, thus significance stars are not included.
1Reported Values are averaged over 100 Monte Carlo estimates with data free of ME. 2Reported Values are averaged over
100 Monte Carlo estimates with data containing ME. Monte Carlos are parameterized such that θ1 = 0.1667, θ2 = −0.1667,
σ = 3, ρ = .4, and in the presence of ME, θ0 = 0.045. 3FStock−Y ogo CV are 5% maximal Fuller relative bias critical values,
and thus provide stringent significance levels for the existence weak instruments when compared to
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Table 2: Simulation Results for Alternate Parameterizations

Percent Difference

(Estimates - Theory)1

Parameter Value T=25 T=100 T=300

θ1 11.11 −34.64 −18.65 −10.46

θ2 −8.89 2.33 1.63 1.55

σ 1.10 0.24 0.06 −0.01

ω 0.10 −20.73 −9.48 −5.20

θ1 0.01 −37.52 −27.79 −11.95

θ2 −0.22 3.70 3.34 1.85

σ 5.00 1.37 0.23 −0.19

ω 0.10 −31.46 −23.98 −10.48

θ1 0.09 −53.49 −25.51 −11.48

θ2 0.13 −208.88 −99.09 −44.52

σ 5.00 −10.59 −4.21 −1.71

ω 0.60 −24.03 −6.52 −2.35

θ1 0.02 −56.08 −30.29 −8.70

θ2 0.06 −221.91 −114.85 −37.79

σ 10.00 −13.01 −5.16 −2.16

ω 0.60 −27.65 −9.05 −1.41

θ1 0.02 −91.05 −73.53 −49.38

θ2 0.42 −112.97 −91.22 −61.18

σ 20.00 −33.53 −20.66 −9.00

ω 0.90 −44.50 −12.17 −0.45

Notes: 1Reported Values are averaged over 100
Monte Carlo estimates with data free of Measurement
Error including grid search estimates when necessary.

26


