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Abstract

In this paper we contribute to the empirical literature on multi-product

exporter by highlighting that data regularities which involve order statistics,

such as best/least selling products, systematically vary with the number of

products. Our insight is that instead of comparing outcomes of interest

between exporters of different scope one should compare the data to pat-

terns that would arise if the sales (and other outcomes of interest) were

randomly distributed. We propose an intentionally stark statistical model of

multi-product exporters where exporter outcomes are random draws from a

distribution. We show that some of the patterns used to characterize multi-

product exporters turn out to be consistent with a wide variety of models,

including the ones that do not feature firm-specific productivity or variation

in fixed costs. For example, in the data exporters with six or more products

sell 8 times as much as single product exporters in their top selling prod-

ucts - an empirical fact that has motivated the hypothesis that large scope

exporters are more productive. If large exporters drew sales from the same

distribution as single product exporters they would sell more than 6 times

in their best selling products. In other words, differences between how much

large and small scope exporters sell in their best selling products is driven

by aggregating the data across the different number of products and not y

differences in firm attributes.

Finally, we extend the model to the multi-country set-up and explore

whether popular measure of sales concentration within a firm, the log-ratio

of sales between the best and second best selling product, is suitable to

study the response of multi-product exporters to changes in trade policy and

competitive environment. We show under what conditions the log-ratio of

sales biases the estimated firm response.



1 Introduction

Across the world multi-product firms dominate international trade flows.

Famously, Bernard et al. (2010) document multi-product firms account for

98% of the U.S. manufacturing exports value. In the light of this empirical

importance, researchers are interested in understanding why multi-product

exporters arise and how they respond to changes in the international trade

environment. In recent years there has been some progress in answering

these questions both on the empirical and theoretical fronts. For exam-

ple, Helpman (1985),Ju (2003),Allanson and Montagna (2005),Nocke and

Yeaple (2015),Bernard et al. (2011),Eckel and Neary (2010), Dhyne et al.

(2017),Arkolakis et al. (2014),Bernard et al. (2010) are just few of the pa-

pers that explore how to model multi-product firms in international trade

and how they respond to changes in international trade environment. In

part, this progress has been facilitated by a number of empirical regularities

documented using newly available firm-product level data.

In this paper we take a step away from behavioral models of multi-product

exporters and instead focus on empirical regularities that underpinned those

models. We aim to understand which ones are informative about the eco-

nomic forces that drive multi-product exporters and which arise as a result of

randomness and aggregation. The original motivation for this research ques-

tion comes from the work of Ellison and Glaeser (1997) who show that data

patterns and predictions of economic models should be compared to patterns

that would arise if the outcomes of interest were randomly distributed rather

than a uniform pattern or an absence of a pattern. In the context of multi-

product exporters we show that some notable differences between large and

small scope exporters discussed in the literature would arise even if product

sales were randomly distributed across firms and products simply because

we aggregate data over different number of products.

This paper is also close in spirit to the work of Armenter and Koren (2014)

who highlight that many facts about the extensive margin of trade are con-
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sistent with a surprisingly large class of models because of the sparse nature

of trade data. In relation to multi-product firms they show that the bins-

and-balls model quantitatively reproduces the frequency of the single product

exporters we observe in the data. We focus on the differences between large

and small scope exporters on the intensive margin and ask which empirical

regularities are consistent with a wide variety of models and which can be

used to discriminate between alternative models of multi-product firms.

Take the observation that large scope exporters sell much more in their

top selling products than their small scope counterparts. It has been doc-

umented across many countries and industries and helps explain why multi

product exporters dominate international trade flows in terms of sales vol-

ume. In this paper instead of comparing sales of the best selling products

between large and small scope exporters we compare sales that we observe

conditional on scope to sales that would arise if sales were randomly dis-

tributed across firms and products. We find no evidence in the data to

support that large scope exporters sell their best selling products in greater

amounts than the small scope exporters beyond what we would expect if

sales were randomly distributed across firms and products. The pattern that

large scope exporters sell much more in their top selling products than their

small scope counterparts is just an artifact of aggregating data to the firm-

level across different number of products. Conditional on the number of

products larger scope exporters sell no more than small scope exporters. In

other words, if large scope exporters drew sales from the same distribution

as single product exporters they would sell more in their top selling products

than we observe them to sell in the data.

More generally to enable comparison between the large and small scope

exporters one has to aggregate product level data across different number of

products to the firm level. Examples include total exporter sales, average

sales per product, mean sales at rank (average sales of the best/least selling

products), ratio of sales between the best and the second best selling product.
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Our insight is that this process of aggregation itself gives rise to differences

between large and small scope exporters.

Consider the following three facts that have been documented across a

large number of data-sets and countries1.

1. Large scope exporters sell more in their best selling products than small

scope exporters.

2. Large scope exporters sell less in their least-selling products than small

scope exporters.

3. Average sales per product are non-monotone with scope.

These facts have been used to motivate many models of multiproduct

exporters where a single firm attribute, usually a firm productivity, drives

both scope (the ability to produce many products) and scale (the ability

to produce at scale due to lower marginal cost). E.g. Bernard et al. (2011)

,Bernard et al. (2010), Arkolakis et al. (2014). To set ideas straight, consider a

Melitz’s style model where firms face random product specific demand shocks

and where a single firm productivity translates into a marginal cost parameter

common across all products of the firm. Lower marginal cost plays a dual

role. First, it encourages high productivity firms to export more products

due to higher expected profits from new products. Second, thanks to lower

marginal cost large scope exporters sell their best selling products in larger

amounts than small scope exporters. Furthermore, due to lower marginal

costs large scope exporters can profitably export products with low demand

shocks that sell in tiny amounts and so their sales in the least selling products

are lower than for smaller scope exporters. Average sales per product are

then indeterminate as a function of scope due to composition effects.

In this paper we show that there is no evidence in the data to support that

products of the larger scope exporters sell in larger amounts than products

1Arkolakis et al. (2014) and Timoshenko (2015) document these patterns for Brazil,
Bernard et al. (2011) and Bernard et al. (2010) for the US
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of the small scope exporters beyond what we would expect if sales were

randomly distributed across firms and products. In other words, the three

facts above arise even in the absence of ex-ante heterogeneity: if all firms have

the same marginal cost per product and product demand shocks come from

the same distribution. To see the intuition, consider a two product firm and a

ten product firm. Suppose that sales per product are just iid draws from the

same distribution across firms and products, then the expected value of the

maximum of ten products is higher than the maximum over two products.

The reverse is true for the minimum. Hence it is possible that larger scope

exporters have higher sales in their top-selling and lower in their least-selling

products relative to the smaller scope exporters mechanically.

Formally, Facts 1 and 2 are examples of order statistics, i.e., average

sales across products at a given rank, and are systematically related to the

number of products for which they are calculated. This paper highlights that

instead of comparing sales at rank between large and small scope exporters,

one should compare the observed or predicted patterns to those that would

arise if product sales were randomly distributed. Indeed, if more productive

firms select into exporting more products then we should see that the large

scope exporters both sell more in their top-selling products than if their sales

were driven by randomness and more than their smaller scope counterparts.

Similarly, if large scope exporters benefited from the economies of scope and

faced lower fixed costs of exporting, they would sell less in their least-selling

products both compared to the small scope exporters and less than if their

sales were random across firms and products.

While in theory randomness and aggregation produce the observed pat-

terns, whether they are sufficient to replicate them quantitatively without

appealing to firm productivity and other economic forces is an empirical

question. To answer it we formalize randomness in an intentionally stark

statistical model of multi-product exporters. In this set up the number of

exported products per firm is treated as exogenous and product revenues
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are realizations from some distribution F(). In our empirical implementation

F() is either Pareto or log normal. We show that this statistical model can

replicate the positive (negative) relationship between the mean sales in best

(least) selling products and firm scope remarkably well. Log-normal provides

a better fit than does Pareto which tends to over-estimate how quickly sales

at a given rank increase/decrease with scope. The poor empirical perfor-

mance of the Pareto stems from its failure to approximate the left tail of

the sales distribution and echoes the findings of Head et al. (2014), Bee and

Schiavo (2018),Fernandes et al. (2015) which show the log-normal distribu-

tion provides a better fit for the distribution of the exporter sales than the

Pareto.

Our empirical results show that facts 1,2 and 3 can be quantitatively

replicated without appealing to firm specific productivity as a single driver

of scope and scale. Put another way, the firm scope is a sufficient statistic

for differences between large and small scope exporters on the intensive mar-

gin. So, a model that can successfully replicate firm scope will also replicate

observed differences between large and small scope exporters. In this regard,

our work also speaks to the literature on the role of firm productivity in

determining scope and scale of multi-product firms. Our results echo ? who

showed that scope and measured productivity are only imperfectly correlated

and it’s heterogeneity in fixed costs of exporting that is the primary driver of

exporter scope. This has profound implications for the theory of the firm and

policy implications. If there is no evidence to support thinking of firm specific

productivity as a single parameter that drives both scope and scale of the

exporters then the emphasis should be on other sources of firm-heterogeneity

that drive exporter scope. For example, R&D that targets product innova-

tion Dhingra (2013), or access to inputs similar to core competencies of the

firms Boehm et al. (2019), market-entry cost heterogeneity Ju (2003),Eckel

and Neary (2010).

Finally, we extend the statistical model to the multi-country setup to see
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if it can reproduce other patterns that rely on order statistics. We focus on a

popular regularity that in more competitive markets multi-product exporters

tend to have their sales more concentrated in the top-selling products. A mea-

sure of sales concentration that has been widely used in the multi-product

literature is the ratio of sales of the best selling to the second best selling

product. One reason behind its wide spread use is that theoretical models

predict the ratio as a function of variables that proxy market competitiveness

at a destination. For example, Mayer et al. (2014) show that when demand

is linear and firms face variable mark-ups multi-product firms adjust their

product mix by reallocating resources across products. They expand pro-

duction of their core (low cost and high mark-up) varieties at the expense

of the peripheral ones thus increasing the concentration in the core varieties.

One of the ways in which they test their prediction is by regressing the log-

ratio on the destination market size, market supply potential, bilateral trade

costs and other proxies of market competitiveness. Using the estimated im-

pact of market size on log-ratio they calculate that the within-firm resource

reallocation contributes nontrivial 19% to aggregate productivity.2

Our multi-destination extension of the statistical model highlights two

things. First, one should be careful when interpreting the regression coeffi-

cients as evidence of product mix adjustments. This is because unless the

sales are Pareto distributed the log-ratio, which is the function of two order

statistics, systematically depends on the number of products. If sales are log-

normally distributed, for example, the expected value of the ratio decreases

with the number of products per firm. So, if firms export fewer products

to more distant or higher foreign supply potential destinations the ratio will

be higher there even if sales are randomly distributed as is in our statistical

2Mayer et al. (2014) provide robustness checks in the appendix where they show that
concentration increases is captured by Theil and Herfindalh indices as well. However, their
discussion of the economic implications and the main results in the paper are based on the
log-ratio measure of concentration which is vulnerable to the bias due to the unaccounted
number of products.
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model. Second, our quantitative results show that the regression coefficient

on the market size underestimates the effect of market size on changes in

product mix. On the other hand, market supply potential or bilateral dis-

tance which are associated with smaller exporter scope will have coefficients

biased upwards. Intuitively, the impact of factors that are associated with

firms exporting more products to a destination will be underestimated while

the effect of factors associated with fewer exporters will be over-overestimate.

Our results thus suggest that the within-firm resource reallocation may con-

tribute more than 19% to aggregate productivity that Mayer et al. (2014)

calibrated.

In this paper we contribute to the empirical literature on multi-product

exporter by highlighting that empirical regularities which involve order statis-

tics, such as best/least selling products, systematically vary with the number

of products. Our insight is that instead of comparing sales at rank between

exporters of different scope one should compare sales that are observed to

those that would arise if firms drew sales from the same distribution. Some of

the pattern used to characterize multi-product exporters turn out to be con-

sistent with a wide variety of models, including the statistical model where

all firms are ex-ante identical and differ ex-post only due to the number of

products. For example, in the data exporters with six or more products sell

6 times as much as single product exporters in their top selling products.

If large exporters drew sales from the same distribution as single product

exporters they would sell more than 6 times in their best selling products. In

other words, differences between how much large and small scope exporters

sell in their best selling products is driven by aggregating the data across

the different number of products. Finally, we show that the ratio of sales

between the best and the second best selling product increases with scope of

the firm for which it is calculated and that this property can bias the results

of the regressions where it is used as the dependent variable.

One should, however, be careful not to interpret our results as evidence
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against behavioral models that feature firm productivity or resource reallo-

cation in response to trade shocks. Beyond the well-documented patterns

that we focus on here, there is work that provides direct evidence on these

channels. For example, Dhingra (2013) find direct evidence that firms invest

in cost-cutting technology for their core products in response to trade lib-

eralization in Malaysia and drop peripheral products. Dhyne et al. (2017)

use a novel multi-product firm production function estimation approach to

estimate technical efficiencies of individual products. They find that firms

are more efficient at producing core products and respond to competition by

focusing more on their core products. Rather one should see our results as

a study into which data moments are informative about multi-product firm

behavior and which should be considered with extra care.

The paper proceeds as follows. Section 2 lays out the model and discusses

the intuition behind it. Section 3 presents the calibrated results, section 4

extends the baseline model to multi country set-up and section 5 concludes.

2 Theoretical underpinnings

We now present a statistical model of multi-product exporter outcomes. We

begin with a single destination version and later extend it to the multi-

destination set-up.

A multi-product exporter indexed by f is a collection of products K

that a firm exports in a given year. Products within a firm are indexed

by k ∈ {1, ..., K}. The number of products a firm exports (K) is treated as

exogenous and in empirical applications will be taken from the data. Product

sales Sfk are iid draws from some continuous distribution F () with a non-

negative domain.

In this stark set-up, any differences between large and small scope ex-

porters on the intensive margin are driven by aggregating random draws over

the different number of exported products to the firm level. So by compar-
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ing the observed patterns to the patterns predicted by the statistical model,

we will be able to identify the data patterns that are genuinely informative

about the economic forces driving the intensive margin from the ones that

reflect randomness and aggregation.

This stark model has four main predictions about the distribution of

product sales within a firm. When products within a firm are ranked by

their contribution to total sales from the best selling to the least selling the

model predicts:

Prediction 1. Bigger scope exporters sell more in their best selling products

than smaller scope exporters.

Prediction 2. Bigger scope exporters sell less in the lowest ranked products

than smaller scope exporters.

In the model, the large scope exporters get to draw more sales shocks (one

for each product) than smaller scope ones. As long as the draws are iid across

firms and products, the maximum of the larger number of draws is bigger

than the maximum over the smaller number of draws. The reverse is true for

the minimum. We will demonstrate that both predictions are independent

from the assumptions about the distribution and find strong support in the

data3.

While in our model the two facts are solely driven by randomness they

are also (at least qualitatively) consistent with the models of multi-product

firms where firm productivity drives both scope and scale. Faced with ran-

dom demand shocks as in Bernard et al. (2011) high productivity firms have

higher expected profits from a new product and so select into more products.

These more productive exporters not only sell their best selling products in

large amounts but also due to their high productivity are able to make prof-

its from products that face low demand. The extent to which randomness

3See Arkolakis et al. (2014), Timoshenko (2015), Bernard et al. (2011) and Bernard
et al. (2010)
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can explain variation in the data without appealing to single attribute firm

specific heterogeneity is an empirical question. We are going to address it in

the next section by estimating the model from the data on Chinese exporters

to the US.

Prediction 3. Average sales per-product are constant with scope.

Evidence on the relationship between average sales per-product and firm

scope is mixed. As a rule average sales per products is not monotone with

scope (see Bernard et al. (2011), Arkolakis et al. (2014)). Many models of

multi-product firms avoid making predictions about average sales because

they reflect composition effects (i.e. large scope exporters sell their products

in both extraordinary large and small amounts). Yet, our results suggest that

variation of average sales with scope cannot be replicated with randomness

alone and so is a useful moment to differentiate among alternative models of

multi-product exporters.

Prediction 4. The expected value of the log ratio between sales of the best

and the second best selling product is constant with scope when sales are

distributed Pareto and decreases monotonically with scope when sales follow

log-normal, Weibul or exponential distributions.

In the appendix A, we present the analytical proofs for Pareto, Weibul

and exponential distributions. We use numerical integration to establish the

result for the log-normal distribution.

The log ratio of the best selling to the second best selling product is often

used as a measure of sales concentration within a firm. It is expected to

capture how firms respond to changes in competition by adjusting quanti-

ties and prices across the product range. We highlight that there is also a

mechanical relationship between the number of products exported and log-

ratio unless sales are Pareto distributed. This matters because within firm

reallocation of resources usually coincides with adjustments on the extensive

margin. Faced with tougher competition firms drop products which would
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have the effect of increasing the ratio even if firms did not respond optimally

on the intensive margin. Hence, the effect of competition on the skewness

of sales when measured using the ratio is likely to be overestimated. We

explore this issue in detail when we discuss the extension of the model to the

multi-destination setting in section 3.

3 Empirical Test of the Model

In this section, we test the predictions of the statistical model in the data.

When we compare sales at rank in the data to the sales at rank that arise

from the statistical model we show that large scope exporters in fact sell

less in their top-selling products than if they drew their sales from the same

distribution as single product exporters (Prediction 1). Similarly, once we

take into account aggregation large scope exporters sell no less than small

scope exporters in their least-selling products (Predictions 2). The model is

less able to replicate the variation in average sales per product (Prediction

3). In terms of the log ratio of sales between the best selling to the second

best selling product the model replicates the rate at which ratio decreases

with scope but underestimates average ratio at a given scope (Prediction 4).

3.1 Estimation Details

In testing the predictions of the statistical model we use data on firm-product

sales available at the HS-6 level for Chinese exporters to the US in 2003. In

Table 1 we verify the multi-product exporter facts documented for other

countries in the Chinese data. It splits the sample based on the number of

products each firm exported and reports average total exporter sales, average

sales of the best and least selling products for each group. While small

in number large scope exporters dominate the export market in terms of

their sales. Single product exporters, for example, account for 41 percent

of exporters while exporters with 5 or more products account for only 20
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percent of all exporting firms. Yet, exporters with 5 or more products sell

10 times as much as single product exporters. Exporters with 5 or more

products sell almost 8 times as much as single product exporters in their

best selling products. They also sell drastically more in their least selling

than small scope exporters.

Table 1 – Summary Statistics for the Chinese Exporters to the
US.

Scope 1 2 3 - 4 5+
Exporter Share with Scope 41 20 19 20
Mean Total Firm Sales 907 1,826 3,141 10,185
Mean Top Ranked Product 907 1,679 2,689 7,184
Mean Bottom Ranked Product 907 147 45 8

The table splits the sample of exporters from China to the US by the num-
ber of products that they exported in 2003 and reports share of exporters
with 1,2,3-4,5 and more products, average total firm sales, mean sales of
the best and least selling products.

To test the predictions of the statistical model we first estimate the dis-

tribution of product sales F () and then use the estimated distribution to

simulate the moments about which the statistical model makes predictions.

We then compare the simulated moments to the data and infer which pat-

terns can be explained with randomness and aggregation alone, and which

ones are genuinely informative about the economic forces that produced the

data.

To take into account the systematic variation in products (at the HS

group level), we adjust annual sales data used in Table 1 relative to the

average annual sales across all firms selling the same product category in the

US.

We use the log-normal and Pareto distributions to approximate the em-

pirical distribution of product sales and estimate the parameters of each dis-

tribution using either Maximum Likelihood (ML) or the Simulated Method

of Moments (SMM) approach. With the latter we target sales at rank statis-
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tics. The ML approach is a more stringent test of the model since we do not

directly target the patterns we want to explain in the estimation. If the dis-

tribution F () accurately describes the data on sales both approaches should

yield similar results.

3.1.1 Log-normal Distribution

If sales Sfk follow the log-normal distribution with the location and shape

parameters µ and variance τ , the natural logarithm of sales ln(Sfk) follows

the normal distribution with mean µ and variance τ . The top panel of Table

2 reports the ML and SMM estimates of parameters from fitting the normal

distribution to the data on the natural logarithm of sales. The bootstrapped

standard errors are in parenthesis and indicate that estimates are statistically

significant. Both approaches yield very similar results and both closely track

the actual distribution of the log sales in Figure 1. The ML approach yields

only slightly thicker tails due to higher estimated variance. This is what one

would expect if the theoretical distribution approximates the empirical one

reasonably well.

Predictions of the statistical model that we have set out to test involve

order statistics, i.e., best, second best, least selling products. The predictions

of the statistical model will only be able to quantitatively match the data if

the model can replicate the correlation between order statistics and exporter

scope that we observe in the data. Figure 2(a) compares the mean sales at

rank conditional on firm scope in the data and simulated from the model at

the ML and SMM estimates. Each panel looks at average sales at rank for

firms with the same scope. Take panel three, for example. Here for each firm

that exported three products in 2003 we rank firm’s exported products by

their contribution to the firm’s total sales. So the product with the highest

contribution is assigned rank one. We report average sales for products at

the same rank among three product firms calculated from the actual data as

well as data simulated from log-normal distribution estimated using the ML
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and SMM. In each case the order statistics track the actual data remarkably

well.

Theoretical and empirical densities

Log Sales

D
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Figure 1 – The figure shows the estimated density of log-sales under the
hypotheses that sales are Pareto or log-normally distributed using the maximum
likelihood and the simulated method of moments approaches against the empirical
distribution of the log-sales.
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Table 2 – Distribution parameter estimates.

MLE SMM

Log-normal

µ -1.6 *** -1.6 ***

(0.0155) (0.00018)

σ 2.62 *** 2.12 ***

(0.008) (0.00024)

Log-likelihood -104,570.4

Pareto

ν 0.074 *** 0.13***

(0.00043) (0.0007)

α 0.000059 0.000003 ***

(0.0000006)

Log-likelihood -684,81.37

Log-normal

Single-product exporters sub-sample

µ -1.73 ***

(0.02)

σ 2.62 ***

(0.014)

Log-likelihood -41,704

Bootstrapped standard errors in the parenthesis.

* p<0.10, ** p<0.05, *** p<0.01

3.1.2 Pareto Distribution

If sales Sfk are Pareto distributed with a location parameter α and shape

parameter ν then ln(Sfk)− ln(α) is distributed exponentially with rate pa-

rameter ν. To estimate the parameters of the Pareto distribution with the

maximum likelihood we first calibrate the location parameter α to the small-
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est sale value in the sample, α̂ = min(Sfk), and then estimate the rate pa-

rameter ν by fitting the exponential distribution to data on ln(Sfk)− ln(α̂).

With the SMM approach we jointly estimate α along with ν by targeting sales

at rank conditional on the number of exported products. The second panel of

Table 2 reports the estimates based on the SMM and MLE approached. The

estimates are quite different which indicates that the distribution is likely

misspecified. Figure 1 compares the estimated exponential distribution with

the the actual distribution of log-sales and the fitted normal density. Regard-

less of how parameters are estimated Pareto performs poorly in replicating

the sales distribution. This is in line with Head et al. (2014) who find that

log-normal fits the entire distribution of firm export sales much better than

does Pareto. Similarly, in Figure 2(b) the order statistics simulated from

the statistical model whether estimated using the ML or SMM fit the data

poorly. Both tend to over-estimate how quickly sales at rank decrease with

rank at a given scope.

3.1.3 Quantifying the Fit

To quantify the fit of the statistical model we use a modified version of R2

which measures the ability of the model to explain the sales at rank pattern.

Let rDkK be the expected value of sales of a product with rank k for firms with

K products calculated from the data, let rSkK be the simulated analogue, and

let r̄D be the simple mean of sales. G is given in equation 1

G = 1−
∑

k,K

(
rDkK − rSkK

)2∑
k,K (rDkK − r̄D)

2 (1)
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(a) Sales distributed log-normally.
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(b) Sales distributed Pareto.

Figure 2 – In each panel the x-axis reports the rank and the y-axis reports average sales across products at a given
rank for exporters with the same scope. Product rank is assigned for each product based on it’s contribution to total
sales of the exporter at the destination. A product with the highest share of sales has rank 1. Scope is indicated at the
top of each panel. The last panel in 2(a) and 2(b) respectively shows sales at rank for firms with 6 or more products
products, the rank “6+” on the x-axis corresponds to the least selling product,i.e., the y-axis shows average sales in the
least selling product for exporters with 6 or more products.
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and it measures the share of variation in the order statistics explained by

the statistical model relative to the share of variation explained by the simple

mean. The values of G for the log-normal distribution and Pareto respectively

are shown in Table 3. The statistical model when sales are log-normally

distributed accounts for 99.3 percent of variation in order statistics with ML

estimates and 99.9 with SMM. Pareto distribution in contrast performs worse

than a simple average of sales with the SMM estimate and accounts for 83.2

percent with ML estimates. The results show that if sales are distributed

log-normally then the statistical model replicates the variation in sales at

rank much better than if sales are Pareto distributed.

Table 3 – The value of G for simulated method of moments and maximum
likelihood estimators.

MLE SMM
Pareto 0.832 -1.919
Log-normal 0.993 0.999

In the following subsection we show that statistical model with sales-

distributed log-normally quantitatively replicates the observed data patterns.

If sales are distributed Pareto the statistical model predicts even bigger dif-

ferences between the large and small scope exporters than in the data.

3.2 Test of the Statistical Model

In this section, we compare the predictions of the statistical model to the

patterns in the data. Rather than comparing the outcomes of interest be-

tween large and small scope exporters we focus on comparing predictions of

the statistical model to the patterns in the data. Thus we are able to identify

when differences between the large and small scope exporters arise due to

aggregation and when these differences call for an economic explanation.

In Figures 3(a) and 3(b) we address prediction 1. Figure 3(a) compares

the mean sales of the best selling products as a function of exporter scope
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in the data to the simulated counterpart from the log-normal distribution.

Comparing the sales between large and small exporters in the data, exporters

with 6+ products on average sell more than 6 times as much as single product

exporters in their top-selling products. If instead of comparing sales of firms

with different number of products we compare averages sales of the top-

ranked products in the data to those predicted by the statistical model in

Figure 3(a) we see that large scope exporters sell no more or less in their

best selling product than we would expect if sales were iid across products

and firms. To see this consider the MLE and SMM series correspond to

the moments simulated based on the SMM and ML estimates in the top

panel of Table 2. The pattern simulated from the SMM estimates tracks the

data closely4 and shows that differences between large scope and small scope

exporters arise even if firm-product sales are iid random draws. The pattern

simulated from the ML estimates predicts that large scope exporters predicts

should sell more in their top selling products that we observe in the data.

Differences between the predictions of the statistical model based on the MLE

and SMM are driven by differences in variance. SMM and ML estimates have

identical location parameter estimates but the shape parameter σ is bigger

in the ML case and implies a greater variance of sales. This illustrates that

higher variance of sales translates in bigger differences between large and

small exporters.

In Figure 3(b) we simulate the best selling products from the statistical

model where F () is set to be Pareto with parameters estimated in the second

panel of Table 2. While the moments simulated from the Pareto distribu-

tion poorly track the data it’s worth pointing that they predict much bigger

differences between large and small scope exporters than we observe. The

patterns simulated from the log-normal and Pareto both illustrate that one

should be careful not to interpret the pattern that large scope exporters sell

4This is not surprising since we have explicitly targeted order statistics conditional on
firm scope

20



more in their top-selling products as evidence of large scope exporters being

more productive.

Figure 3 – Average sales in the top-selling product for exporters of different scope.
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(a) Sales distributed log-normally. MLE
series corresponds to the log-normal
distribution with a mean of -1.6 and
variance 2.12, and SMM series corresponds
to the log-normal distribution with a mean
of -1.6 and variance 2.62.
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(b) Sales distributed Pareto.
SMM series corresponds to Pareto with
location parameter 0.000059 and shape
parameter 0.074 estimated by the SMM
approach. MLE series corresponds to Pareto
with location parameter 0.000003 and shape
parameter 0.13 estimated by the ML
approach.

To highlight this point further we ask how much more large scope ex-

porters would sell in their best selling products if their sales came from the

same distribution as single scope exporters. To this end we estimate the

location and scale parameters of the log-normal distribution from the data

on single-product exporters alone. The location parameter is estimated to

be -1.73 and scale parameter to be 2.61. The details are in the bottom panel

of Table 2. In Figure 4(a) we compare the simulated mean sales of the best

selling products conditional on exporter scope to the data. Mean sales of the

single product exporters in the data and the simulation are virtually identical

by construction. The statistical model predicts that if larger scope exporters

drew sales from the same distribution as single product exporters they would
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sell more in their top selling products than we observe in the data. In Figure

4(b) we plot the ratio of the actual mean sales of the top-selling products

at a given exporter scope to the simulated analogues. For single product

exporters this ratio is 1 but as scope increases the ratio decreases to 0.6 for

exporters with 6 and more products. This means that if large scope exporters

drew their sales from the same distribution as the single scope exporters their

sales in the top-selling products would have been 40 percent higher on av-

erage than we observe in the data. In other words, once we consider that

calculating average sales of the best selling product conditional on exporter

scope involves taking a maximum over a different number of products, large

scope exporters appear to sell less in their best selling products compared to

the smaller scope exporters.

Figure 4 – In the simulation, sales are distributed log-normally and the location
and shape parameters estimated from the data on single product exporters only.
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(a) Average sales in the top-selling product
for exporters of different scope.
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(b) Ratio of the mean best selling product
in the data to the mean best selling product
simulated from the statistical model
conditional on exporter scope.

Figures 5(a) and 5(b) zoom into the least selling products by exporter

scope to address Prediction 2. Figure 5(a) compares the prediction of the

statistical model to the data if sales are distributed log-normally and Figure
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5(b) if sales are distributed Pareto. The pattern simulated from the log-

normal distribution based on the SMM estimates narrowly tracks the data

and predicts that large scope exporters sell only slightly more in their least-

selling products than we observe in the data. The ML estimates, on the

other hand, imply that large-scope exporters sell-less in their least selling

products than in the data. Although Pareto falls short of quantitatively

replicating the data quite dramatically, it too predicts that average sales of

the least-selling product decrease with scope. This suggests the observation

that large scope exporters sell less in their least selling products arises because

we aggregate sales across different number of products and should not be

viewed as evidence of firm specific productivity or fixed costs of exporting

decreasing with scope.

In Figures 6(a) and 6(b) we compare what we observe firms to sell in their

least-selling products conditional on exporter scope to what they would sell

if the sales were drawn from the log-normal distribution fitted to the data on

single product exporters (see the bottom panel of Table 2). While large scope

exporters sell more in their least selling products than small scope exporters

Figure 6(a) shows that the differences would have been even bigger if large

scope exporters drew sales from the single product distribution. Figure 6(b)

highlights just how much more. In the data exporters with two products sell

60 percent more and exporters with 6 or more products sell more than 80

percent than we would expect if the firms drew sales from the single product

sales distribution.
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Figure 5 – Average sales of the least selling products by exporter scope
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(a) Sales distributed log-normally.
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(b) Sales distributed Pareto.

Figure 6 – In the simulation, sales are distributed log-normally and the location
and shape parameters estimated from the data on single product exporters only.
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(a) Average sales in the top-selling product
for exporters of different scope.
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(b) Ratio of the mean best selling product
in the data to the mean best selling product
simulated from the statistical model. t

So far, we have shown that the relationship between the mean best/least

selling products and exporter scope arises due to aggregation even in the

absence of ex-ante firm heterogeneity. This ability of the statistical model

to replicate the sales at rank pattern indicates that comparing sales of the
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best and least selling products between large and small scope exporters is

misleading. In fact, comparing data to the benchmark of the statistical

model highlights that large scope exporters sell no more than single product

exporters in their top selling products but sell more in their least-selling

products. This is in contrast to the conclusion one would reach by directly

comparing mean sales at the highest/lowest rank for firms of different scope.

Our next result shows that randomness is not sufficient to capture the

extent of variation in average sales per product that we observe in the data

with either log-normal or Pareto distributed sales. In Figures 7(a) or 7(b)

average sales per product tend to increase with scope in the data and are

virtually independent of scope in the simulation. This is consistent with

Prediction 3 and suggests that average sales is a useful moment to charac-

terize multi-product exporters. Furthermore, average sales in Figures 7(a)

or 7(b) suggest that large scale exporters on average sell more than smaller

scope exporters, although the relationship between scope and average sales

per product is not monotone.

Log-normal distribution that fits the overall distribution of sales also pro-

duces reasonable magnitude for average sales per product even though it does

not replicate the relationship between scope and average sales per product

in the data. With Pareto distribution average sales per product predicted

by the statistical model depend on how the parameters of the distribution

were estimated. Average sales per product based on SMM estimates provide

an unreasonably low estimate of average sales per product, even though they

produced the better fit for mean sales at rank.
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Figure 7 – Average sales of per product by exporter scope.
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(a) Sales distributed Log-Normally.
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(b) Sales distributed Pareto.

According to Prediction 4, the log ratio of sales of the best selling to the

second best selling product is constant with scope when sales are distributed

Pareto and decreases monotonically with scope when sales follow log-normal,

Weibul or exponential distributions. In Figure 8 we show the mean of the

log ratio decreases with exporter scope both in the data and the simulation

assuming sales are log-normally distributed. The model misses the levels but

replicates the rate of decline in the ratio with scope. Note, that we do not

directly target the ratio moments in the data.

The relationship between the ratio of sales and the number of products is

rarely of interest in its own right. Instead, researchers use the ratio as a mea-

sure of skewness of the exporter’s product mix and focus on how competition

impacts it. However, to the extent that changes in the competitive environ-

ment influence, the number of products firms export some of the variation in

the ratio will be driven by the changes on the extensive margin rather than

exporter response on the intensive margin. In the next section, we explore

when log-ratio is a useful measure of a firm’s concentrating their sales in their

best selling products and when it mechanically reflects the variation in the

number of products.
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Figure 8 – Mean ratio of the best selling to the second best selling product.

4 Multi-destination Extension

In the previous section we have shown that when sales are log-normally dis-

tributed the log ratio of sales of the best selling to the second best selling

product is systematically related to the number of products a firm sells in the

market: smaller scope exporters have a higher ratio. The ratio, in turn, has

been used to measure how multi-product firms respond to changes in the in-

tensity of competition. The best known example of this is Mayer et al. (2014).

In their seminal paper on multi-product exporters, they show that tougher

competition in an export destination shifts down the entire distribution of

markups across products and induces multi-product exporters to concentrate
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on their core products5. With product sales distributed Pareto an increase in

sales concentration is equivalent to an increase in the log-ration. While Mayer

et al. (2014) consider alternative measures of concentration, their preferred

formulation of the model’s testable prediction relies on the log-ratio.

Specifically, Mayer et al. (2014) regress the log-ratio of sales between

the best and the second best selling product on destination market size, it’s

supply potential6 and other variables that proxy toughness of competition in

a market7. As long as firm-product sales are distributed Pareto using log-

ratio to capture the reallocation of resources across the fixed product range

is a perfectly valid approach. However, this is unlikely to be the case in the

data, and the log-ratio captures variation in the number of products a firm

exports to a market above and beyond the reallocation of resources across

products within the firm. This is a problem because exporter scope at a

destination itself varies with market toughness. Bernard et al. (2010) and

Feenstra and Ma (2007) among others document that firms export a wider

product range to larger markets and trim their scope in high supply potential

destinations.

If firms export more products to large market size destinations then the

statistical model predicts negative correlation between market size and the

log-ratio. Pro-competitive effects of a larger market that work through firms

reallocating resources to lower cost (higher mark-up) products in contrast im-

ply a positive correlation. It’s even trickier with the supply potential. Firms

5 Core products correspond to the lowest marginal cost products
6 The supply potential is used to proxy for the geography of a destination that does not

rely on country-level data for that destination. It is typically constructed as the aggregate
predicted exports to a destination based on a bilateral trade gravity equation (in logs)
with both exporter and importer fixed effects as well as the standard bilateral measures of
trade barriers/enhancers. Following Mayer et al. (2014) the foreign supply potential is a
related measure of a destination’s foreign supply potential that does not use the importer’s
fixed effect when predicting aggregate exports to that destination. By construction, for-
eign supply potential is thus uncorrelated with the importer’s fixed-effect.
The supply potential data by Head and Mayer (2011) is available online at
http://www.cepii.fr/anglaisgraph/bdd/marketpotentials.htm.

7The regressions include country-specific random effects on firm-demeaned data.

28

http://www.cepii.fr/anglaisgraph/bdd/marketpotentials.htm


export fewer products to high supply potential destinations, so the statistical

model predicts a positive correlation between the log-ratio and market supply

potential. Pro-competitive effects captured by the high-supply potential also

imply a positive correlation with the log-ratio. So, when one regresses the

log-ratio on the measures of market competitiveness the coefficients reflect

a combination of product mix adjustments and product scope adjustments.

To the extent that one wants to measure the effects of competition on the

reallocation of resources across a given product range one will underestimate

the effect of market size on changes in product mix and over-estimate the

effect of market supply potential.

Whether variation in the number of products exported alone is sufficient

to generate statistically significant relationships between the log-ratio and the

variables that proxy intensity of competition in the market is an empirical

question. To answer it we extend the statistical model to the multi-country

set-up. We then simulate the statistical model to obtain a data set where firm

outcomes are driven by randomness alone. We then replicate the regressions

in Mayer et al. (2014) to evaluate the impact of the market competitiveness

measures on the log-ratio in the actual and simulated data sets. Any statis-

tically significant results using the simulated data set will indicate that the

results are driven by variation in the number of products rather than changes

on the intensive margin.

We extend the statistical model to the multi-product set-up as follows.

As with a single destination case a multi-product exporter indexed by f is

a collection of products Kd that a firm exports in a given year to a given

destination d. Products that a firm exports to a destination are indexed by

k ∈ {1, ..., Kd}. The number of products a firm exports to a destination d

(Kd) is treated as exogenous. Product sales Sfkd are iid draws from the same

log-normal distribution.

To estimate the parameters of the sales distribution F () we use maximum

likelihood (ML) approach where we treat sales of the Chinese exporters to
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Table 4 – Country Level Summary Statistics

Mean Std. Dev. 25% 50% 75% 95%

Mean Country Log Ratio 1.78 0.63 1.54 1.72 1.91 2.46
Mean Country Scope 2.80 0.45 2.60 2.73 2.95 3.72
Number of Exporters 584 1473 17 82 512 2627
Log GDP 23.4 2.27 21.9 23.1 25.1 27.3
Log Supply Potential 14.9 0.99 14.3 14.6 15.4 16.9
Log GDP per Capita 7.85 1.64 6.45 7.78 9.10 10.5
Log Distance 9.02 0.53 8.83 9.06 9.39 9.63

Observations 176

The sample contains all countries to which at least one Chinese multi-product exporter sells at least two
products in 2003 and includes only manufacturing producers. The first three rows describe the variation in
the outcome variables across the different destinations to which Chinese exporters sell. The Mean Country
Log Ratio is the mean log-ratio of sales of the best selling to the second best selling product across all
firms exporting to a destination. The Mean Country Scope is the average number of products that firms
export to a destination and Number of Exporters is the number of firms exporting to a destination. The
Table also contains information on the variables that we will use to proxy market toughness of a destination:
Log GDP,Log Supply Potential, Log GDP per Capita and Log Distance are the determinants of the market
toughness that were used in Mayer et al. (2014).

176 destinations as if they come from a single distribution.

Table 4 provides some summary statistics for the country level variables

we use. The sample includes all destinations to which at least one Chinese

exporter sells at least two products in 2003 and only includes manufacturing

firms involved in production of its exports. The number of multi-product

exporters selling to a destination appears to be highly skewed: the median

number of exporters is only 82 while the 95th percentile is 2,627. Average

exporter scope on the other hand is much more balanced across destina-

tions and varies between 2 and 4. The Table also contains information on

the determinants of the market toughness (Log GDP, Log Supply Potential,

Log GDP per Capita, and Log Distance) that we will use in replicating the

analysis in Mayer et al. (2014) in the regression analysis.

30



Theoretical and empirical densities

Adjusted Log Sales

D
en

si
ty

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

data
Normal (MLE)

Figure 9 – The density of firm-product-destination log sales and the estimated
density N(0, 2.14).

In it’s simplest form the multi-country extension of the model has two

parameters: the location and shape parameter that govern the distribution of

sales. In the data, we have to contend with the fact that sales systematically

vary with destinations and product categories (6-digit HS groups). To take

this into account we purge the sales of the destination-product fixed effects.

We do this by first estimating equation 2 where the dependent variable is the

log of sales and γkd captures the destination-product fixed effect.

lnSfkd = γkd + εfkd (2)

We then use the residual εfkd to estimate parameters of sales distribution F ().

Using the ML approach and the assumption that εfkd is normally distributed

yields the variance of 2.14 with standard error of 0.002 and mean equal to 0 by
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construction. Figure 9 compares the estimated theoretical distribution and

the actual distribution. While the log-normal distribution performs poorly

in the left tail it otherwise is able to approximate the empirical distribution

of log sales well.8

We simulate data from the estimated log-normal distribution with mean

0 and standard deviation 2.14 for each exporter at a destination and use it

to study the relationship between the simulated log-ratio and country level

variables that measure the level of competition at the destination. See Table 4

for the list of country level variables. With data simulated from the statistical

model, sales per product are completely random and any relationship between

the log-ratio and the variables that proxy market toughness is driven entirely

by aggregating data across different number of products.

First, to establish the relationship between the ratio and the various mea-

sures of market toughness in the Chinese data we replicate the regressions

from Table 2 in Mayer et al. (2014) in columns (1) and (5) in Table 5. In

column (1), we look only at the effect of market size and foreign supply po-

tential, in column (5) we also include the explicit geographic barriers. Only

the log of GDP variable is highly significant across regressions. In magnitude

the coefficient on the Log GDP variable is similar to what Mayer et al. (2014)

find for the French exporters. To the extent that GDP captures intensity of

competition we observe that the effect on the log-ratio is positive - firms

concentrate their resources in their best selling products. The foreign supply

potential that is significant in the French data is not significant in any of the

formulations in the Chinese data.

Next, we reproduce the regressions with the simulated data in columns (3)

and (7). In the simulated data the product sales are just iid draws from the

log-normal distribution. Hence any effect of market competitiveness mea-

sures that we find is driven by aggregating data on sales across different

8Using raw data on log of sales does not change the estimate of the variance. The
results can be found in the appendix

32



number of products to the firm level. If a lot of small-scope exporters sell

at a destination the ratio will be mechanically higher than if the destina-

tion was dominated by large scope exporters. Both in columns (3) and (7)

the coefficient on GDP is negative and significant reflecting that market size

encourages firms to export more products which mechanically lowers the log-

ratio. The foreign supply potential variable is positive in both regressions.

Interestingly it becomes significant in the simulated data when we control for

bilateral trade barriers between China and it’s trading partners in column

(7). This is because including both geographic barriers and supply poten-

tial helps differentiate between good geography and distance as many high

supply potential markets are located far away from China9. Distance and

contiguity in column (7) are also statistically significant. The log of distance

enters with a negative sign while contiguity has a positive effect. These signs

are consistent with firms exporting a narrow range of products to faraway

destinations and a wider range to countries nearby. To check that the vari-

ation in the simulated data is indeed driven by the variation in scope we

use the number of products as the dependent variable in columns (4) and

(8) respectively. The signs on the independent variables are consistent with

variation in scope driving the results in the simulated regression.

Finally, we introduce the Scope variable in the regression of the actual log-

sales ratios on measures of market competitiveness in columns (2) and (6). In

both cases the coefficient on the scope variable is negative and statistically

significant. What is more interesting is that it changes the magnitude of

the market size coefficient. Comparing the regressions in column (1) and

(2) the coefficient on the GDP variable increased from 0.035 to 0.05 which

is a 30 percent increase with the inclusion of the Scope variable. Similarly

9In French data that Mayer et al. (2014) use distance from France is highly correlated
with good geography and hence a high supply potential for that destination. The correla-
tion between the log-distance and log-supply potential is 78 percent. This is not the case
in Chinese data, the correlation between the foreign supply potential and distance in logs
is negative and relatively small (-0.2191)
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the coefficient on the GDP variable increases from 0.034 in column (5) to

0.05 in column (6). This is consistent with log-ratio reflecting variation in

scope beyond variation in concentration. Controlling for scope suggests that

the original results under-estimate the adjustment of the product mix by as

much as 30 percent. The coefficient on the supply potential variable is still

statistically insignificant but changes the sign from positive to negative again

implying that in the original formulation the coefficient under-estimates the

negative effect of the supply potential on product mix. Note however, that

the scope and product mix which we approximate with the log-ratio are likely

to be simultaneously determined so using scope as an independent variable

is not econometrically correct.

Table 5 – Country Level Summary Statistics

Log Ratio Scope Log Ratio Scope

Data Simulation Data Simulation

(1) (2) (3) (4) (5) (6) (7) (8)

GDP 0.0347∗∗∗ 0.0505∗∗∗ -0.0443∗∗∗ 0.189∗∗∗ 0.0338∗∗∗ 0.0509∗∗∗ -0.0479∗∗∗ 0.209∗∗∗

(10.40) (14.54) (-7.42) (6.05) (8.24) (15.15) (-7.80) (9.34)
Supply Potential 0.00124 -0.00195 0.00912 -0.0490 0.00612 -0.00488 0.0225∗ -0.118∗∗∗

(0.11) (-0.21) (0.86) (-1.53) (0.47) (-0.45) (2.12) (-4.19)
Scope -0.0749∗∗∗ -0.0752∗∗∗

(-6.97) (-6.96)
Distance 0.0331∗∗ -0.00206 0.0617∗∗∗ -0.430∗∗∗

(2.96) (-0.17) (4.10) (-4.43)
Contiguity 0.000720 0.0329∗ -0.0901∗ 0.338

(0.04) (2.04) (-2.45) (1.37)
GATT 0.00971 0.0377 -0.0554 0.272∗

(0.26) (1.01) (-1.46) (2.06)
Observations 102758 102758 102758 102758 102758 102758 102758 102758
Within R2 0.000770 0.0148 0.00105 0.0116 0.000883 0.0148 0.00156 0.0252
R2 0.00193 0.0160 0.00214 0.0198 0.00213 0.0161 0.00281 0.0411

Notes: All columns use Wooldridge’s (2006) procedure with country-specific random effects on firm and HS2 demeaned data,
with a robust covariance matrix estimation. t-statistics in parentheses.

In Table 5 the simulated data results highlight that variation in the num-

ber of products can drive variation in the log-ratio even when firms don’t

optimize on the intensive margin. As such the log-ratio may be less than

an ideal measure of changes in sales concentration in response to changes in

competition. We have shown that the coefficient on the marker size is biased
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downward while the coefficient on the foreign supply potential is biased up-

ward. This has implications for the measures of economic significance of the

product mix adjustment mechanism. The GDP coefficient in the baseline

regression can be interpreted as the average elasticity of the log-ratio with

respect to the destination’s GDP. Mayer et al. (2014) use this elasticity to

estimate that the within firm resource reallocation on the intensive margin

contributes 19 percent to aggregate productivity change. Our results sug-

gest the true effect of GDP on skewness measured by the log ratio of sales

is larger than the baseline regression estimates and would imply that Mayer

et al. (2014) underestimate the contribution of the product mix channel to

aggregate productivity growth.

More generally, the results of this section illustrate that the log-ratio, as

well as other measures that are based on order statistics should be treated

with care in the multi-product firm analysis as they systematically vary with

the number of products per firm.

5 Conclusion

In this paper, we propose a stark statistical model of multi-product exporter

to help separate which well-documented facts about multi-product exporters

are genuinely informative about the economic forces behind the observed

outcomes and which ones arise as an artefact of aggregating data across a

different number of products. Our results show that patterns that rely on

order statistics should be treated with caution. For example, we find that the

empirical regularity about multi-product exporters that large scope exporters

sell more in their best selling products that have been used to motivate mod-

els featuring firm-specific productivity can be replicated even if sales are just

random draws from a distribution. Similarly, we can quantitatively replicate

that large scope exporters sell less in their least selling products compared

to their smaller scope counterparts without resorting to firm productivity or
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product-specific fixed costs.

Our results also show that the log-normal distribution provides a much

better fit than Pareto distribution, so often employed in theoretical models.

While log-normal distribution allows reproducing order statistics across firms

of different scopes remarkably well. Pareto distribution over-predicts sales of

the least selling products especially for large scope firms. This may have po-

tential implications for estimating fixed costs of exporting for multi-product

exporters when product shocks are drawn from the Pareto distribution.

The Pareto distribution also predicts that the log-ratio of the sales in the

best selling to the second best selling product is constant with scope. With

Weibull, exponential and log-normal distributions the ratio is systematically

related to firm scope. Large scope exporters have a lower ratio than the

small scope exporters. We show that this has implications for regression

analysis that relies on exploring the effect of export market competitiveness

on product mix measured by the log-ratio of the best selling to the second

best selling product sales.

Our key insight is that when we look at differences between large and

small scope exporters that have been traditionally invoked to motivate a

single-attribute model of multi-product exporters we find that those differ-

ences are consistent with randomness and aggregation. This has implications

for the ways in which we model multi-product exporters. If there is no evi-

dence that large scope exporters sell any more in their best-selling products

than small scope exporters it calls for models where scope and scale are not

necessarily driven by a single parameter.
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6 Appendix

A Proof of Prediction 4

A.1 Pareto distribution

Let Sfk be iid draws from the Pareto distribution with cdf:
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F (Sfk) = 1−
(
Sfk
a

)−v
(3)

where a is the location parameter such that Sfk and a > 0, v > 0 is the

shape parameter. Let Xj:n and Xi:n be the ith and the jth order statistic from

the random sample of size n from F (Sfk). With i < j the ratio Zi:j = Xi:n
Xj:n

.

Using the inverse Mellin’s transform Malik and Trudel (1982) show that the

distribution of the ratio is

h(zi:j) =
vzv+vn−vj−1i:j

B(j − i, n− j + 1)
∗ (1− zvi:j)j−i−1 (4)

where 0 ≤ z ≤ 1 and 0 < i < j ≤ n.

Letting j = n and the i = n− 1, the expression in 4 reduces to

h(zn−1:n) = vzv−1n−1:n (5)

The expression hn−1,n(z) is independent of the sample size, and so will be

the expected value of E[ln(1/zi:j)]

A.2 Weibul distribution

Let Sfk be iid draws from the Weibul distribution with cdf:

F (Sfk) = 1− e−
Sαfk
θ (6)

where Sfk > 0, α > 0, θ > 0. Let Xj:n and Xi:n be the ith and the

jth order statistic from the random sample of size n from F (Sfk). With

i < j ≤ n the ratio Zi:j = Xi:n
Xj:n

. Using the inverse Mellin’s transform Malik

and Trudel (1982) show that the distribution of the ratio is
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h(zi:j) =
n!

(i− 1)!(j − i− 1)!(n− j)!

j−i−1∑
r=0

i−1∑
s=0

(−1)r+s
αzα−1

[(n− j + r + 1) + (j − i− r + s)zα]2
(7)

where 0 ≤ z ≤ 1 and 0 < i < j ≤ n.

Letting j = n and the i = n− 1, the expression in 7 reduces to:

h(zn−1:n) = n(n− 1)
n−2∑
s=0

(−1)s
(
n− 2

s

)
αzα−1

[1 + (s+ 1)zα]2
(8)

The expression hn−1,n(z) depends on the size of the sample from which

the ordered statistics are calculated, and so will be the expected value of

E[ln(1/zi:j)]. The expected value of E[ln(1/zi:j)] = E[ln(1/zi:j)]

E[ln(1/zn−1:n)] =

∫ 1

0

ln

(
1

z

)
∗ h(zn−1:n)dzn−1:n

=

∫ 1

0

ln(1) ∗ h(zn−1:n)dzn−1:n −
∫ 1

0

ln(z) ∗ h(zn−1:n)dzn−1:n

= −
∫ 1

0

ln(z) ∗ h(zn−1:n)dzn−1:n

= −
∫ 1

0

ln(z)

(
n(n− 1)

n−2∑
s=0

(−1)s
(
n− 2

s

)
αzα−1

[1 + (s+ 1)zα]2

)
dzn−1:n

Interchanging summation and integration order obtain:

−n(n− 1)
n−2∑
s=0

(−1)s
(
n− 2

s

)(∫ 1

0

ln(z)αzα−1

[1 + (s+ 1)zα]2
dzn−1:n

)
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The integral ∫ 1

0

ln(z)αzα−1

[1 + (i+ 1)zα]2
dzn−1:n = − ln(2 + s)

(s+ 1)α

E[ln(1/zn−1:n)] = −n(n− 1)
n−2∑
s=0

(−1)i
(
n− 2

s

)(
− ln(2 + s)

(s+ 1)α

)

=
1

α

n−2∑
s=0

(−1)i
(
n

s

)
ln(2 + s)

(s+ 1)

The expected value of the ratio drawn from the Weibull distribution is given

by the oscillating sum and in general cannot be shown to be monotonically

decreasing or increasing in the size of the sample n. However for small value

of n it can be shown to be monotonically decreasing in n.

A.3 Log-normal distribution

Let Sfk be iid draws from the log-normal distribution with cdf:

F (Sfk) =
1

2
+

1

2
Erf

(
−(lnSfk − µ)2

2
σ2

)
(9)

where Sfk > 0, −∞ ≤ µ ≤ ∞, σ > 0. Xj:n and Xi:n are the ith and

the jth order statistic from the random sample of size n from F (Sfk). With

i < j ≤ n the ratio Zi:j = Xi:n
Xj:n

. In the case of log-normal distribution it is not

possible to derive the distribution of the ratio for an arbitrary n. Instead we

adopt numerical integration approach and calculate the expected log-ratio

for various values of µ and n.

The joint distribution of two order statistics Xj:n and Xi:n such that
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Figure 10 – E[ln(Xn:n − ln(Xn−1:n)] as a function of the size of the ordered
sample drawn from Weibull distribution
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0 < Xi:n ≤ Xj:n <∞ is given by

g(Xj:n, Xi:n) =
n!

(i− 1)!(j − i− 1)!(n− j)!
F i−1(Xi:n) [F (Xj:n)− F (Xi:n)]j−i−1

[1− F (Xj:n]n−j f(Xj:n)f(Xi:n)

Letting j = n and i = n− 1 obtain

g(Xn−1:n, Xn:n) = n(n− 1)F n−2(Xn−1:n)f(Xn:n)f(Xn−1:n)

The expected value of E
[
ln
(
Xj:n
Xi:n

)]
or E [ln(Xj:n)− ln(Xi:n)]

E

[
ln

(
Xj:n

Xi:n

)]
=

∫ ∞
0

∫ ∞
Xn:n

(ln(Xn:n)− ln(Xn−1:n)) g(Xn:n, Xn−1:n)dXn:ndXn−1:n

While the integral is hard to evaluate analytically we show results of

numerical integration in the table below. The expected value decreases with

the size of the ordered sample. The decrease is particularly important for

small samples.
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Figure 11 – E[ln(Xn:n − ln(Xn−1:n)] as a function of the size of the ordered sample drawn from log-normal
distribution
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