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Abstract

We document that isolated cities have less wage inequality in American census data. To explain
this correlation and other correlations between population and wages, we build an equilibrium
empirical model that incorporates high and low-skill labor, costly trade, and both agglomeration
and congestion forces. Our paper bridges the gap between the economic geography literature
which abstracts from inequality, and the spatial inequality literature which abstracts from ge-
ography. Moreover, we extend the spatial inequality literature by developing a model tractable
enough to be solved, facilitating counterfactual analysis. We find that geographical location
explains 9.2% of observed variation in wage inequality across American cities. In counterfactual
experiments, we study the effects of domestic trade costs and skill-biased technological change

on welfare and inequality across the United States.
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1 Introduction

Inequality has long fascinated economists, and growing income inequality has been recently
and heatedly discussed in public forums.! This public discussion has been complimented by a
number of academic studies highlighting the spatial distribution of wage inequality. We have
learned that there is a strong and increasing positive relationship between wage inequality and
city size (Baum-Snow and Pavan, 2012; Moretti, 2013; Lindley and Machin, 2014), and that high
and low-skill workers are increasingly segregated across cities (Diamond, 2015). In this paper,
we add a further attribute of a city to this discussion: spatial position. We first document
the relationship between inequality and geography in the American data. Then we build and
estimate an equilibrium model to measure the importance of geography for wage inequality, and
to study the effects of trade and productivity shocks on welfare and inequality.

Using American census data, we show that geographical location has significant power in
explaining observed wage premia. This result holds across a wide variety of specifications and
weighting strategies. In a word, the closer a city is to the ocean and the nearer it is to other
cities, the more unequal it tends to be.? For example, Minneapolis is around one standard
deviation more isolated than Miami, and has wage inequality around two standard deviations
lower than Miami. In order to explain this correlation together with previously documented
facts on population and wages, we develop an estimable equilibrium model of domestic trade
and inequality.

While our research speaks to several literatures, our primary contribution is in developing
an estimable equilibrium model of spatial wage inequality in which geography matters. Following
and contributing to the popular debate on inequality, several authors have expanded our under-
standing of wage and welfare inequality in American data (Davis and Dingel, 2014; Baum-Snow
and Pavan, 2012; Combes et al., 2012; Moretti, 2013; Davis and Dingel, 2014; Diamond, 2015).
As a shorthand, we refer to these papers as the spatial inequality literature. To date, the spatial
inequality literature has abstracted from geography. Either cities are unable to trade with each
other, or able to trade with each other costlessly. In both of these extremes, the geographic
location of a city relative to other cities is irrelevant, so questions about the interaction of geog-
raphy with inequality cannot be addressed. By including costly trade between cities in a model
of mobile heterogeneous labor, we can measure the contribution of geography to inequality.

In order to solve an equilibrium model of inequality, we use tools recently introduced to the
economic geography literature by Allen and Arkolakis (2014). We follow a growing body of
literature estimating structural economic geography models to evaluate the effects of economic
policy on migration and welfare (Desmet et al., 2016; Allen et al., 2016). The economic geography

literature as a whole has typically focused on welfare at the aggregate (Krugman, 1991; Fujita

! The literature on the causes of the rise in American wage inequality in the United States is large. For an extensive
treatment, see Goldin and Katz (2009). There is also a growing body of literature on consequences of inequality. For
example some studies link income inequality to the recent rise of populism in the United States (McCarty et al., 2016),
others to adverse health outcomes (Wilkinson and Pickett, 2006).

2These concepts will be defined precisely in Section 2.2.



et al., 2001; Fajgelbaum et al., 2015; Monte et al., 2015).> We complement this literature by
studying the effects of policy not only on average welfare but also on welfare inequality.

Our modeling approach allows us to fully solve for counterfactual outcomes taking general
equilibrium effects into account. In contrast, the spatial inequality literature has often used
equilibrium models without solving for equilibrium. Recent spatial inequality contributions
employ instrumental variables and equilibrium relationships to identify a handful of parameters
of interest (Moretti, 2013; Baum-Snow et al., 2014). This methodology is sufficient to test
alternative hypotheses about sources of inequality, but it limits a researcher’s ability to run
counterfactual policy experiments. The closest paper in this recent literature to ours is Diamond
(2015), who estimates a rich structural spatial inequality model based on discrete choices of
workers over where to live. While Diamond (2015) allows for a more flexible specification, we
adopt a more stylized model. However, while her model equilibrium can not be solved, we can
fully solve our model equilibrium at a wide range of counterfactual parameters.

In our model, we have a continuum of locations. In each location, there are immobile
landlords, immobile firms, and perfectly mobile workers. Workers come in two types, high-skill
and low-skill, and each worker has an idiosyncratic utility from living in each location. A worker
decides where to live taking prices and wages as given. A firm also takes local wages as given,
and produces a tradeable good using high-skill and low-skill labor as inputs. The key difference
between high and low-skill workers is that high-skill workers benefit more from agglomeration.*
In equilibrium, welfare of marginal workers in each skill group equalizes across space.

We require a model that generates higher skill wage premia in less remote cities. The
interplay between two critical features of our model deliver the required relationship. These two
features are stronger agglomeration forces for high-skill workers, and heterogeneous location
preferences. The intuition behind this interaction can be described in a few sentences. Consider
a city near other cities, a centrally-located city. Its access to cheap tradeable goods and nearby
markets make this city attractive to live in. This leads the city, all else equal, to have a
relatively high population of both high and low-skill workers compared with a remote city. Due
to agglomeration forces, high-skill workers are relatively more productive in the centrally-located
city. If the ratio of high to low-skill wages in the centrally-located city were the same as in the
remote city, firms would demand a larger ratio of high to low-skill workers in the centrally-
located city. In order for the the demand for high-skill labor to equal its supply, in equilibrium
the high to low-skill wage ratio must be higher in the centrally-located city. Because location
preferences matter, high-skill workers elsewhere do not fully arbitrage the higher wages in the
centrally-located city away.

We interpret American census data in 2000 as the equilibrium outcome of our model, and
Core Based Statistical Areas as our cities or geographical units of observation. We estimate our

model parameters using equilibrium relationships that describe labor supply and demand across

30ne notable exception is Fujita and Thisse (2006), which focuses on inequality and costly trade in an international
trade context with only two regions and only high-skill workers mobile.

4Davis and Dingel (2012) microfound a mechanism for this assumption related to complementary between idea
exchange and ability.



these cities. In addition, we estimate costs of trading goods between cities in a similar way to
Allen and Arkolakis (2014).

Using our estimated model, we decompose the variation in observed wage premia across
American cities. We find that geographical position explains 9.2% of the variation in wage
premia across cities. By simulating counterfactual exercises, we find that reductions in domestic
trade costs benefit both types of labor, but low-skill labor gains more than high-skill labor.
This result is in contrast to a number of papers that study the effects of international trade
on inequality (Antras et al., 2006; Hummels et al., 2014).> In our exercise, better trading
infrastructure tends to spread out the population in the United States so that high-skill workers
lose some of their agglomeration advantage over low-skill workers. The negative effect of trade
on wage inequality in the international context is reversed when labor is mobile in the presence
of agglomeration economies in the national context.’

We use our model to perform several counterfactuals. We simulate the equilibrium effects
of the rise of Silicon Valley by implementing a counterfactual productivity shock to all cities
in California such that our model generates actual changes to the share of high and low-skill
population in California between 1980 to 2000. We find that this productivity shock increases
the expected welfare of high-skill workers nationally by 1.7% and of low-skill workers nationally
by 0.5%. In a second counterfactual we simulate a skill-biased technological change in order
to match the observed change in skill wage premia between 1980 and 2000 across the United
States. Even though we only increase the productivity of high-skill workers, low skill workers
gain as well. We find that the rise in observed high-skill wage premia in larger cities overstates
the rise in welfare inequality caused by the skill-biased technological change. The key reason is

that high-skill workers sort to the cities that experience higher housing rents.”

2 Documenting inequality and geography

In this section, we describe our data sources, give our definitions of measures of geography and

inequality, and present the empirical findings which motivate our modeling exercise.

A large body of research in international trade has focused on the effect of trade on inequality. The traditional
result is the Stolper-Samuelson Theorem, which says that trade increases inequality in countries abundant in high-
skill labor, and decreases inequality in countries abundant in low-skill labor (Davis and Mishra, 2007). Of course, an
important part of trade models is the inability of factors to cross borders, so the analogy between our work and the
trade literature should not be taken too far.

In recent work Fan (2015) finds that domestic reallocation of labor tends to mitigate the increase in inequality
caused by an international trade liberalization.

"This result is consistent with Moretti (2013). Our exercise complements his empirical finding as we solve for
general equilibrium response of employment and wages of low and high-skill workers and housing costs in response to
skilled biased technological shocks.



2.1 Data sources

Our empirical section is largely based on the IPUMS 5% sample of the 2000 American census.
In this cut of the data, we use full-time workers older than 24 and younger than 65 with reported
income, giving us observations on over four million workers distributed across the United States.®

We want to compare inequality in different locations. As agglomeration will be an important
component of our model, the size of a location will be critical for our analysis. Different authors
in the literature have used different regions as units of analysis. For our purposes, a location will
be either a Core Based Statistical Area (CBSA) or the non-CBSA part of a census area known as
a Public Use Microdata Area (PUMA). A CBSA is a set of counties with a high degree of social
and economic ties to a central urbanized area as measured by commuting ties(Census, 2012).
PUMA'’s are drawn to completely cover the United States. In order to comply with census
disclosure rules, each PUMA contains between 100,000 and 300,000 residents. By including
the non-CBSA parts of PUMASs in our analysis, we widen the scope of our study to the entire
continental United States.

In addition to the IPUM’s data, we need information on the geographical position of each
location as well as information on trade flows between locations. We use geographical position
data from the Missouri Census Data Center. For trade flows we use publicly available data
from the U.S. Commodity Flow Survey (CFS). Our data on trade flows is from 2007, as this
is the first year in which data is available at the required level of disaggregation. The 2007
CFS covers business establishments with paid employees in mining, manufacturing, wholesale
trade, and selected retail and services trade industries. In the survey, a total sample size of
approximately 102,000 establishments are selected from a universe of 754,000 establishments.

For a more complete discussion of data sources and manipulation, see Appendix A.

2.2 Location specific variables

The skill wage premium (or college wage premium) is measured as is standard in the labor
literature, and is calculated independently for each location. A worker is high-skill if he has at
least a four-year college degree, otherwise he is low-skill. The skill wage premium is the mean
wage of high-skill workers in a location divided by the mean wage of low-skill workers. The skill
population ratio (or college population ratio) is the ratio of high-skill population to low-skill
population in a location. We use census population weights when calculating all means.

We assign to each location measures of isolation from other locations. None of these simple,
atheoretical measures is completely satisfying alone. We simply aim to use these measures of
isolation to build a clear case that geography matters, and motivate our subsequent structural
analysis rooted in preferences, production technology, and trade costs. To this end, we assign

each location two primary measures of isolation: distance to ocean and remoteness.” We measure

8We clean the data using modified replication code from Baum-Snow and Pavan (2013). For more information on
how the data were cleaned, see Appendix A.
9To be clear here about terminology, remoteness is one specific measure of isolation. By isolation, we mean



a location’s domestic isolation using remoteness, a concept we borrow from the international
trade literature (Head, 2003). Each location is labeled with a number ¢ = 1... N. The distance
between location ¢ and location j is d;;. The distance we use here is structurally estimated
later in this paper, and captures the iceberg trade cost between every pair of locations given the
network of transportation infrastructure in the United States. The remoteness of location ¢, R;,

is the weighted, generalized mean of the distances between location ¢ and all other locations:

RZ' = Z wjd}j_o
J

In words, a location with low transport costs to other locations will have low remoteness. In a
standard trade model with a CES demand system, the price index of tradeable goods in location
1 follows a similar expression, with weights w; related to economic size, and ¢ interpretable as
the elasticity of substitution in utility of different goods. In our main specification, we set w;
to population of location j, and set o = 4, following recent estimates in the international trade
literature (Broda and Weinstein, 2006; Simonovska and Waugh, 2014).

In addition, we use distance from coastlines to proxy for a location’s isolation from inter-
national trade.'© We measure nearest distance to the ocean as the crow flies using data from
Natural Earth.'!' This data comes at a very fine level. To aggregate up to the level of our
locations, we assign each location the mean distance to the ocean within its borders.'?

Table 1 contains some descriptive statistics, and Figure 1 shows how our measures vary
across the United States. The borders in this map are the intersection of PUMA’s and CBSA’s,
but are colored based on the geographical unit of analysis described in Section 2.1. Remoteness
is highest in the North and North-West of the United States. Distance from the ocean is highest
in the Center-North of the United States.'> The skill wage premium is higher in the parts of
the country which are relatively less isolated and with higher population.

Below, we report correlations between our reduced-form measures of isolation and skill pre-
mium to motivate that geography matters for inequality. In Section 5, we will use a structurally-
estimated price index to quantify precisely how much of the observed variations in skill premium

can be explained by geography.

aggregated distance from economically important locations.

0Cogar and Fajgelbaum (2016) show how distance from the ocean affects trade patterns within a country.

1 Natural Earth is a free source of physical geographical data in the public domain maintained by the North American
Cartographic Information Society. More information at naturalearthdata.com .

120ur data comes projected in spherical coordinates. For ease of interpretation, we convert our spherical distances
to approximate kilometers using the rule of thumb that one spherical degree in the United States is approximately
equal to 100 km. All of our analysis is in logarithms, so scaling errors will only affect the constant.

13State borders can sometimes be seen in our measures of remoteness and distance from the coast. This is because
one of our measures of geographical location, the PUMA, is always contained within a state, and our other measure,
the MSA, is made up of counties which are always contained within a state. Thus the areas we are averaging over
often end at state borders. Continuous variation appears, therefore, to stop at the borders of states. For example, the
border of Montana and the Dakotas can be clearly seen in the distance from the coast map. This is because Montana
is on average closer to the ocean than the Dakotas.



Statistic Mean  Std Dev  Min Max

Distance from coast 533 346 0.39 1586
Remoteness 1.30 0.18 0.93 1.90
Population 51.06 k 195.87k 363 4.14m
Skill wage premium 1.54 0.13 1.20 2.21
Census observations 4.59 m

Location observations 1267

Table 1: Data summary statistics

(a) Remoteness (b) Distance from Coast

(c) Population (d) Skill Wage Premium

Figure 1: Locations colored by attribute

2.3 Skill premium and measures of geography

We document the covariance of our measures of geography with the skill premium. The litera-
ture has documented that wages, skill premium, and skill ratio highly and positively correlate
with population (Baum-Snow and Pavan, 2012; Moretti, 2013; Lindley and Machin, 2014). In
Appendix B we confirm all these well-established facts in our data. Here, we add our measures

of geography in standard regressions of individual-level wages and city-level skill premia.



Individual-level observations. Table 2 reports the results from regressing individual-level
wages against city-level remoteness allowing for different slopes across those with or without a
college degree. We have controlled for individuals’ characteristics including gender, race, and
years of experience, as well as city population and its interaction with the college dummy. Two
findings stand out. First, remoteness is negatively correlated with wages. Second, and more
importantly, remoteness lowers wages of college educated workers more than non-college edu-
cated ones. This latter finding suggests that, after controlling for other observed characteristics,

college graduates have a higher wage premium in less remote cities.

Dependent variable: Log wage of individual workers

(1) (2) (3)
Log remoteness -0.392%** -0.310%** -0.549%**
(0.00233) (0.00267) (0.00515)
College 0.570%** 0.460%** 0.347%**
(0.000775) (0.0146) (0.0145)
College X Log remoteness -0.250%** -0.2267%**
(0.00525) (0.00521)

State fixed effect N N Y
Observations 4,588,544 4,588,544 4,588,544

R-squared 0.262 0.263 0.278

Note: Robust standard errors in parentheses. In all regressions, we include
individual-level gender and race dummies, and a cubic polynomial of years of
experience. We control for city population in (1), and city population and its
interaction with the college dummy in (2) and (3). We weight individuals based on
census sampling weights. *** p<0.01, ** p<0.05, * p<0.1.

Table 2: Wages and remoteness at the level of individual workers

City-level observations. Table 3 reports estimates from city-level regressions of skill wage
premium on our measures of geography. We find that locations that are more remote within
the United States or more distant from coastlines have less wage inequality. This relationship is
statistically significant in all regressions. Controlling for population significantly decreases the
effect of geography on the skill wage premium, but does not eliminate it completely. We weight
all regressions by population, because our dependent variable is itself composed of data means.
Removing these weights does not affect the signs or statistical significance of our estimates. We
report results from additional specifications in Appendix B.

Overall, the message from these regressions is that geographic features of cities correlate

with wage inequality across a wide range of specifications.



Dep var: Log skill wage premium

(1) (2) (3) (4)

Log remoteness -0.268*** -0.230%** -0.106***
(0.0353) (0.0299) (0.0344)
Log dist from coast -0.0316%** -0.0252%**  _0.0232%**
(0.00553)  (0.00420)  (0.00309)
Log population 0.0184***
(0.00210)
Observations 1,267 1,267 1,267 1,267
R-squared 0.232 0.174 0.338 0.476

Note: Robust standard errors in parentheses. In all regressions, we assign population
weights to observations. *** p<0.01, ** p<0.05, * p<0.1.

Table 3: Skill premium vs geography measures at the level of cities

3 Theory

In the last section, we presented evidence that skill wage premium tends to be lower in more
isolated locations. To explain this correlation, we build a model that incorporates high- and
low-gkill labor, costly trade, and both agglomeration and congestion forces. The model helps
us examine the equilibrium responses of inequality to shocks that stem from trade costs or

technology.

3.1 Setup

The model is static, with a continuum of locations j € J, a continuum of high-skill workers
labeled as H, and a continuum of low-skill workers labeled as L. The set of locations J, and
total population of skill groups, Ny and Ny, are given. Workers choose to reside and work in
any single location. Firms in each location produce a location-specific variety of a tradeable
final good using the two types of labor as inputs into a constant elasticity of substitution
production function. Both workers and firms are price takers in perfectly competitive markets.

In equilibrium, welfare of each skill group equalizes across space for marginal workers.

3.1.1 The worker’s problem and labor supply

The utility of worker w in skill group s in location 4 is a Cobb-Douglas combination of a bundle
of tradeable goods, Q(7), and residential land use, Z, (i), augmented with utility from local

amenities, us(7), and location preference shocks, €,(i),

U (i) = (Q“:S(i))(;(f“’_(ig)l5ﬁ3(i)ew(i). (1)




Here, 0 € (0, 1) is the share of expenditures on tradeables. The tradeable goods are differentiated
by the location of production. The bundle Q(i) aggregates quantities of consumption in location

i from goods produced in j, ¢(j,7), under a constant elasticity of substitution o > 0,

Qi) = VJ (G, djrl‘

A worker with skill s who resides in location i earns wages ws(7), and faces the following budget

constraint,
wa(i) = R()Z(i) + /J p(. )i i) i, 2)

where R(i) is price per unit of housing in 4, and p(j,4) is price of good j in destination i.
While the system of preferences is homothetic, we capture potential heterogeneity across skill
groups by letting them value local amenities differently. The idiosyncratic preference shock, ¢,
is independent across workers and locations, and follows a Fréchet distribution, Pr(e < z) =
exp(—x_e), where 6 governs the dispersion of the location preference shocks.

A worker has two decisions to make. She decides where to live, and how much to consume.
Given a choice of location, the second problem is standard. Utility maximization implies that
a worker spend 0 share of her income on tradeable goods and the rest on housing. A worker of

type s in location i spends xs(j,7) on goods produced in j,

i) = [Fge] sunti )

where P(i) is the CES price index of tradeables,

Py = | [sir 4| (4)

Land is owned by immobile landlords who receive housing rents as their income, and like
local workers, decides how much of each good and residential land to consume. The supply of
residential land, denoted by Z(i), is inelastically given. The land market clearing condition pins
down the price per unit of housing,

. 1-90 . ) . .

RO = 570 (ne@en@ +naen). (5)
where ng(i) denotes the population of skill group s in location i. The price index in location
i, combines prices of tradeable goods and of housing, given by P(i)‘sR(i)1*5. Total income in
location i, equals total wages plus housing rents, given by %(ny(i)wr (i) + ng(i)wp (i)).

The second decision a worker makes is where to live. A worker w with skill level s faces the

10



following discrete choice problem of where to reside:

ey fmus(i)gw@

Using the properties of the Fréchet distribution, the supply of type s labor in location i relative
to j is given by:

s i) ( w, (D)1 (0)/ (P(i) R()' ) )9.
w(f)us(7)/ (PGP R(G))

The elasticity of relative labor supply to relative wages equals 6. The variance of £ across
both workers and locations is decreasing in . When 6 is large, unobserved location preferences
are similar across locations. Thus, small changes to wages, prices, or amenities induce large
movements of workers. Another way of putting it is that the supply curve of workers to a
location is flat. When 6 is small, workers have widely varying preferences over locations, so that
large changes in wages, prices, or amenities are necessary to induce movement.

We define the well-being index, denoted by Wy, for population of skill s:

1
ws(§)us(4) \? .]°
wo= [ (e,
[ jes NP R(i)°
This index is proportional to the expected welfare of a worker of type s before she draws her

location preferences.'® The share of workers of type s in location i is given by:

(6)

na(i) <ws<z~>as<i>/ (P(z')éR(z')”))e
W

If a location offers higher wages, better amenities, lower prices of tradeables, and lower housing

rents, it will attract more population, with the extent of the relationship governed by 6.

3.1.2 The firm’s problem and labor demand

FEach location has a measure one of homogeneous firms with a CES production under constant
returns to scale,

AG) B (ma ()7 + Buma ()7 |7,
where A(i) is total factor productivity in location i. p > 0 is the elasticity of substitution

between high- and low-skill workers. Bg(i) > 0 and Sr(i) > 0 are factor intensities. We

incorporate agglomeration forces by distinguishing two sources of productivity externalities.

14To get the expected welfare, we must multiply W, by T'(1 + %) where T is the gamma function. This scaling term
depends only upon 6, an exogenous preference parameter.
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First, we specify total factor productivity as:
A(i) = A(i)n(i)", (7)

with a > 0. This agglomeration force changes productivity of both low and high-skill workers.
A standard Krugman type of economic geography model with monopolistic competition and free
entry generates the same relation through endogenous measure of firms, with the exact relation
ifa=1/(1+0).1°

In addition, the empirical literature on urban and labor economics substantiates that ag-
glomeration forces are stronger for high-skill workers.'® On the theoretical side, the literature
explains this fact by modeling spillovers thorough the exchange of ideas within high-skill work-
ers (Davis and Dingel, 2012). To capture this mechanism in our empirical model, we let skilled

worker’s productivity covary positively with the population of skilled workers in a location,

Bu(i) = Bu(i)nm(i)”
Br(i) = Br(i) (8)

where ¢ > 0 governs the agglomeration advantage that is specific to high-skill workers. By a nor-
malization, we assign no further agglomeration benefit to low-skill labor. By cost minimization,
the unit cost of production equals

c(i) .

A here e(d) = B (i) wn (1) + Bu(i)wn (i) ) )

The share of spending of producers on high-skill workers, denoted by b(7), is given by

BH(i)pwH(i)l_p
B (1) wp ()17 + Br(i)Pwr (i) =7

b(i) = (10)

Lastly, as markets are perfectly competitive, price equals marginal cost. Let d(i,7) be the
trade cost of shipping a good from 7 to j. The price of a good produced in location ¢ and

consumed in location j is:
) = LS 11

3.1.3 Spatial equilibrium

On the demand side of labor market, payments to skill labor equals firms’ spendings on skill
labor, wy (i)ng (i) = b(i)(wg(i)ng (i) +wr(i)ng(i)). Substituting (10) and (8) into this relation,

15The literature has considered alternate sources of aggregate productivity externalities, for example the sorting of
firms as in Gaubert (2014). We are agnostic about the source of our reduced-form externalities.

16For example, Glaeser and Resseger (2010) find that “productivity increases with area population for skilled places,
but not for low-skill places,” and Bacolod et al. (2009) find that workers with stronger cognitive skills experience
stronger agglomeration.
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the relative labor demand function is

i = () (3

—p
) i (i) (12)

On the supply side, employment shares described by equation (6) imply

= () () () v

A necessary condition for labor market to clear is that skill premia simultaneously satisfy the

pairs of relative demand (12) and relative supply (13). Combining, we get:

- () () 6 () e

The labor market clearing also requires total wages received by all workers to be equal to

total payments to them,!”

wr (1)np (1) wr(7)nu(5) rp(,5)11-7 .
NI /J oG] @ (15)

Equations 14 and 15 describe labor market clearing in relative terms and in levels. (Equivalently,
equation 15 describes the goods market clearing.)

A “spatial equilibrium” consists of wg (i), wr (i), ng (i), and ng (i) such that: (1) firms opti-
mize their labor demand, (2) workers optimize their labor supply, (3) markets clear, and (4) the

labor allocation is feasible.!® We normalize wages of high-skill workers such that [ Swr(j)dj = 1.

3.1.4 Discussion

Suppose we were to shut down preference heterogeneity, § — oco. From (14) we see that skill wage
premia will be constant across locations. Besides, suppose there is no agglomeration advantage
for high-skill workers, ¢ = 0. Then skill premia can vary between destinations only due to
exogenous differences in tastes and productivities between skill groups. To have equilibria
with endogenously varying skill premia, we need both heterogeneity in unobserved location
preferences (finite ), and an agglomeration advantage for high-skill workers (¢ > 0). That is,
large cities demand relatively more high-skill workers due to agglomeration, but since unobserved
location preferences matter, high-skill workers do not fully arbitrage the wage increase away.
To provide further intuition, suppose trade costs to and from a remote city fall. This shock

decreases the price of incoming tradeables, hence the supply of workers to the city rises. In

1"Total wages in location 4 equal %, and total income (wages plus rents) equals %{z)”(i). Both workers

and landlords spend § share of their income on tradeables and the rest on housing. Thus, total wages in i equal
. 1l—0
J;0 [total income in j} [Plﬁ’(’;))} dj.
"8That is simply [, ng(j) dj = Ny and [, np(j) dj = Ng.
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addition, the shock increases outgoing sales, hence labor demand in the city rises. If the em-
ployment of low- and high-skill workers increase proportionately, agglomeration advantages will
make high-skill workers relatively more productive. That is, firms demand a larger ratio of high
to low-skill workers than their relative supply in the city. Equilibrium is restored only by raising
skill wage premium in the city.

This relationship between trade costs and inequality does not depend on exogenous differ-
ences across skill groups. The exogenous differences are residuals in the relation between skill
population ratio and skill wage premium in equations of relative demand (12) and relative sup-
ply (13). These residuals reflect factors we do not model such as state and local tax incidence,
provision of welfare, and non-labor factor endowments.

Our model implies that the spatial distribution of workers contributes to welfare inequality.
Specifically, writing the distribution of low-skill labor as a function of that of high-skill labor,

and after some algebra, we decompose three forces behind the well-being inequality,

v @ e [
o

aggregate agglom.

aggregate scarcity distributional effect

The first term reflects aggregate scarcity of high- to low-skill workers; the second term repre-
sents aggregate agglomeration advantage of high-skill workers; and the last term summarizes

dispersion forces.!

3.2 Solving for spatial equilibrium

We characterize model equilibria. Using equations (8), (9), and (10) we can write ¢(i) as a
function of employment, input expenditure share, and wages of high-skill workers:

P —1

c(i) = &) wi (i), where &3)= BH(i)nH(i)@} = [b(i)}ﬁ (17)

In addition, normalizing the land supply to one, we can write housing rents as a function of
employment and wages of high-skill workers:

R(i) = R(i)wg (i), where R(i)= (1_52?)H(2)

(18)
First, replacing the price index of tradeables P(j) from employment share (6) into the goods

market clearing condition (15) results in:

A@@) ' (i) g (Dwe (i)b(i)
o1 L (e=1)(5-1) 1—0+80 o—1+6

—W;NIF/Jd(%j)l”uH(j)f‘R(J) o ng(j) o0 wr(j) o b(j) 7 dj(19)

0(1—pp)tp

B e o G2 .
198peciﬁcally, 7T(Z) _ (%zgz;g;((;))) o+p (njf\q/s)) o+p
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Second, substituting the price index of tradeables P(j) from employment share (6) into the CES

price formula (4), results in:

1—0o . (c—1)(1-9) o—1 1—

an (i) T RG) T g () o ()5 = W, N /J 40, 1) T AG)T e (G) 0 d (20)

The pair of 19-20 gives us two systems of integral equations. Assuming that trade costs are
symmetric, we can reduce the two systems into one using a method from Allen and Arkolakis
(2014). If either of integral equations hold along with the following relation, both systems of

integral equations must hold:

A7) g (i) wr (8)b() ™ = Mg (i) g (i) 5wy (i) 5 RE) T 0 (21)
where A > 0 is a constant.

Relationship with existing models. Our analysis relates to two styles of spatial models.
First, as mentioned earlier we extend a stylized spatial inequality model by incorporating costly
trade between cities. Conversely, we extend an empirical model of economic geography by
incorporating skill groups. Our model, in particular, nests Allen and Arkolakis (2014) if (i)
there is no heterogeneity in location preferences, (ii) there is no agglomeration advantage for
high-skill workers, (iii) workers with different skills are perfectly substitutable. That is, if ¢ = 0,
0 = oo, and p = 00.20

Uniqueness. The standard proof of equilibrium uniqueness in the existing related literature
in economic geography depends on a specification that allows logarithmic relationships between
a subset of endogenous variables (Allen and Arkolakis, 2014). Our model deviates from such
logarithmic relationships. For example, instead of A = An” where one must solve for n, we have
A = A(np+ng)? where we must solve for ny, and ng. Here, the relationship between high-skill
population ng and productivity A is not logarithmic. For this reason, the standard proof in this
recent literature can not be directly used in our setting. We can show that for the special case
in which our model collapses to Allen and Arkolakis, uniqueness is achieved at our preferred
parameter estimates. In addition, we have solved our model at our parameter estimates (to be
reported in the next section) using different initial values, and found no evidence of multiplicity.

Solution algorithm. We solve our system of integral equations using an iterative method.
A feature of our model is that given exogenous parameters, every endogenous variable can be
written as a function of ng(i). Using this feature, our solution algorithm updates our guess for
population of high-skill workers ng (i) in each iteration. In checking existence and uniqueness
we confirm that these iterations converge to one solution for a wide variety of initial guesses. In

Appendix D we describe our solution algorithm in details.

20The way we model congestion is a little different than in Allen and Arkolakis (2014), but our models are iso-
morphic once the conditions (i), (ii), and (iii) are fulfilled. We interpret the source of congestion as limited land for
housing. Allen and Arkolakis are agnostic about the source of congestion, only assuming that amenities are reduced
by population.
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4 Estimation

In this section we estimate our structural model. Our data consists of four vectors: high and
low-skill populations in each location, and high and low-skill mean wages in each location. Using
our model structure, we invert these four vectors of data to recover four vectors of exogenous
shifters: high-skill factor intensity 3y (with B, = 1— Bx), total factor productivity shifter A(7),
and amenity values to low and high-skill workers @ (i) and @ (7).

The inversion of the data into these exogenous shifters depend on the matrix of trade costs as
well as six key parameters: (i) high-skill agglomeration advantage ¢, (ii) elasticity of substitution
across skill groups p, (iii) labor supply elasticity 0, (iv) common agglomeration parameter a;, (v)
share of expenditures on housing 1 — §, and (vi) elasticity of substitution across goods o. We
estimate trade costs between American cities in a similar way to Allen and Arkolakis (2014). We
calculate housing share, 1 — § = 0.355, based on the Consumer Expenditure Survey 2000.2! We
set the elasticity of substitution across goods ¢ = 4, in line with the empirical literature using
international trade data (Broda and Weinstein, 2006; Simonovska and Waugh, 2014). Following
a large literature, we use instrumental variables and equilibrium relationships to estimate the
other four parameters (Moretti, 2013; Desmet et al., 2016; Allen et al., 2016).

Since our estimation procedure contains several sequential steps, we present intermediate
results directly after we describe intermediate estimation steps. Trade costs are estimated first.
Next key elasticities are estimated from equilibrium labor demand and supply relationships.
We then invert a set of equilibrium integral equations to recover exogenous location-specific

productivities and amenities.

4.1 Estimation of trade costs

In many countries, the largest cities are on coastlines or near major rivers. The United States
is no exception, with the East and West coasts containing the majority of the population. If
domestic trade costs were simply quadratic in distance, then Lebanon, Kansas (with population
size of 218) would be the center of gravity in the continental United States. A wide range
of geographical features in addition to distance affect the cost of trading between any two
locations. It is often easier to go around a mountain even if the geodesic between two locations
goes through one. New York and Miami are about as far apart as New York and Lebanon,
Kansas, but shipping a container to Miami is cheaper because of the possibility of using a ship.
To capture these nontrivial features of geography, we estimate trade costs by using a method
from Allen and Arkolakis (2014) which takes geographic features into account. We provide a
short overview here, with more details contained in the original Allen and Arkolakis paper.

There are three steps to the estimation process. In the first step, we use three separate image

21Specifically, housing expenditures consist of (i) shelter, (ii) utilities, fuels, and public service, (iii) household
operations, (iv) housekeeping supplies, and (v) house-furnishings and equipment. We exclude personal insurance and
pensions from total expenditures. Share of housing is 0.40 in Monte et al, 0.42 in Moretti and Diamond, 0.19-0.25 in
Allen and Arkoalkis.
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files each containing a map of the United States. On one of the maps is the road network, on
the second is the railway network, and on the last is the waterway network.?? We consider
four possible methods for moving goods: road, rail, water, and air. For each of these methods
separately, we assign a cost of traveling over each pixel of the relevant image file. Then, we
calculate the lowest possible cost of using each method to move goods between all pairs of
locations. We use the fast marching algorithm to find the lowest cost path for each mode of
transportation.

After we finish the first step, we know how much it costs to move goods on the road between
two locations, but only in terms of the units we assigned to road travel. We cannot compare the
cost of road travel to the cost of water transport because we do not know the exchange rate, as
it were, of road travel to water transport. The second step is to use a discrete choice framework
and data on trade flows via each mode between each pair of locations in order to back out these
cost ratios. The idea is that shippers have idiosyncratic, extreme value distributed costs for
each mode of transportation. If a large share of transport is via road, then it must be that road
is on average a cheaper mode of transportation.

The discrete choice model will only give us the cost ratio between any two modes of trans-
portation, but we still need to pin down the level of costs. To do so, we use the gravity
specification implied by our model. Consistent with our later structural estimation, we set the
elasticity of substitution across goods equal to four Estimating the gravity equation gives the
scale of trade costs. With the scaling parameter in hand, we can then calculate expected trade
costs between every pairs of locations.

Our estimates for trade costs are summarized in Table 4. Road, by normalization, has no
fixed cost, and according to the estimation, has a mid-level marginal cost. Rail has a significant
fixed cost, but lower marginal cost than road transport. Water has both high fixed and marginal
cost, reflecting that little shipment within the United States is done by water. Air has a high
fixed cost, but a low marginal cost. To be more concrete, we estimate the average iceberg cost
of shipping from San Francisco to Portland is 1.35, while the average iceberg cost of shipping
from San Francisco to Chicago is 2.3.

Readers familiar with Allen and Arkolakis (2014) or Desmet et al. (2016) will notice that
our estimates are quantitatively somewhat different than those of these earlier studies, although
the ranking of variable and fixed costs is similar. One reason for the difference is that we set a
lower trade elasticity in our structural estimation, o = 4 rather than ¢ = 9.22 Our trade costs
are likely higher in absolute terms than in Allen and Arkolakis (2014), as our products are more
differentiated.?*

2ZFollowing Allen and Arkolakis (2014), we take the road, rail, and water shipping network of the United States
as fixed in our counterfactuals. We think of our counterfactuals as pertaining to the medium-run. That is, labor is

mobile, but basic productivity, amenities, and the broad outline of the transportation network is fixed.

ZRegarding the difference between our estimates and those in Allen and Arkolakis (2014), even if we use the o = 9
we get somewhat different results. This is surprising, because we implement the same algorithm on the same data.

We discuss reasons for these differences in Appendix C.

24 A further technical issue is that 4.7% of our iceberg trade costs are estimated to be less than one. In the structural
estimation below, we normalize trade costs by scaling up all trade costs proportionally until the lowest iceberg trade
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Road Rail Water  Air

Variable cost  1.2427  1.0965 2.1383  0.4270
Fixed cost 0 1.0117 1.2734 1.8307

Note: Distance costs between locations for a particular shipment mode are
calculated as exp(variable cost * distance + fixed cost), where distance is
mode-specific and normalized so that the width of the United States is one.

Table 4: Estimated Trade Costs

4.2 Estimation of labor demand and supply
4.2.1 Relative demand and supply

We estimate high-skill agglomeration advantage ¢, the elasticity of substitution across skill
groups p, and labor supply elasticity #, using the equilibrium conditions (12) and (13) derived

in Section 3.1.3. We write these equations in log relative terms as follows,

1

w(i) = K+ éﬁ(z) —u(1) (22)
a(i) = —pi(i) + pplognu (i) + pp(i) (23)
where
o ng(i)] . wi (i) 5. Bu(i)] . tp (i)
n(i) = log [nIZ(z) }, w(i) = log [wj(z) }, B(i) = log {BIZ(Z) ], u(i) = log [fj(z)}

and, & is a constant.?’> Estimating these equations using OLS can be problematic due to cor-
relations between error terms and regressors. In equation (22), the skill population ratio, n,
is expected to be higher in locations where the ratio of amenity values for high-skill relative
to low-skill, 4, are greater. This correlation means that OLS presumably underestimates 1/6.
In addition, in equation (23), skill premium, @, and high skill population, ng, are presumably
higher in locations where the ratio of high-skill to low-skill productivity, B are larger. This
correlation implies that OLS underestimates p and overestimates .

We use instrumental variables to estimate equations (22) and (23). To estimate # in the
relative supply function (22), we instrument skill population ratio 7 using a variable that is
meant to exclusively capture shifts from the demand side. We follow a large urban and spatial
inequality literature in constructing our exogenous shock using industry-level variation across
locations (Bartik (1991); Moretti (2013); Diamond (2015)). Let d index industry, E4(i) be the

cost has a value of one. In light of the equation for the price index (4), scaling trade costs simply affects the estimated
level of TFP. We have estimated the model with the unnormalized trade cost matrix. The trade cost normalization
does not affect our results, except for the decomposition of wage inequality. In the version with unnormalized trade
costs, the share of variance in the wage premium explained by geography is slightly higher.

—6
5=~ log [N (W) ]
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employment share of industry d in location ¢ with )~ E4(i) = 1, and N, d(( l)) be the national

skill population share in industry d excluding location ¢ itself. Our 1nstrument is

ZEd )log <NLd(( ))>

Suppose relative employment of high-skill workers is greater nationwide in certain industries.
Then, cities with larger employment shares in those certain industries will have more demand
for high-skill relative to low-skill workers. This creates a shift in demand for high-skill workers,
which is presumably uncorrelated with supply factors (amenities) in a location.

To estimate p and ¢ in the relative demand function (23), we use the residuals of the relative
supply function, @, as an instrument for skill premium, w. The orthogonality between this
instrument and the error terms is based on the assumption that the relative amenity valuation,
i, as a supply factor is uncorrelated with relative factor intensities, B, as a demand factor. In
addition, we instrument high-skill population n (i) using an extended quality of life index that
we borrow from Albouy (2012).26 This index is only reported for MSA’s. We extend the index
to our broader set of geographical units by regressing the index on a large set of observables,
and predicting missing values. As a robustness check, our results virtually do not change if we
restrict our sample to only MSA’s. This quality of life index is by construction uncorrelated with
prices and wages in a location, but as Albouy shows, it strongly correlates with a wide range of
natural and artificial amenities in a location. The orthogonality between this instrument and
error terms is based on the assumption that this measure of quality of life is not correlated with
relative factor intensity.

Estimation results are summarized in Table 5. The F-statistics for the first stage in our
IV regressions are large enough rejecting that our instruments are weak. Further, for all pa-
rameters the IV regressions push the OLS estimates in directions consistent with our priors
explained above. According to our estimates, the dispersion of location preferences 6§ = 12.195,
the elasticity of substitution in production between high and low-skill labor p = 2.409, and
the agglomeration advantage of high-skill labor ¢ = 0.316/2.409 = 0.131.27 In addition, the
residuals in equations (22) and (23) give us the exogenous shifters of relative productivities and

amenities S and .

26Specifically, we use Albouy’s “adjusted” measure of quality of life.

27T0ur estimate of the elasticity of substitution between high skill and low skill labor p is within the range of estimates
reported by the literature, if a bit on the high side. In a literature review, Katz et al. (1999) reports values for this
elasticity between 1.40 to 1.70. Ciccone and Peri (2006) come up with estimates between 1.3 and 2, Diamond (2015)
estimates p = 1.6, and Card (2009) finds that p = 2.5.
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log skill premium, Eq. (22) log population ratio, Eq. (23)

OLS 1A% OLS v
log population ratio 0.074%** 0.082 ***
log skill premium -0.385 -2.409%H*
log high skill population 0.178*** 0.316***
constant 0.551*** 0.558 *** -2.629%** -3.178%**
1st stage F (KP) 1150 12
number of observations 1267 1267 1267 1267

Note: Robust standard errors are in parentheses. All observations are weighted
by city population. *** p<0.01, ** p<0.05, * p<0.1.

Table 5: Estimating relative labor demand and supply

4.2.2 Productivities and amenities

With key parameter estimates in hand, we next solve for total factor productivity A(:i) and
high-skill base utility from amenities uy(i). Here we use equilibrium integral equations derived

by our model. Our estimation procedure, inspired by Allen et al. (2016), consists of two steps:

Step 1. We first estimate total factor productivity A inclusive of spillovers as well as high

skill amenity values ug. To do so, we rewrite the two systems of integral equations as follows:

A = Wy NG (i) (i) o 0)bG)

. Nl—0 = N o=1 A (o=1)(6=1) N\ 1=o+30 o148 .
x [ dti, ()T RG) T 0 () ()00 4 (2)
J
NG . e ool N\ loe No=l o (e=D(E-1)
ag(i) s = Wy Ny° ng(i) s wg(i) & R(i) 9
< [t TG e) 0 (25)
J

Here, A(i) and uy(7) are unknown variables, whereas population and wages are known. As long
as trade costs are symmetric d(i,j) = d(j,4), we can further reduce the two systems of equation
into one. If either of above integral equations hold along with the following relation, then both

systems will hold:

an() T RG) TS g (1) S5 w () T b)Y = MA@ (i), (26)

where A > 0 is a constant. The numerical algorithm by which we solve these equations is
described in detail in Appendix D.
Step 2. We use our recovered productivities A(7) to estimate common agglomeration param-

eter o and to recover base productivities A(i). Taking logs of (7) we get:
log A(i) = alogn(i) + log A(i) (27)
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We regress recovered log total factor productivity on log population, instrumenting population
with our estimated high-skill amenity values @ (7). Results are reported in Table 6. We find
that the elasticity of hicks-neutral productivity with respect to population is 0.305. The IV and
OLS results are very similar. While not reported, removing population weights barely changes
these estimates. Our estimate is a bit higher than agglomeration elasticities of 0.03-0.27 reported
in the survey by Rosenthal and Strange (2004).

Dependent variable: Log productivity

OLS v
Log population 0.303*** 0.305%**
Constant -2. 757, -2.779 Hokk
1st stage F (KP) 4119
Obs 1267 1267

Note: Robust standard errors. All observations are
weighted by population. *** p<0.01, ** p<0.05, *
p<0.1.

Table 6: Estimating agglomeration

4.2.3 Results for the productivity and amenity shifters

In Figure 2, we present the estimated geographical distribution of the four exogenous shifters:
base productivity, high-skill amenities, relative productivity, and relative amenity valuation.
The identification of these shifters relies on the combination of observed population and wages
across cities. The intuition is easier to grasp, but similar, if we consider a single worker type. For
example, according to our estimates, the southernmost point in Texas or most regions within
North Dakota offer low amenity values and high productivities. The relatively high productivity
in these regions reflect higher wages that are paid to compensate for low amenities (as welfare
equalizes for the marginal worker). However, these regions can attract only a low number of
population because of their low amenities. In contrast, we have found that, for instance, the
eastern part of South Carolina has relatively high amenity values with low productivities. Low
wages in this region are compensated by high amenities which in turn attract a high population.
We estimate that common base productivity is higher in the coastal regions of the United
States as well as the Rocky Mountains. It is worth pointing out that, unlike Allen and Arkolakis
(2014), we do not find that cities are fundamentally more productive than other regions.?® Here
we avoid to some degree the critique of the new economic geography literature that cities are
exogenously more productive than nearby, naturally similar areas. Instead, we find that areas
of the United States which are either near coastline, or areas such as the rocky mountain region

that have relatively low humidity are more fundamentally productive.?? We do find, however,

28Neither do we find them consistently less productive than other regions.
29The reader should keep in mind that these estimates are neither observed productivity nor amenities. Those
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that exogenous high-skill amenities uy are strongly correlated with city size. Our results are
consistent with those of Albouy (2012) who shows that in many ways cities are attractive places

to live for reasons not related to productivity.?’

(c) Base high-skill amenities @z (i) (d) Relative high-skill amenities 3 (4)

Figure 2: Locations colored by estimate

Turning to the relative measures, we find that both are reasonably smooth across geography.
We find that, in the relative term, low-skill people prefer to live in the South, Florida, and
Southern California, and high-skill people prefer to live in the Upper Midwest, Mountain regions,
and Northwest. High-skill workers tend to be less exogenously relatively productive in the Lower
Midwest region, possibly reflecting the relatively high soil quality in that region. Notice that

due to the skill agglomeration advantage, relative high-skill productivity will be endogenously

objects are functions of population, an equilibrium object in our model.

30An alternative strategy would be to allow for congestion effects outside of housing which we model explicitly. If
we regress 4y on population with a valid instrument (possibly the presence of a land-grant university, for example),
we can estimate the elasticity of non-housing related amenities with respect to city size. We have done this, and get
an elasticity of 0.7. This elasticity is quite high, and would function in our model like an additional agglomeration
force, potentially the force which is highlighted in Diamond (2015). The residuals of this regression would then be our
exogenous amenities, and they do not correlate with population. Instead of going in this direction, in our baseline we
interpret amenities as medium-run exogenous infrastructure like sports stadiums and theaters.

22



higher in populated cities.

5 Quantitative exercises

5.1 Role of geography in wage inequality

We motivated our modeling exercise in part as adding geography into a spatial inequality model.
To measure the contribution of geography to wage inequality, we decompose observed variation
in wage premia into variations in exogenous base productivities and amenities in absolute and

relative terms, as well as geographic position. Consider the following relation:

wH(z) BH(Z) ﬁH(l) = . _ . . .
log( - ) :’yllog< = > + 9 log <77) + v3log A(7) + 4 log tr () + 5 log P(i) 4+ ((4
wili) 5.0) 500 g g 0+
The first four terms on the right hand side are the four exogenous shifters in our model. The
fifth term is the price index P. The price index of tradeables in a location exclusively embodies
the geography of a location with respect to all other locations because it is the only term that
incorporates bilateral trade costs. Lastly, as our model does not imply the above relation in

closed form, we include an error term (.

Notation Log skill prem Log skill prem ShapelyR?

Log tradeable price P -0.366%** -0.071%** 9.2%
Log amenity level Up 0.064*** 21.1%
Log base productivity A 0.030%** 3.2%
Log relative productivity % 0.208%** 5.6%
Log relative amenities . -0.840%** 60.9%
Observations 1267 1267

R-squared 0.240 1.000

Note: Regressions report robust standard errors. All observations are weighted
by population. *** p<0.01, ** p<0.05, * p<0.1.

Table 7: Decomposition

We use this relation to quantify how much observed variation in geographic features across
American cities explain variation in their wage premia. In the first column of Table 7, we report
the R? for a simple regression of the log skill wage premium on the log price index of tradeables.
We find that price alone can explain 24% of the variation in the wage premium.

In the third column of Table 7, we report results from the full decomposition. Our five shifters
explain 100% of the variation in observed wage premia. We find that 9.2% of observed variations
in skill wage premium are due to the variation in geographic features across American cities.
Geographic features explain more of the variation in wage premia than relative productivity and
productivity levels combined. While both geography and productivities contribute measurably
to wage inequality across space, we find that the largest part of the variation in wage premia,

60.9%, is explained by variations in relative amenities. The signs of each factor in the regression
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is as expected. We expect more productive and nicer places, all else equal to have higher
population and thus more wage inequality. We expect more remote places to have lower wage
inequality. We also expect places with higher relative productivity to have more inequality.
Finally, we expect places which high-skill workers value more to have lower wage inequality,
since high-skill workers will be relatively attracted to these places even if their wages there are

relatively low.3!

5.2 Domestic trade and inequality

We examine how welfare inequality reacts to changes in domestic trade costs. To do so, we
follow a standard exercise in the trade literature by increasing trade costs to the autarchy level.
Although this counterfactual experiment is extreme, it allows us to compare our results with
those in the literature. In this exercise, we ask not only how much aggregate welfare decreases,
but also how much relative welfare of high to low-skill workers changes.

Although there are competing forces at work, we expect that once trade is shut down people
will prefer to live in exogenously more productive cities. The cheap goods produced in big cities
will no longer be sold in small towns, and conversely, there will no longer be a market in big
cities for the goods produced in small towns. This mechanism leads to an overall increase in
the concentration of population, and thus an increase in agglomeration forces. Since high-skill
workers benefit relatively more from agglomeration, we expect welfare inequality to increase.

We find that this mechanism is indeed the dominant force. Figure 3 summarizes our results
from a large number of counterfactual experiments. In each experiment we increase all trade
costs from their baseline values proportionally. Our basic finding is that both high and low-skill
welfare fall with increases in trade costs, but low-skill welfare falls more. In the extreme case
of moving to autarchy, high and low-skill welfare decreases by 32.7% and 40.1% respectively.
Accordingly, the ratio of high to low-skill welfare increases by 12.3%. To make a connection to
the intuition we provided above, we also report changes to a Herfindahl index in population,
that is, the sum of squared population shares of American cities. As shown in figure 3, the
Herfindahl index in population monotonically increases with trade costs.

These results complement a literature that studies the effects of international trade on in-
equality in developed countries (Antras et al., 2006; Hummels et al., 2014). Indeed, and in
contrast to the Stolper-Samuelson theorem, globalization has even increased inequality in de-
veloping countries (Davis and Mishra, 2007). We find instead that domestic trade costs and
inequality are positively correlated. The key difference in our context is that workers are mobile,
and thus agglomeration economies change endogenously with market integration. The negative
effect of trade on wage inequality in the international context is reversed when labor is mobile

across locations within a nation.

31For comparison with Allen and Arkolakis (2014), we also decompose variation in income into exogenous produc-
tivities, exogenous (high-skill) amenity levels, and geography. We find that 20.5% of variation in income across cities
is due to variation in geography. This number is at the bottom of the range reported in Allen and Arkolakis (2014).
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Figure 3: Trade cost experiments

5.3 Californian productivity shocks

In the 20 years leading up to the turn of the 21st century, California’s share of the US popu-
lation increased by 17.6%. In the same period, the college population ratio in California grew
by 37.5%.32 The growth in California’s population and its biased growth in highly educated
workers were the outcome of nontrivial interactions between productivity, demographics, hous-
ing regulations and other factors both in California and in other states. That being said, one
particularly important factor behind Californian growth in this period was the expansion of the
computing and high technology sectors. This period saw the rise of Silicon Valley during the
lead up to the Dot-Com Bubble.

32The overall population share grew from 10.2% in 1980 to 12.0% in 2000. Put another way, California’s population
increased by 43.1% from 1980 to 2000, while the total population of the United States increased by only 19.3%. The
college population share in California was 37% in 1980 and 51% in 2000.
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Average national high-skill welfare 1.70

Average national low-skill welfare 0.53
Average national welfare ratio 1.16
California Rest of the United States

High-skill wages 14.1 -0.6
Low-skill wages 9.2 -14
Skill premium 3.9 0.9
High-skill population 46.8 -4.1
Low-skill population 6.8 -0.7
Price of tradeables -4.4 -1.2
Total price index 8.2 -1.9
High-skill real wages 5.0 1.3
Low-skill real wages 1.1 0.5

Table 8: The effects of California’s productivity shocks on welfare, prices, and wages (percentage change)

We perform a counterfactual exercise to study how technological progress in California con-
tributed to welfare and inequality in California and across the United States. To perform our
counterfactual, we hold constant exogenous total factor productivity A and high-skill productiv-
ity By in the rest of the United States, and we alter the exogenous productivities of all regions in
California to match the observed 17.6% growth in Californian population share and the 37.5%
growth in college population ratio. To match these two numbers, we computed that exogenous
Californian high-skill productivity rose by 17.8% and exogenous low-skill productivity increased
by 4.1% on average across Californian cities from 1980 to 2000.33

We report the results of this counterfactual exercise as percent changes from the counterfac-
tual case to our baseline in Table 8. We find that expected welfare of high-skill workers would
increase by 1.7%, expected welfare of low-skill workers would increase by 0.5%, and welfare
inequality would rise by 1.2%.

Furthermore, we examine changes to wages and prices across locations within a skill group,
and across skill groups within a location. Table 8 reports changes to the population-weighted
mean wages, prices, and skill premium in California and the rest of the United States. Overall,
the skill premium rose an average of 3.9% across Californian cities, and 0.9% on average else-
where. The skill premium in California increased less than the relative productivity increase of
high-skill workers. We might have expected the opposite, since the effect of exogenous high-skill
productivity increases on wage inequality could be amplified through population growth and

the accompanying high-skill agglomeration advantage. On the other hand, general equilibrium

33We numerically solve for A and 3 of regions in California such that our model generates the desired changes to
college population ratio and overall population. The reported changes in exogenous high and low-skill productivities
correspond to, on average, 10.2% change to A and 12.2% change to Sy of regions in California, from 1980 to 2000.
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effects act to dampen the effect of productivity changes by increasing the supply of high-skill
workers in California. In addition, the overall price index including both housing and tradeables
rose by 8.2% in California while it fell by 1.9% elsewhere. In California, the higher price index is
due to a dramatic increase in housing price which dominates the fall in the price of tradeables,

while in the rest of the US cheaper tradeables are the main driver of the lower cost of living.

5.4 Growth in the skill premium and American welfare inequal-
ity 1980-2000

All over the United States, the college wage premium significantly increased from 1980 to 2000.
The rise in the skill premium has not, however, been uniform across American cities. For
example, the skill premium rose by 33% in San Francisco, CA, by 17% in Detroit, MI, and only
by 6% in Fort Wayne, IN. Figure 4 shows the distribution of changes in the skill premium across
cities, with a median of 0.151 and standard deviation of 0.096. In this section we use our model
to link these observed changes in the skill premium to what we ultimately care about, changes
in American well-being inequality.

We focus on the counterfactual in which observed changes to college wage premium between
1980-2000 are driven entirely by skill-biased technological change. That is, high-skill workers’
productivity increases while the productivity of low-skill workers is held constant. More specif-
ically, we match the observed 1980 wage premia in all American cities by reducing exogenous
high-skill productivities A(Z)L;IBH(Z) holding low-skill productivity A(i)%l(l — Bu(4)) fixed.
We report changes from the counterfactual to the baseline equilibrium.

We find that expected welfare of high-skill workers increases by 15.3%, and expected welfare
of low-skill workers increases by 0.2%. Accordingly, welfare inequality increases by 15.1%. The
change to welfare inequality is comparable to the median change in the college wage premium.
While the sharp rise of the skill premium in San Francisco overstates the change in welfare
inequality, the modest rise of the skill premium in Fort Wayne understates the change in welfare
inequality. The main reason is that high-skill workers increasingly sort to cities that experience
higher costs of living due to housing prices. To illustrate this relationship, in Figure 5 we plot
the counterfactual changes to the college population ratio against the counterfactual changes to
housing rents across American cities with more than 50,000 population. This sorting mechanism
works entirely through general equilibrium effects on wages and prices, which we calculate
through fully solving our model at counterfactual levels of exogenous parameters. While we
believe our ability to solve for equilibrium at arbitrary parameter values is novel in this literature,
our findings are consistent with Moretti (2013) who uses a more empirical approach to show
that in large cities the rise in real wage inequality between 1980-2000 was less than the rise in
observed skill premia.

A final comment is to contrast the implications of our model for welfare trends to those
of Diamond (2015) who performs a similar exercise, decomposing changes in wage inequality

for the years 1980-2000. In our model, the agglomeration forces for high-skill workers raise the

27



welfare of low-skill workers through general equilibrium price and wage effects. Similar forces are
present in Diamond (2015), but in her paper she focuses on how welfare inequality is amplified
by the agglomeration force in amenities.?® Except for different agglomeration mechanisms,
the main elements of our models are fairly analogous. For example, both models generate
congestion through limited land supply, and both have wages influenced by the supply of high
and low-skill labor in a location (in our model a CES production function, in Diamond a log-
linear approximation to a wage equation). The key difference is that Diamond (2015) models
agglomeration through amenities, with amenities scaling up with the high-skill population ratio.
We model agglomeration in productivity.?® In our model productivity gains in one location spill
over to other locations through price and wage effects. Prime among these is the lower cost
of tradeables everywhere. Thus, even when productivity growth is exclusively skill-biased and
firms may substitute away from low-skill workers, the real wage of low-skill workers tends to

rise every where. In Diamond (2015), amenity spillovers in a location are only enjoyed locally.

0.15 . —

0.17

0.057

Relative number of observations

0 i i i
-20 0 20 40 60
Percentage change to college wage premium 1980-2000

Figure 4: Histogram of observed percentage change to college wage premium across American cities 1980-
2000

34Diamond carefully writes that she is only measuring the changes in welfare due to the rise in the college population
ratio.

35A second important difference is that Diamond estimates high-skill labor to be less sensitive to housing prices,
so that low-skill labor is forced out of expensive, high-amenity cities as housing prices rise. We abstract from this
preference-driven mechanism.
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Figure 5: Log counterfactual change in college population ratio versus log counterfactual change in housing
rents.

6 Conclusion

We document that isolated cities tend to have less wage inequality. We develop a theory showing
that the higher cost of tradeables in isolated cities makes them less attractive to live in, and
high-skill workers are less productive in smaller cities. We build a quantitative model to under-
stand and measure this mechanism. Our model bridges the gap between the spatial inequality
literature which abstracts from geography, and the economic geography literature, which ab-
stracts from inequality. We find that 9.2% of observed wage inequality is due to the geographic
location of cities. In a counterfactual experiment, we find that the rise of Silicon Valley increased
skill wage premium in California by 3.9% and welfare inequality across the United States by
1.2%. We also find that the rise in the skill wage premium from 1980 to 2000 in large American

cities overstated changes to welfare inequality in that period.
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Appendix For Online Publication

A Data appendix

In this appendix, we describe in detail the data we used, where we got it, and how we processed
it. The goal is that a researcher wishing to replicate our analysis will be able to use this section

and code available on our website to exactly replicate and understand our results.

A.1 Some conceptual issues on the geographical unit

Many authors in the urban economics literature have used the same IPUM’s 5% sample. In the
course of cleaning and understanding these data for our project we discovered some important
data issues which have received little discussion in the literature. In particular, IPUM’s data only
reliably report a PUMA for each individual. An individual’s MSA and county are only reported
when there is no ambiguity about her location. If an individual resides in a PUMA which
straddles the border of a MSA, then she will be reported without an MSA. Of all observations
potentially in an MSA, only 80% can be determined to actually live inside the metro area.
The problem is even larger with counties. We can only unambiguously place individuals in 423
of the 3007 American counties. Observations with non-PUMA identifiers in IPUM’s data are
likely unrepresentative of the true populations in those locations. On the other hand, while
we can reliably place census observations into PUMA’s; PUMA’s are undesirable as a unit of
analysis. PUMA’s are not economically meaningful, and the area of a PUMA varies widely with
population density.

In light of these data issues, we follow the methodology proposed in a recent working pa-
per to recover CBSA data aggregates (Baum-Snow et al., 2014). To construct aggregates, we
weight census observations based on 2003 PUMA populations and the fraction of each PUMA’s
population residing in each CBSA. This information is available from the Missouri Census Data
Center. The strong assumption required for this method to be valid is that population within a

PUMA is distributed uniformly with respect to the data aggregates in which we are interested.

A.2 Commodity Flow Survey coverage

Data from the 2007 Commodity Flow Survey is widely used by transportation researchers. The
goal of the Commodity Flow Survey is to estimate the volume and mode of domestic shipments
by commodity at various levels of geographic aggregation. The survey is mandatory and given
to a sample of American manufacturing, wholesale, and certain types of retail establishments.
A surveyed establishment is required to fill out a quarterly questionnaire for one year about
shipments it sent out over the last week. Surveys are combined with sampling weights to
produce estimates of total trade flows by commodity. For more information on this survey, see

the official Commodity Flow Survey website https:www.census.goveconcfs.
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A.3 Cleaning and adding geography to census data: detailed

replication instructions

As mentioned above, the main data source is the IPUMS 5% sample. The data was down-
loaded with the interface available on the IPUMS website.?6 Table 9 described the variables we

downloaded in the initial sample.

VARIABLE NAME Description

YEAR Census year DATANUM & Data set number
SERIAL Household serial number

HHWT Household weight

STATEFIP State (FIPS code)

COUNTY County

METRO Metropolitan status

METAREA general) Metropolitan area [general version]
METAREAD detailed) Metropolitan area [detailed version]
PUMA ublic Use Microdata Area

GQ Group quarters status

PERNUM Person number in sample unit

PERWT Person weight

SEX Sex

AGE Age

RACE general) Race [general version]

RACED detailed) Race |[detailed version]

EDUC general) Educational attainment [general version]
EDUCD detailed) Educational attainment [detailed version]
WKSWORK1 Weeks worked last year

UHRSWORK Usual hours worked per week

INCWAGE Wage and salary income

INCBUS00 Business and farm income, 2000.

Table 9: Variables from IPUMS 5% sample

Using these variables, we cleaned the data by modifying replication code for Baum-Snow and
Pavan (2013) from Nathanial Baum-Snow’s website.?” Cleaning involves dropping observations
with imputed characteristics, dropping ages less than 25 and greater than 64, dropping those
who worked less than 40 weeks in the year or less than 35 hours in a week, those which made less
than minimum wage in 1999, and active duty military. Finally anyone with positive business
income was dropped. This last restriction is because we think wages are a poor measure of
income for owners of businesses. The cleaning was done in Stata with the file “census_prep.do”,
and cleaned data is saved as “census00.dta”.

After cleaning the data, we merge geographic information into the census data. This op-
eration is done in Stata using the file “msa_puma_geography.do”. We calculate the population
weighted locations of PUMA’s and MSA’s using the excellent Missouri Census Data Center web-
site.38. Selecting all states and both “source” and “target” equal to “PUMA for 5 Pct Samples

36https:usa.ipums.orgusa-actionvariablesgroup
3Thttp: / /www.econ.brown.edu/fac/nathaniel baum-snow /ineq-citysize.zip
38http://medc2.missouri.edu/websas/geocorr2k.html
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(2000)” generates a csv file, which we copy into an excel sheet to get “PUMAs.xlsx”. Selecting
all states and both “source” and “target” equal to “Metro Area:MSA or CMSA (2000)” gener-
ates a csv file. This csv gives MSAs four digit codes to match CMSA codes, while in the census
data we have only three digit codes. For the most deleting the last digit of the four digit codes
is all that is necessary, but in five instances there are two four digit codes with the first three
digits identical. We select the region which matches the census MSA three digit code. These

five changes are:

1. 233: 2330/2335 exclude both
265: 2650/2655 exclude 2655 (Florence,SC)
298: 2980/2985 exclude 2985 (Grand Forks, ND-MN)

328: 3280/3285 exclude 3285 (Hattiesburg, MS)

oL W

(
(
(
360: 3600/3605 exclude 3600 (Jacksonville FL)

After these changes, results are stored in the file “MSAs-change.xlsx”

Next we add the areas of PUMASs to complete the geographical features we need. We
download an IPUMS file containing all intersections between 2000 PUMAs and 2010 PUMAs.3?
We then collapse this file by 2000 PUMA to get areas in square kilometers.

Finally, the file “census_prep.do” merges all the geographical features into the census data,
and creates a new variable “fj_region” which is an MSA if the census observation is classified in
an MSA, and PUMA otherwise. It is important to point out that just because an observation
is not classified in an MSA, that it is not in fact part of an MSA. Moreover, the population
observed in an MSA may not be representative of the true MSA population. Here is what is
said about the issue on the IPUMS website:4°

The most detailed geographic information available is for 1980 county groups
or for 1990 or 2000 PUMAs, areas which occasionally straddle official metro area
boundaries. If any portion of a straddling area’s population resided outside a single
metro area, the METAREA variable uses a conservative assignment strategy and
identifies no metro area for all residents of the straddling area.

Users should not assume that the identified portion of a partly identified metro
area is a representative sample of the entire metro area. In fact, because the uniden-
tified population is located in areas that straddle the metro area boundaries, the
identified population will often skew toward core populations and omit outlying com-
munities. Also, weighted population counts for incompletely identified metro areas
will be low by amounts ranging from 1 to 69% (since the unidentified individuals will

not be counted as living in the metro area).

39https://usa.ipums.org/usa/resources/volii/puma00_pumal0_spatial crosswalk.xlsx
40https://usa.ipums.org/usa-action/variables/ METAREA#tdescription_section
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A.4 Constructing CFS area distances

In order to calculate distances between Commodity Flow Survey (CFS) areas, we need two types
of information. One is information about the size and nature of commodity flows themselves,
and the second is the physical locations of roads, waterways, and railways in the United States.
Information on commodity flows was downloaded from the US Census website.4! We used flows
from the year 2007, because this was the first year in which tables breaking down commodity
flows by mode of transportation was available. These raw data come in so-called ”long” format,
with each row a origin-destination-mode observation. We find it more convenient to work
with data in the "wide” format, with each row an origin and destination, but with separate
columns for the value of each mode of transportation. We do this using the python script
“pivot_cfs_mode.py”.

There are two input files necessary to run “pivot_cfs_mode.py”. The first, “Origin_by_Destination_by_Mode_py"
is simply the downloaded census file saved as a csv. We also need the centroid of each CFS area
in order to calculate physical distance between CFS areas. We use QGIS software to do this.
Our data comes from a shapefile available from a US census website.?> We manipulate the data
in the QGIS project ”calc_centroids.qgs“. Specifically, after loading the downloaded shapefile,
we create a new variable "st_cfs_area“ to make CFS areas unique. We then use the ”dissolve“
command to eliminate counties, and the "mean coordinates“ command to get centroids. We
save the calculated centroids as ”cfs_2007_centroids.csv “.

The output of “pivot_cfs_mode.py” is “replication_data’_no_ethnic.csv”’. As the name im-
plies, in order to run the gravity equation in our distance cost estimation we need to add
information on the correlation in ethnic composition between all CFS areas. We separately
downloaded the variables in Table 10 from TPUMS. We save these new variables as the stata
file ”demographic_data_2000.dta”.

The Stata script "merge_in_demographics.do” combines the new and the old census data, and
then creates the correlation matrices ”lang_corr_matrix.csv”, ”race_corr_matrix.csv”, ”birth_pl_corr_matrix.csv”.
We want the correlation matrices listed by origin destination pair to match our CFS data, so we
reshape and combine the data in this format in the python script ”"append_ethnic_var.py”, which
creates a file "combined_stacked.dta”. Finally, we add the ethnic variables to our CFS mode
information using the do file ”append_stacked.do”, which outputs the file "replication_data.csv”.

The file "replication_data.csv” now contains everything we need to run the distance cost
estimation except the map files. The last step, is to put the data in a format which Matlab
can understand.*® This means that we strip off all text and put the CFS area coordinate
columns into a file called ”cfs_coor.csv”, the trade value columns into ”cfs_trade.csv”, and the
demographic correlations into ”cfs_eth.csv”.

The Matlab script “allen_arkolakis_estimation.m” takes the csv files described in the last

http:/ /www2.census.gov/econ2007 /CF /sector00/special tabs/Origin_by_Destination_by_Mode.zip

“2http:/ /www.census.gov/econ/census/shapefiles/ CFS_AREA _shapefile_010215.zip

43 Allen and Arkolakis wrote their estimation in Matlab and kindly made the files available to us. We use a modified
version of their code to calculate our distance costs.
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VARIABLE NAME Description

YEAR Census year

DATANUM Data set number

SERIAL Household serial number

HHWT Household weight

GQR Group quarters status

PERNUM Person number in sample unit

PERWT Person weight

RACE general) Race [general version]

RACED detailed) Race [detailed version]

BPL general) Birthplace [general version]

BPLD detailed) Birthplace [detailed version]

LANGUAGE general) Language spoken [general version]
LANGUAGED detailed) Language spoken [detailed version]
RACESING general) Race: Single race identification [general version]
RACESINGD detailed) Race: Single race identification [detailed version]

Table 10: Demographic variables from IPUMS 5% sample

paragraph as inputs, and outputs the file “cfs_areas_trade_cost_list.csv”. We next copy this list
as a column into the file “replication_data.csv”. This is necessary because we need origin and
destination names attached to the trade costs to merge with the census data.

At this point we have recovered distance costs between all CFS areas. For the structural
estimation, however, we need to know the distance costs between all fj regions. Typically,
fj_regions are completely included in a single CFS area. A small number of fj_regions stradle
two or more CF'S areas. In these cases, we prefer first non “rest of state” CFS areas, and then the
CFS area which contains the highest population.** This calculation is done in the Stata script
“link.do”. The script goes on to recreate the distance cost matrix, but with fj_regions rather
than CFS areas. If the distance cost is missing (i.e. there is no trade between the relevant CFS
areas), then the highest observed trade cost is substituted. The final output is a distance cost

matrix with both rows and columns fj_regions. This is one input into our structural estimation.

B Additional Regression tables

The following three tables document the correlations presented in scatterplots in Section 2.3.
Table 11 contains regressions documenting facts from the literature on the positive correlation
between wages, skill wage premia, and skill population ratio with population at the level of
cities. The skill wage premium with skill population ratio are both positively correlated with
population. Table 12 documents the positive relationship between the skill wage premium and
the skill population ratio. The point estimates vary significantly, but the relationship is positive
across a number of specifications.

Table 13 documents the relationship between skill wage premium and remoteness. The

44Tn most states there are separate CFS areas for large cities and then a single larger CFS area encompassing the
rest of the state
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relationship is negative and statistically significant in the simple regression of skill premium
against remoteness (columns 1-2). The correlation is smaller in size, but still significant, when
we control for city population (columns 3-4). However, the coefficient on remoteness loses its

significance when in addition to city population we include state fixed effects (columns 5-6).

Log wage Log skill wage prem Log skill pop ratio
Log population 0.0574*** 0.0218*** 0.180%**
(0.00332) (0.00139) (0.00804)
Constant 1.972%%* 0.269%** -3.109%**
(0.0387) (0.0188) (0.115)
Observations 1,267 1,267 1,267
R-squared 0.806 0.608 0.692
State FE YES YES YES
Pop Weight YES YES YES

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 11: Regressions documenting the relationship between wage, skill premium, skill ratio and population

Dependent variable: Log skill wage premium

Log skill pop ratio 0.0750*** 0.0135** 0.0747+**
(0.0103) (0.00668) (0.00719)
Constant 0.555*** 0.448*** 0.592%**
(0.0140) (0.00929) (0.0140)
Observations 1,267 1,267 1,267
R-squared 0.175 0.004 0.550
State FE N N Y
Pop Weight Y N Y

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 12: Regressions documenting the relationship between skill wage premium and skill population ratio
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Dependent variable: Log skill wage premium
(1) (2) (3) (4) (5) (6)

Log remoteness  -0.268***  -0.150%**  -0.133%**  _0.117***  -0.0986 0.00651
(0.0353)  (0.0195)  (0.0385)  (0.0192)  (0.0685)  (0.0441)

Log population 0.0195%*%*  0.0162***  0.0197*** (0.0154***
(0.00269)  (0.00169)  (0.00179)  (0.00158)
Constant 0.540%**  0.470%**  (0.275%** 0.304%** 0.316*** 0.341%**

(0.0102)  (0.00556)  (0.0350)  (0.0187)  (0.0351)  (0.0250)

Observations 1,267 1,267 1,267 1,267 1,267 1,267
R-squared 0.232 0.053 0.386 0.102 0.613 0.354
State FE N N N N Y Y
Pop Weight Y N Y N Y N

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 13: Regressions documenting the relationship between remoteness and the skill wage premium

C Comparing our Trade Cost Estimates to Allen and
Arkolakis (2014)

Our baseline estimates for distance costs vary quantitatively from those estimated using the
same data and methodology developed in Allen and Arkolakis (2014). As mentioned in the
main text, because of differences in scaling, we shouldn’t expect our estimates to be at the same
absolute level, but we might expect proportionality. Allen and Arkolakis were kind enough to
provide a main Matlab estimation file to us soon after we began working on this project. We
downloaded and cleaned the input files ourselves from the same sources as the previous study,
and wrote several small functions which were omitted from the original code provided to us.
Thus, we were quite surprised to find that our estimates vary from the original. In particular, we
estimate a much higher variable cost for water and air than do Allen and Arkolakis. The rank
of our estimates for fixed costs are the same as Allen and Arkolakis. The rank of our variable
costs are the same, except for water transport which we estimate to be the most expensive form
of transport. See Table 14 columns (1) and (2) below.

Allen and Arkolakis later released full replication code for their paper. Below we compare
our estimates in more detail. While we were not able to make our results match theirs exactly,

we can find several differences which explain part of the gap:

1. In our estimation we use a value of ¢ = 4 to be consistent with our structural model.
Allen and Arkolakis (2014) use o = 9. This difference alone does not explain the different
estimates. In this section, all reported estimates are for o = 9 whether it be our estimation
or those of Allen and Arkolakis.

2. The input value of truck transport in Allen and Arkolakis’ replication data is exactly twice

what is reported in the 2007 Commodity Flow Survey data we downloaded. It appears
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this is a bug. Column (3) in Table 14 shows that this does not drive the difference between
our estimates. We doubled the value of truck transport in our data, and our estimates
remained qualitatively the same. We speculate the estimates do not change much because
road transport is already the dominant form of shipment in the domestic United States.

Increasing the dominance does not have a qualitative effect on the estimates.

3. In the Commodity Flow Survey data, pure water transport and pure rail transport are
separated from transport via water and truck and rail and truck.*> Allen and Arkolakis use
only pure water and rail transport in their input data, whereas we count both categories.
In Column (4) we run our code using only pure water and pure rail figures. Our estimates
of air and rail transport then move substantially closer to the numbers estimated in Allen

Arkolakis, although they are still somewhat different.

4. The maps we use to compute distances for road and rail are nearly exactly the same as
those in Allen and Arkolakis. The water maps differ, however. We allow (cheap) water
transport only along common shipping routes in the ocean. Allen and Arkolakis allow water
transport along any part of the ocean. Because of different coordinate systems hardwired

into the code, it is hard to directly analyze how much this factors in the analysis.*6

5. Allen and Arkolakis estimate the parameters for ther shippers’ discrete choice of mode of
transport minimizing the following loss function. Let £(3)7 be the difference between the
predicted and observed fraction of shipments of mode m between origin o and destination

d evaluated at parameter vector 8. Let N be the total number of bilateral pairs:

Sl S o
m o d

Our algorithm minimizes the squared residual:

PP IPMCEIE
m o d

The two loss functions deliver qualitatively different solutions to the problem both in Allen
and Arkolakis’ code and in ours. We show how this affects our results by first running
Allen and Arkolakis’ baseline code using our data, and then running their code using our
data as well as our minimization algorithm.*” In Column (5) we see results that are much
more similar to Allen and Arkolakis than in the baseline. Using our algorithm in Column

(6), we move the results much closer to our baseline. Finally, in Column (7) we run Allen

45Explicit category definitions for CFS data can be found here: www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/co
46Tn addition to these differences, the coordinates used by Allen and Arkolakis for CFS areas appear to be rounded

as is typical when exporting data from Stata. Their coordinates range from -2.2 to 2.1 million on the x-axis and from

-1.2 to 1.4 million on the y-axis. All coordinates with absolute value above one million have the final five digits rounded

to zero. As we were unable to precisely link our data sets, the extent that this affects estimates is not clear.
47Because our input data on demographics was not in the same format as in Allen and Arkolakis, in our final gravity

regressions we altered Allen and Arkolakis’ code to omit demographic similarity between locations. This may be

driving some of the results we report here
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Transport Type (1)  (2)  (3) 4 (6) (©6) (1) (8

Road var 0.5636 0.4065 0.4414 0.3094 0.4235 0.3944 0.5445 0.4430
Rail var 0.1434 0.3661 0.3935 0.2965 0.0016 0.3414 0.4405 0.3986
Water var 0.0779 0.6265 0.6439 0.4556 0.0454 0.4597 0.7915 0.6806
Air var 0.0026 0.2233 0.3187 0.1050 0.0506 0.0000 0.0000 0.3157
Rail fixed 0.4219 0.2995 0.3274 0.3308 0.3687 0.4178 0.5246 0.3106
Water fixed 0.5407 0.3428 0.3600 0.3907 0.3887 0.5938 0.6037 0.3384
Air fixed 0.5734 0.5254 0.4963 0.4935 0.3630 0.6313 0.8323 0.4904

Table 14: Comparing distance estimates in several models

and Arkolakis’ code with their data and with our minimization algorithm.*® Here we see
substantial convergence toward our baseline estimates. One caveat is that air transport

variable costs become even smaller than those estimated in Allen and Arkolakis.

We conclude that one of the main drivers of the difference in our estimates may be the loss
function in the estimation algorithm for the mode of transport problem. Map differences may
also be playing an important role, driving differences in our air cost estimates, along with the
choice of input data for water and rail described above.

As a final comment, the results in our paper continue to be based on our baseline estimates.
We believe that it is proper to count water and truck as a water shipment and rail and truck as
a rail shipment since around 50% of the value of rail shipments in our data also involve trucking,
and around 30% of the value of water shipments involve trucking. We also believe that forcing
water shipments to be along trade routes to ports is also a realistic assumption, since loading
and unloading cargo without a port is costly. Finally, we prefer the smoother least squares loss
function for estimating the relative shipment costs by mode. In sum, although we have not
been able to understand exactly what causes the difference between our estimates, we believe
we have a few leads which could be investigated further. Since accounting for the differences is

not the primary goal of our study, we leave the discussion here.

1. AA Baseline

FJ baseline®

FJ Double Truck

FJ Double Truck / Only water,only rail
AA code FJ data

AA code FJ data FJ mode obj

AA code/data FJ mode obj

®© N ool wN

FJ baseline before bug fix (omitting several small locations)

48Demographic similarity variables are included in the gravity regression here.

49There was a small bug which we fixed after running the AA comparisons below. In particular we were missing
several small locations in our estimation code. Adding these locations did not change our estimates much, which can
be seen by comparing column (8) and column (2).
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D Numerical algorithms

D.1 Solving for productivities and amenities

We treat data on wages and employment, wg, wr, ng, and ny as the outcome of a spatial
equilibrium. Given these data, productivity ratios BH/ B, and amenity ratios ug/ur, the
following algorithm solves for productivities inclusive of spillovers A’s and amenities of high-
skill workers @g’s.

Given that trade costs are symmetric, we reduce the two systems of equations described by
(25) using relation (26),

1o o-1
AW = AW NG i) (i) (i) b0 [ dli, )T AG) )0 d
J
The algorithm solves for amenities and productivities up to a scale.

1. Start with an initial guess for A(7).

2. Compute the kernel,

KGii) = o) (D) wir (i) b(i)d (i)'~ 7e(i) 7

o—1

10 o-1
3. Define k = AW,* N/ , and f(i) = A(i)! 7. Define Ag = [ f(i)di. Let

N (ORI 10
T =T %0d ~ A

as a normalization that sets the integral over f to one. Then, the system of integral

equations described above can be written as follows:
fi) = [ K070
In iteration ¢, update f®)(i) according to

[ KEGOfOG) ™ dj

T L EGOFOG) T didi (28)

f(t+1)(i)

Since we divide integrals in (28), we do not need to know k to update our guess. If at
iteration ¢, | f® (i) — f=D(4)| < 1072 for all i, stop updating and go to the next step.

Otherwise, continue iterating using the updating equation (28).

4. As a check that the solutions are correct, the following must be a constant equal to x for

all 4,

fi
KGO f(G) dj

R =
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By construction [, f(i)di = 1, therefore A(i)'~7 = f(i)Ag. For Ay = 1, calculate A:
- 1 _1
A(i) = f(i)T2 Ag™”
5. Using equation (26), calculate @ ().

. S N1-§ . g=1=90 Wlze=d 8 5 g
up (i) = AT R(1)" °ng (1) @00 wy (i) o1 b(i)o—1A(:)°c(i)

We normalize amenities and productivities such that for the first city in our list which we
call 7, ’UH(’L()) =1 and A(Zo) = 1.

D.2 Solving for wages and employment

Given model parameters and the four shifters A, 8g, @x, @y, we solve for equilibrium wages and
employment. First, we write the distribution of low-skill labor as a function of the distribution

of high-skill labor. By plugging skill wage premium from (14) into relative labor supply (13),

i ot (Br i)\ a2 ram(i)\ 71s L ghekte
) = () (3™ (G ™ (8™ (i) (29)

In addition, integral equations (19) and (20) could be equivalently written as

A@@) 77807 g (Dwp (1)7b(6)
o-1 ~ . (6=1)(§-1) S 1—0+50

— Wy N /J A, ) ()T RG) T g () T wr (G)7bG) " d (30)

(i) 5 R () wn (i)
10 o-1
“ W N [ )G ) ) (31)

where ¢ and R are replaced from equations 17-18. The pair of 30-31 (or equivalently the pair
of 19-20) give us two integral equations. The two systems can be reduced to one using the

following relation, that is equivalent to equation (21),
Nl—g~/No—1 . e | _ . 1l=c o= N PPN Cat D] € Sl )
A() 7¢(1) ng()wg(8)°0(i) = Mg (i) 3 ng(i) % wyg(i) R(i) (32)

The algorithm is as follows:

1. Guess ng(7) for all i.

2. Compute Wy /W7, according to (16). Then plug it in (29) to find n, (7).
Calculate skill premia, w(i) = wg (i) /wg (i), according to (14).

N np (i) wy (i)

Compute b(i) = 1/(1 + 55 7E0)

Calculate &(i) according to (17) and R(i) according to (18).

AN
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6.

10.

Let
W (i) = AT Twg (4)

where, according to (32), wg (i) is given by:

5 1 o—1 _ 1—0 1—0o ~ (c—1)(1-46) o—1—660
(i) = bO) T AG) F o) T g (1) D RG) T (i) 50

1—0o a

1-0o —1
Let f(i) = wu(i)'=7, k = W5° N;° , and

o—1 ~ . (1—0)(1-9) l—0o

K1) = (i) T R0 s () d(.0)' 7 AG) )

Then, system of integral equations (31) can be written as follows (notice that the scale

parameter A cancels out):
) = x | KG)1G) d

In iteration ¢, update f()(i) according to

ey = KGDIOG) di

KGO FO() didi (33)

Equation (33) is our updating rule. Note that we do not need to know x to update our
guess. If f+1 () is not close enough to f® (i), go to step 2 in order to continue iterations.

Otherwise, go to the next step.

. As [;wg(j)dj =1 (the normalization defined in equilibrium), calculate wages:

Wy (i)

wle) = [y wu(5)dj

Calculate A:
17 ~ . .
1= [ wn)aj =377 [ wnia
J J

A= [ [antna]

I (O N ()
L EGOfG) & [, KG,0f3) di
The above should hold for all 7 and ¢. This step, thus, is also a check that the solutions to

integral equations are correct. Then, calculate:

So,

Find x,

1 5
Wy = Nfﬂim

Once wy(i) and Wy are known, it is straightforward to calculate all other equilibrium

objects.
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