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1 Introduction

Recent advances in new trade theory, most notably due to Melitz (2003) and Chaney (2008),

establish a central role for firm-level heterogeneity in accounting for the gains from trade.

The theory predicts that reductions in trade costs yield welfare gains through two separate

channels: the entry of new firms into export markets and the growth of incumbent firms. In

fact, these separate channels that generate welfare gains can be characterized completely by

the trade elasticity, defined as the partial elasticity of trade flows with respect to changes in

variable trade costs. This elasticity depends crucially on the distribution that governs firm-

level heterogeneity (c.f. Melitz and Redding (2015)). Accordingly, by fitting a parametric

distribution to empirical firm size distributions, one can use a model to estimate the trade

elasticity. However, when using theory to make such an inference about the trade elasticity

from micro data, it is crucial that the parametric distribution accurately characterizes the

empirical firm size distribution to which it was fit.

In this paper, we begin by documenting novel forms of asymmetry within empirical export

sales distributions. We examine Brazilian export sales data that, unlike many trade datasets,

do not censor small sales records. The two novel forms of asymmetry that stand out from the

data are (i) substantial heterogeneity in positive and negative skewness across export sales

distributions and (ii) the prevalence of power laws in the left tails in export sales distributions.

These two features contradict the two most frequently utilized distributional assumptions in

new trade models: the log-Normal and Pareto distributions.1 The Normal distribution has

zero skew and the Exponential distribution has a constant (parameter independent) skew of

2. Neither the Normal nor the Exponential distribution is sufficiently fat in the left tail to

generate this empirical regularity.

In order to parsimoniously capture the prevalent asymmetry and tail fatness in the em-

pirical sales distributions, we introduce the Double Exponentially Modified Gaussian (Double

EMG) distribution. The Double EMG distribution’s microfoundations can be traced to the

1Using a simple change of variables, the logarithm of the sales distribution – or log-sales distribution – is
equivalently described by a Normal or an Exponential distribution, respectively.
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literature on firm size dynamics and power laws (see Gabaix (2009) for an extensive review).2

The Double EMG distribution is constructed as a convolution of independent Normal and

Double Exponential distributions. Hence, it generalizes the most frequently used distribu-

tions in the trade literature, including the (Double) Pareto and log-Normal distributions.

As such, the Double EMG distribution is a unimodal distribution that also exhibits fat,

Pareto-like, tails. We fit the Double Exponentially Modified Gaussian distribution to em-

pirical log-sales distributions across export destinations and demonstrate that the Double

EMG distribution matches the micro-data better than either a Normal or an Exponential

distribution alone.

The choice of a distribution alters the measurement of the extensive margin for the trade

elasticity. In the Melitz (2003) model, the trade elasticity can be decomposed into the

sum of an intensive and an extensive margin. The intensive margin arises from changes in

incumbent firms’ sales, while the extensive margin arises from the entry and exit of new firms

into an export destination. We show, for any general distribution, that the intensive margin

is constant, while the extensive margin is destination specific and depends on moments of

the distribution.

By quantifying the extensive margin in the Melitz (2003) model using the Double EMG

distribution, we find that the implied extensive margin contribution to the trade elasticity

is quite small (on the order of magnitude of 10−5). Accordingly, our results suggest that

in response to changes in trade costs, in an average export destination nearly all trade

adjustment occurs on the intensive margin, as incumbent exporters change their sales.

We further uncover two types of bias in measuring the trade elasticity. First, when less

accurate distributions are used to approximate the data, the magnitude of the extensive

margin contribution will be mismeasured. We refer to this phenomenon as the distribution

specification bias. In particular, for an average destination, an Exponential distribution over-

2Reed and Jorgensen (2004) and Toda (2014) prove that the (Double) EMG is the endogenous steady state
distribution of a Brownian motion that is subject to a Poisson process over stopping times (exits) and whose
initial points are Normally distributed. Furthermore, the EMG distribution, which is one of the liming cases
of the Double EMG distribution, arises naturally in models in which firms draw their productivity from
a Pareto distribution, while learning about their Normally distributed product demand (see Timoshenko
(2015), Arkolakis et al. (2015), and Bastos et al. (2016)).
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estimates the extensive margin contribution by a factor of 107, while the Normal distribution

underestimates the extensive margin contribution to the trade elasticity by 40%. We further

find that the Normal distribution bias is larger when the empirical distribution of log-sales

are the more fat tailed.

The size of the bias can be understood as follows. For a Normal distribution our estimates

imply that, on average, entry and exit account for only 1 dollar out of one million dollars

worth of increased trade. For the Double EMG distribution our estimates increase that

magnitude to 10 dollars out of one million dollars. For the Exponential distribution, entry

and exit account for about one third of the million dollar increase.

We conclude that the Normal and Exponential implied elasticity estimates provide a lower

and upper bounds for the more accurate Double EMG implied partial trade elasticities. For

export sales data that exhibits more fatness in the right tail, the Double EMG distribution

implied elasticities are closer to the Exponentially implied elasticites and further away from

the Normal implied elasticities. This means that if a Normal distribution were used to

approximate the data, then the model will wrongly imply extensive margin adjustments

that are close to zero when that data have fat right tails. As a consequence, the Normal

distribution introduces systematically larger errors when the sales data for large firms are

increasingly fat-tailed.

Second, we show that previous estimates of extensive margin elasticities are upwards

biased due to using censored export data. We refer to this phenomenon as the truncation

bias. It is not uncommon in collecting trade and customs data for official records to omit

any firm-level exports below a given threshold. This threshold can vary from as low as 1,000

dollars to as high as 200,000 dollars in firm sales, in a given destination. Because our data

are not censored we are able to measure the magnitude of the truncation bias generated by

censored data. We create a counterfactual dataset that is censored at a modest value, and

show that when data are truncated, the average contribution of the extensive margin to the

trade elasticity is overestimated by a factor of 103.

The quantitative significance of this bias can be understood as follows. For the Double
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EMG distribution fitted to a full sample, the average contribution of the extensive margin

to trade elasticity is on the order of magnitude 10−5, implying that entry and exit account

for approximately 10 dollars out of one million dollars worth of increased trade. For the

Double EMG distribution fitted to a truncated sample, the average contribution becomes

10−2. Therefore, the estimates from the truncated sample imply that $10,000 (as opposed

to $10) of the increase in trade is due to entry and exit.

More broadly our results demonstrate that by omitting small firms, either by selecting

a distribution that does not fully match empirical distributions or by using exogenously

censored data, the trade literature may substantially overstate the magnitude of extensive

margin adjustment.

Our findings contribute to several literatures. First is the empirical literature on firm

size distributions. Axtell (2001) shows that, when measured in number of workers, the

right tail of the U.S. firm size distribution closely follows Zipf’s law. Studying the French

firm size distribution, di Giovanni, Levchenko, and Rancière (2011) provide further evidence

on the estimates of the tail parameter of a Power law distribution and show that is lies

close to one. Furthermore, while Cabral and Mata (2003) document a positively skewed

firm size distribution over number of employees in Portuguese manufacturing firms and

Bastos and Dias (2013) extend this result to total Portuguese exports, our work shows that

the asymmetric nature of the data is also pronounced in the distribution of export sales

by destination. In the Brazilian export data, the majority of destination-level exports are

positively skewed and the degree of (positive and negative) skewness varies across destination.

We demonstrate that a Double EMG distribution can match this feature of the data, while a

Normal distribution is symmetric and an Exponential distribution has a constant skewness

of 2.

In contrast, recent work has argued that sales distributions are not well characterized by

Zipf’s law. For example, Head, Mayer, and Thoenig (2014) show that a Normal distribution

provides a better fit to export sales data, primarily due to its superior ability to match

the left tail of export sales distributions. Furthermore, similar to this paper, Nigai (2017)
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shows that a mixture distribution of a log-Normal and Pareto better fits aggregated sales

data. The Double EMG as a characterization of the firm size distribution, however, has

advantages over both the Normal and the mixture distribution. First, neither the Normal

nor the mixture distribution is capable of matching negative skewness that we document

in the data. Second, the Double EMG has explicit microfoundations, unlike a mixture

distribution, which is appealing on the grounds of theoretical consistency within the model.3

This paper also contributes to the literature on the interaction between firm-level het-

erogeneity and trade elasticities that determine the gains from trade. Melitz and Redding

(2015) demonstrate that once firm-level heterogeneity is no longer governed by a Pareto

distribution, the elasticity of trade flows with respect to variable trade costs depends on

the entire sales distribution. Bas, Mayer, and Thoenig (2015) measure the magnitude of

the trade elasticity under different assumptions about heterogeneity and show that the data

favor a log-Normal distribution over a Pareto distribution. In this paper, we quantitatively

assess the fit of the Double EMG distribution and find that the data favors the Double EMG

over either the log-Normal or Pareto. This finding has implications for the trade elasticity,

that we develop herein.4

Finally, the Double EMG distribution has also been used in various recent macroeco-

nomic applications. Both Badel and Huggett (2014) and Heathcote and Tsujiyama (2015)

use the distribution to model idiosyncratic earnings in incomplete markets models with tax-

ation. The distribution helps capture the skewness in log-earnings distributions, as the EMG

fits the cross-sectional log-earnings distribution better than a conventionally used Normal

distribution. Toda and Walsh (2015) use the Double EMG to model the distribution of

consumption growth in the Consumer Expenditure Survey and estimate consumption-based

asset pricing models in the presence of fat-tailed consumption growth.

The rest of the paper is organized as follows. Section 2 establishes a set of stylized

3A further point of departure from Nigai (2017) is a focus on measuring trade elasticities. Relative to that
paper and Head et al. (2014) as well, this paper focuses on the rich heterogeneity of sales distributions
across destination-years.

4 While this paper focuses on exogenous distributions governing firm-level heterogeneity, Mrázová, Neary,
and Parenti (2016) focus on how preferences influence sales distributions.
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facts about the properties of log-sales distributions across markets. Section 3 constructs

the Double Exponentially Modified Gaussian distribution and characterizes its properties.

Section 4 fits theoretical distributions to empirical export sales distributions and evaluates

goodness of fit. Section 5 demonstrates how the trade elasticity depends on distributional

assumptions and defines a theory-based strategy for estimating the trade elasticity using

micro-level export data. Section 6 quantifies trade elasticities and documents the presence

of distribution specification bias and sample truncation bias in the estimates. Section 7

shows that our results hold for an alternative export sales dataset; shows that our results

are robust to sample selection, and, finally, shows that our results are robust to industry

heterogeneity. Section 8 concludes. Proofs to all propositions are included in Appendix A,

and Appendix B contains a full description of the heterogeneous-firm trade model that we

employ.

2 Empirical Facts

In this section we present new stylized facts that describe log-sales distributions across

export destinations and discuss how these facts present a puzzle for standard distributional

assumptions made in trade models.

The data come from the Brazilian customs declarations collected by SECEX (Secretaria

de Comercio Exterior).5 The data cover the period between 1990 and 2001, and include

the value of export sales at the firm-product-destination-year level. A product is defined

at a six-digit Harmonized Tariff System (HS) level. We focus on exports in manufacturing

products.6 To explore properties of the distribution of export sales across destinations and

years, we aggregate the data to the firm-destination-year level and focus on destination-year

observations where at least 100 firms export.7 We define an observation to be an entire

5See Molinaz and Muendler (2013) for a detailed description of the dataset. These data have also been
recently used by Flach (2016) and Flach and Janeba (Forthcoming).

6Manufacturing HS codes lie in the range between 10.00.00 and 97.00.00. In an average year exports in
manufacturing products account for 90.82% of total exports.

7To be consistent with the literature, we make two decisions on how to use the data. First, we follow the vast
majority of research on measuring theoretical trade elasticities by aggregating the data to destination-year,
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distribution of log-sales for a given destination in a given year.8 The final sample consists of

847 destination-year distributions of log-sales.

Table 1 summarizes properties of log-sales distributions across destination-year observa-

tions. Each row presents a statistic and, because there is variation in these statistics across

destination-year observations, each column reports a statistic’s average value, median value,

standard deviation, minimum value, and maximum value.

Fact 1 Across destinations, export sales distributions are highly asymmetric.

To describe the symmetry of log-sales distributions, we consider three different measures

of skewness. The first is the standardized third moment measure of skewness. The second

is nonparametric skew, which is defined as the difference between the mean and the median

of a distribution divided by its standard deviation. The third is Kelly skewness defined as

Kelly skewness =
(P90− P50)− (P50− P10)

P90− P10
, (1)

where P10, P50, and P90 are the 10th, the 50th and the 90th percentiles of a distribution.9

Table 1 shows that the majority of log-sales distributions are asymmetric. The average

of each skewness measure across destination-year observations is positive and the averages

are statistically different from zero with a maximium p-value of 0.0003 across measures.

Among the 847 destination-year observations, 54% have positive skewness, 71% have positive

nonparametric skew, and 75% have positive Kelly skewness.

We formally confirm the asymmetry in log-sales distributions through a standard test of

Normality, as described in D’Agostino et al. (1990). Based on skewness alone, the test rejects

as opposed to industry-destination-year (see Head et al. (2014), Bas et al. (2015), Nigai (2017)). Second,
we follow Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare (2015) in requiring at least 100
firms be present within a destination-year observation.

8In Appendix E, we consider an alternative definition of an observation that controls for the industrial
composition of sales within destinations.

9In recent research on the asymmetry of earnings growth over the business cycle using administrative data
from the Social Security Administration, Guvenen, Ozkan, and Song (2014) use Kelly skewness to avoid the
sensitivity of standardized moments to extreme values. Given that our dataset contains fewer observations,
we utilize Kelly skewness for robustness - to better ensure that our results are not generated by a small
number of extreme value observations.
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normality in 31% of destination-year observations at the 10-percent significance level, 24%

of observations at the 5-percent significance level, and 16% of observations at the 1-percent

significance level. Based on both skewness and kurtosis, the test rejects normality in 42%

of observations at the 10-percent significance level, 32% of observations at the 5-percent

significance level, and 20% of observations at the 1-percent significance level.

These empirical facts, however, contradict the properties of the standard theoretical

distributions employed by new trade models. First, the Normal distribution is symmetric,

and therefore all three skewness measures equal zero for a Normal. Second, the Exponential

distribution has skewness of 2, nonparametric skewness of 0.31 and Kelly skewness of 0.47.

Across each of the three measures, the Exponential distribution’s skewness does not depend

on the distribution’s parameter values. The majority of log-sales export distributions however

are not symmetric, do not share the same level of skewness, and are less skewed than an

Exponential distribution. Therefore, according to all three measures of skewness, neither the

Normal nor the Exponential distributions characterize the export sales data well.

Fact 2 Log-sales distributions exhibit a high degree of variation in the fatness of right and

left tails.

We focus on two measures to characterize the tail properties of log-sales distributions

across destination-year observations. The first measure is kurtosis, which is the fourth stan-

dardized moment of a distribution. Kurtosis measures how much mass is located in the tails

of a distribution relative to the mean. The kurtosis of a Normal distribution is constant

and equals 3. A leptokurtic distribution has higher kurtosis than a Normal distribution

and therefore exhibits fatter tails than a Normal. As can be seen from Panel A in Table 1,

the average kurtosis across destination-year observations in the data is 3.17. Therefore, on

average, the log-sales distributions are more fat-tailed than a Normal.

Similar findings hold for a percentile based measure of kurtosis defined as

Percentile coefficent of kurtosis =
(P75− P25)/2

P90− P10
,
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where P25 and P75 are the 25th and 75th percentiles of a distribution. For a Normal

distribution the percentile coefficient of kurtosis is equal to 0.26. A smaller value of the

coefficient corresponds to a distribution that is more kurtotic than a Normal. As can be

seen from Panel B of Table 1, log-sales distributions exhibit substantial variation in kurtosis

around the sample mean of 0.26 with a majority of observations being more kurtotic than a

Normal.

While kurtosis is informative about the overall fatness across a distribution’s tails (relative

to a Normal distribution), it does not provide any information about how fat tails are relative

to each other. In order to characterize fatness in the left tail relative to fatness in the right

tail, we follow Gabaix and Ibragimov (2011) in estimating the right and left tail index

parameters for each log-sales distribution across destination-years. Tail index parameters

are estimated as the coefficient β from the following regression:

log (Ranki − 0.5) = α + β log(Salesi) + εi,

where i indexes firms within an export destination, Salesi is firm i’s export sales, and Ranki

is firm i’s sales rank out of all firms exporting to a particular destination. We run this

regression on a sample of firms in the top or bottom 5%, 10% and 15% of a distribution for

each destination-year observation. The smaller is the estimate of the coefficient, the fatter

is the corresponding tail of the distribution.

Results are summarized in Panel C of Table 1, which report information about the

absolute value of the coefficient β as estimated across destination-year observations. These

results indicate that the log-sales distributions exhibit substantial fatness in both the left

and right tails. Depending on the sample, the average value of the tail index coefficient varies

between 1.01 and 1.42. Notably, the left tail index exhibits more fatness than the right tail

index. For example, the sample average of the left tail index for the bottom 15% of firms is

1.01, while for the top 15% the average is 1.08.

Furthermore, we find that both tails are simultaneously fat in a majority of cases. Figure 1
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provides a scatter plot of the tail index estimates for the top and bottom 5% of firms in a

distribution. Each dot in the Figure corresponds to an estimate of the right tail index (x-

axis) and the left tail index (y-axis) for a given destination-year observation. Observe that

both tail indexes have values below 2 for a majority of distributions.

Our finding that the right tail of the log-sales distribution tends to be fat is consistent

with previous research (see Axtell (2001), di Giovanni and Levchenko (2013)). However, our

finding that the left tail of log-sales distributions exhibits substantial fatness is, to the best

of the authors’ knowledge, new to the trade literature. These findings immediately imply

that a Normal distribution poorly characterizes the log-sales distributions, as the Normal

distribution exhibits too little kurtosis. Furthermore, the log-sales distributions would also

be poorly approximated by an Exponential due to the presence of a fat left tail.

In the next section we introduce and characterize the Exponentially Modified Gaussian

distribution (EMG). We show that the EMG distribution has a potential to fit the empirical

distribution of log-sales better than the most prevalent distributions used in trade models.

We then generalize the EMG distribution so that it can fit a larger set of the empirical

observations we document above.

3 The Double Exponentially Modified Gaussian Dis-

tribution

The Double Exponentially Modified Gaussian (Double EMG) distribution is defined as a

convolution of a Normal distribution and a Double Exponential distribution. As a result,

one of the key properties of the distribution is its flexible behavior in the right and left tails.

Hence, the Double EMG distribution is well suited to generate empirical regularities in

the log-sales export data as documented in Section 2. Furthermore, the distribution arises

naturally in models that feature both Double Pareto and log-Normal shocks that affect

firms’ profit. In Section 3.1 we derive several key properties characterizing the distribution

including its behavior in the right and left tails.
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3.1 Characterization of the Double EMG

Consider a random variable z defined as z = x + y, where x and y are two independent

random variables. Assume x:N (µ, σ2) is Normally distributed, and y:DE(λL, λR), where

DE denotes the Double Exponential distribution.10 In this case, random variable z is a

convolution of a Normal and a Double Exponential random variables and is said to follow

a Double Exponentially Modified Gaussian (Double EMG) distribution with parameters

(µ, σ, λL, λR). Proposition 1, below, formally characterizes the Double EMG distribution

with its cumulative distribution function. Proposition 2 further characterizes the the Double

EMG distribution’s limiting properties.11

Proposition 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼

DE(λL, λR) and parameters satisfy µ ∈ R, σ > 0, and λL, λR > 0. The random variable

z ≡ x+ y has the cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− λL
λL + λR

e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)

+
λR

λL + λR
eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)
.

Proposition 2 (Limiting Results) Let z be a Double Exponentially Modified Gaussian dis-

tributed random variable with parameters (µ, σ, λL, λR). The random variable z is (i) an

Exponentially Modified Gaussian distributed random variable as λL goes to infinity, (ii) an

Exponentially Modified Gaussian distributed random variable with a Normal right tail and

Exponential left tail as λR goes to infinity, (iii) a Double Exponentially distributed random

variable as σ goes to zero, where if µ 6= 0 then this limiting distribution is a shifted Double

Exponential distribution, and (iv) an Exponentially distributed random variable as σ goes to

zero and λL goes to infinity.

10The Double Exponential distribution is also referred to as an Asymmetric Laplace distribution. The
cumulative distribution function is given by GDE(y) = λR

λL+λR
eλLy if y < 0, and GDE(y) = λR

λL+λR
−

λL

λL+λR

(
1− e−λRy

)
if y ≥ 0.

11The proofs to all propositions are included in Appendix A.
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Notice from Proposition 2 that the Double EMG distribution generalizes both the Normal

and the Double Exponential distributions. Consider the variance of a Double Exponential

distribution with the tail parameters denoted by λL and λR, which is λ−2
L +λ−2

R . By increasing

the value of both of the tail parameters we can make the variance arbitrarily small and the

corresponding distribution has a point mass. Next, consider the variance of the Normal

distribution. As we decrease the variance parameter σ, the Normal distribution becomes a

point mass at µ. Therefore, the Double EMG distribution can be transformed into a Normal

distribution when its Double Exponential distribution has zero variance ((λ−2
L + λ−2

R ) → 0)

or transformed into a Double Exponential distribution when its Normal distribution has zero

variance (σ → 0).

The Double EMG distribution can further be transformed into an Exponential distribu-

tion. This occurs when the variance parameter of the Normal distribution, σ, declines to

zero, and hence the Normal distribution converges to a point mass at µ. Simultaneously,

when the value of the left tail parameter of the Double Exponential distribution, λL, goes

to infinity, Double Exponential distribution converges to Exponential.

Proposition 3, below, shows that, as a consequence of being a convolution of a Normal

and a Double Exponential random variable, the Double EMG distribution can generate

both positive and negative skewness as well as fatness in both the left and right tails of the

distribution.

Proposition 3 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the skewness of z is given by

skew(z) = 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)− 3
2

.

Furthermore, the sign of skew(z) is determined by the relative size of the tail parameters:

(i) skew(z) > 0 if λL > λR, (ii) skew(z) = 0 if λL = λR, and (iii) skew(z) < 0 if λL < λR.

The skewness of the Double EMG distribution exhibits two stark properties. First, the

distribution has a potential to generate both positive and negative skewness in the range
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between -2 and 2. Notably, the sign of the skewness depends on the relative fatness of the

right and left tails of the distribution as measured by parameters λR and λL. Second, the

distribution can be symmetric (when λL = λR), yet exhibit substantial deviations from a

Normal in the tails when the values for λR and λL are small.

Figure 2 provides an example of two probability density functions for two distributions

with zero mean and the unit variance. The solid line depicts a probability density function

for a symmetric Double EMG distribution (although the tails need not be symmetric), and

the dashed line depicts a probability density function for a Normal distribution. Notice

that relative to a Normal, the Double EMG, while preserving the unimodal property of the

distribution, has more mass in the right and left tails. This is a key distinction between the

two distributions which helps the Double EMG to flexibly match novel features of log-export

sales distributions.

Hence, the Double EMG is the most flexible distribution among those considered in the

trade literature and has the potential to match all of the new stylized facts documented in

Section 2. In the next section we describe our strategy for fitting the Double EMG distribu-

tion to the data and compare the distribution’s fit to that of the Normal and Exponential.

4 Fitting to Empirical Distributions

In this section we describe our strategy for estimating distributional parameters using export

sales data from Brazil. Then, equipped with estimated parameters for each destination-year

log-sales distribution, we compare the fit of the Double Exponentially Modified Gaussian,

Normal and Exponential distributions. We show that the Double Exponentially Modified

Gaussian distribution has a superior fit to the data when compared to the Normal and

Exponential distributions. Lastly, we document that there is large heterogeneity in esti-

mated parameters and show how the estimates reflect the variation in data moments across

destination-year observations.
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4.1 Parameter Estimation

We choose distribution parameters so that the percentiles of the theoretical log-sales distri-

bution match the percentiles of the empirical log-sales distribution. Specifically, we recover

parameters of a theoretical distribution from non-linear quantile regressions that we imple-

ment using a generalized method of moments procedure. Our procedure is a generalization

of Head, Mayer, and Thoenig (2014), who use quantile regressions to estimate parameters of

the Pareto and a log-Normal distributions, both of which have linear quantile functions and

therefore parameters can be estimated using linear regression. In contrast, the Double EMG

distribution does not admit a linear quantile function (as can be inferred from Proposition 1)

and therefore we estimate the parameters of the Double EMG distribution using a General-

ized Method of Moments (GMM) procedure. For the Normal and Exponential distributions,

our procedure can recover the parameter estimates implied by linear regression.

Denote by nq the number of sales quantiles. Let qdi denote the i-th quantile of the

empirical log-sales distribution and F d
i denote the corresponding value of the empirical CDF

at the i-th quantile.12 By comparison, let qi(Θ) denote the i-th quantile of the theoretical

cumulative distribution function with parameters Θ and let F (qi|Θ) denote the corresponding

value of the theoretical cumulative distribution function at the i-th quantile.

For an arbitrary distribution over log-sales, we can recover the theoretical quantiles by

inverting the theoretical cumulative distribution function. Generally, the inverse can be com-

puted numerically for each value of the empirical cumulative distribution function, {F d
i }

nq
i=1,

by using a root-finding procedure to find the value of q such that F d
i = F (q|Θ) up to the

desired tolerance of error.

For the Double EMG distribution, the parameter vector is Θ = (µ, σ, λL, λR) such that

q ∼ f(q|µ, σ, λL, λR). However, the inverse of the Double EMG distribution does not admit

a closed form expression. Therefore, the inverse of the cumulative distribution function must

be computed numerically.

12Following Head, Mayer, and Thoenig (2014), we define the empirical CDF over log-sales as F di = (i −
0.3)/(nq + 0.4).

15



By a change of variables, log-sales are Normally distributed if sales are log-Normally dis-

tributed. Similarly, log-sales are Exponentially distributed if sales are distributed according

to a Pareto. Both the Normal and Exponential distributions do, in fact, admit closed form

expressions for the inverted cumulative distribution functions, of the forms:

qNi (ΘN) = µN + σNΦ−1(F d
i )

qEi (ΘE) = log(
¯
r) + (1/λE) log(1− F d

i ),

where Φ(·) is the CDF of a standard normal, and ΘN = (µN , σN) and ΘE = (
¯
r, λE) denote

the parameter vectors for the Normal and Exponential distributions, respectively.

Finally, for a given theoretical distribution F (·|Θ), we choose parameters Θ that minimize

the sum of the squared errors between empirical and theoretical quantiles:

min
Θ

nq∑
i=1

(
qdi − qi(Θ)

)2
. (2)

In estimation, we use the 1st through 99th percentiles of the empirical CDF to estimate pa-

rameters. In practice, this choice eases computational burden compared to using each data

point, without significantly changing the parameter estimates we recover. Furthermore, note

that choosing parameters to minimize the sum of squared residuals is equivalent to Head

et al.’s (2014) method of recovering parameters from quantile regressions. Our procedure

recovers approximately the same parameter estimates for the Normal and Exponential dis-

tributions as those authors’ method.

4.2 Double EMG Fit to Empirical Distributions

Having estimated distribution parameters, we now evaluate the fit of each distribution to

the log-sales distributions across destination-years.

Result 1 According to multiple goodness of fit statistics, the Double Exponentially Modified

Gaussian distribution fits empirical log export sales distributions better than the Normal and
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Exponential distributions.

We first argue that the Double EMG distribution fits the data better than either the

Normal or Exponential distributions by examining fitted distribution functions versus their

empirical counterparts. We observe that the Double EMG distribution deviates from the data

less than the Normal distribution, especially at the lower and upper percentiles. Panel A of

Figure 3 compares the left tail across the empirical, Double EMG and Normal distributions.

We observe that the Double EMG distribution provides a superior fit than the Normal in

the left tail. Panel B of Figure 3 compares the right tail across distributions. We observe

that the Double EMG distribution barely deviates from the empirical distribution up to the

99th percentile. In both tails, the Normal distribution is too thin relative to the data.

To better formalize the suggestive evidence we have put forth thus far, we consider three

primary measures of the goodness of fit. Figure 4 presents goodness of fit statistics for

each of the distributions under consideration. Specifically, the Figure 4 presents scatter

plots of goodness of fit measures from the Exponential distribution (top row) or the Normal

distribution (middle row), plotted against goodness of fit measures for the Double EMG

distribution.

The first measure is the sum of squared errors (reported in the first column), which is

given by the objective criterion from the estimation procedure given in equation (2) when

evaluated at the error-minimizing parameters. Panel A and Panel D of Figure 4 show

that errors are larger for the Normal and Exponential distributions than the Double EMG

distribution. This is unsurprising, since the Double EMG distribution nests both the Normal

and Exponential distributions as limiting cases (see Proposition 2). More interesting is the

fact that both Panels A and D show that the errors are much larger for the Normal and

Exponential distributions. However, the magnitude of the difference in errors is smaller for

the Normal than the Exponential distribution.
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The second measure is the Mean Absolute Error, which is given by:

MAE(Θ) ≡ 1

nq

nq∑
i=1

∣∣∣qdi − qi(Θ)
∣∣∣.

The Mean Absolute Error measures the average deviation of the theoretical distribution

from the empirical in either direction, but unlike the sum of squared errors does not more

harshly penalize infrequent but large deviations. The second column (Panels B and E) of

Figure 4 shows that errors are larger for the Normal and Exponential distributions than the

EMG distribution. Therefore, the Mean Absolute Error reinforces that the Double EMG

distribution has a superior fit, and that the difference in errors across the three distributions

are not generated by a small number of large deviations from empirical observations.

The third measure is the Anderson-Darling statistic, which is given by:

AD(Θ) ≡ nq

nq∑
i=1

(F d
i − F (qi|Θ))2

F (qi|Θ)(1− F (qi|Θ))
f(qi|Θ),

where f(qi|Θ) is the theoretical probability density function.13 Compared to our two other

goodness of fit measures, the Anderson-Darling statistic places greater weight on observations

in the tails of the distributions. To see this, consider the denominator within the integral.

As F (q|Θ) approaches one or zero, [F (q|Θ)(1 − F (q|Θ))]−1 approaches infinity. Therefore,

the denominator is smallest for values of q for which F (q|Θ) is interior to [0, 1]. The third

column of Figure 4 shows that the Anderson-Darling statistics are larger for the Normal

and Exponential distributions than the Double EMG distribution. Therefore, the deviations

of the Normal and Exponential distributions from the data can be, at least partially, at-

tributed to a failure to match tail observations. This is particularly true for the Exponential

distribution, which by construction cannot match the left tail of the sales distributions.

Taken together, these three measures show that the Double EMG distribution consis-

tently fits the log-sales distributions better across destination-year observations, and that

13We compute this the density function as a numerical approximation to the derivative of the cumulative
distribution function: f(q|Θ) ≡ (F (q+ ∆|Θ)−F (q−∆|Θ))/2∆. The constant ∆ > 0 is chosen as a tenth
of the maximum distance between successive empirical quantiles.
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the Normal and Exponential distributions consistently fit the data worse in the tails of the

distribution.

Result 2 The Double Exponentially Modified Gaussian distribution can match the observed

dispersion in positive and negative skewness of empirical log export sales distributions while

the Normal and Exponential distributions cannot.

The two most studied distributions in the trade and firm size dynamics literatures have

a stark feature: the Normal and Exponential distributions have constant higher order mo-

ments that do not vary with parameters. In particular the Normal distribution is symmetric

and therefore cannot possibly match the variation in skewness across destination-year ob-

servations. Furthermore, the Exponential distribution has constant skewness that does not

depend on parameters of the distribution, which again makes it an ill-suited distribution for

confronting the data on skewness. Figure 5 plots theoretical moments from the estimated

distributions against the empirically observed moments.

Panel I of Figure 5 compares Kelly skewness in the data across destinations to Kelly

skewness in the Double EMG distribution, Panel C of Figure 5 compares Kelly skewness in

the data to that from the Normal distribution and Panel F from the Exponential distribution.

It is immediately clear that the Double EMG distribution is the only distribution that

exhibits variation in skewness across destination-year observations.

Panel B, Panel E, and Panel H of Figure 5 compare the interquartile range in the data

(x-axes) to that in the three theoretical distributions. We see that all three distributions

capture the general relationship in the data, although the Exponential distribution under

predicts. Panel A, Panel D, and Panel G of Figure 5 show the comparison with the median

of the empirical and theoretical distributions. Only the Double EMG distribution captures

some amount of the cross destination-year variation in medians. The median of the Normal

distribution is nearly constant across destination-years, which is at odds with the data.

Lastly, the Exponential distribution consistently under predicts the median.
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5 Theoretical Trade Elasticity

In this section, we employ the workhorse heterogeneous-firm trade model, along the lines

of Melitz (2003) and Chaney (2008), to illustrate a relationship between export sales distri-

butions and the partial trade elasticity. We demonstrate that variation in the partial trade

elasticity across destinations arises from the variation in the extensive margin of firm entry

and exit. We further show that the extensive margin elasticity can be identified from prop-

erties of empirical export sales distributions and, finally, develop an estimation approach for

quantifying the magnitude of the extensive margin elasticity.

5.1 Sales

We consider an economic environment in which heterogeneous firms are monopolistic com-

petitors and the representative household has constant elasticity of substitution preferences

as in Melitz (2003). We further assume that entry is exogenous, as in Chaney (2008).14 In

this environment, a firm in country i has export sales in country j given by

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij , (3)

where ε is the elasticity of substitution, τij is the iceberg transportation cost of exporting

from country i to country j, wi is the wage in country i, Yj and Pj are the income level and

the price level in country j, and zij is a country i firm’s idiosyncratic profitability in country

j.15 Denote the probability density function and cumulative distribution function over firms’

profitability by gij(z) and Gij(z), respectively.

In a canonical Melitz (2003) environment, the underlying source of heterogeneity in prof-

itability arises from heterogeneity in labor productivity across firms. Chaney (2008) further

assumes that firm-level labor productivity, denoted by ϕ, is drawn from a Pareto distribution

14We refer the reader to Appendix B for a richer description of the economic environment that we consider.
15Following Foster, Haltiwanger, and Syverson (2008) and Bernard, Redding, and Schott (2010), profitability

refers to firm-level shocks that may be the outcome of not only productivity differences but also differences
in product demand.
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with shape parameter ξ. In this case, ezij is equal to ϕε−1 and, by a change of variables, zij

follows an Exponential distribution with shape parameter λ = ξ/(ε− 1).

In contrast to Chaney (2008), more recent work by Bas, Mayer, and Thoenig (2015)

and Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare (2015) assumes that the

underlying labor productivity ϕ is drawn from a log-Normal distribution, logN (m, υ2). In

this case, ezij equals ϕε−1, and zij follows a Normal distribution, N (µ, σ2) where µ = m(ε−1)

and σ2 = υ2(ε− 1)2.

Generalizing both sets of distributional assumptions, the literature on firm-level learning

and export decisions (see Timoshenko (2015)) assumes that there are two separate sources

of heterogeneity in firm-level profitability. Heterogeneity arises from firm-level labor pro-

ductivity ϕ drawn from a Pareto distribution with a shape parameter ξ, and firm-level

product demand eθ where θ is drawn from a Normal distribution N (m, υ2), so that ezij

equals eθϕε−1.16 In this case, a firm’s profitability draw, zij = θ + log (ϕε−1), is the sum of

a Normal and an Exponential random variable. Hence, zij is an EMG distributed random

variable with parameters (µ, σ, λ), where µ = m+ (ε− 1)/ξ, σ2 = υ2, and λ = ξ/ε.

In the context of the aforementioned firm-level learning literature, equation (3) is a gen-

eral representation of sales from country i’s firms to country j. While variation in profitability

across firms may arise from differences in firm-specific labor productivity, destination-specific

demand shocks or some combination of both, equation (3) shows that only the cumulative

effect, summarized by the profitability draw zij, determines the level of sales.

5.2 Aggregation

The aggregate trade flow from country i to country j is defined as

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (4)

16In order to be consistent with standard trade models, assume that there is no idiosyncratic or aggregate
uncertainty after firms enter the market, firms always observe their product demand, and that the product
demand does not vary over time (see Appendix B).
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where Mij is the mass of firms exporting from country i to j, and z∗ij is the profitability entry

threshold determined by the zero-profit condition. The partial elasticity of trade with respect

to variable trade costs is defined as the percent-change in the aggregate trade flows between

i and j as a result of a percent-change in variable trade costs τij and can be expressed as

∂ logXij

∂ log τij
= (1− ε)︸ ︷︷ ︸

level of the
partial trade elasticity

( 1︸︷︷︸
intensive margin

contribution

+ γij︸︷︷︸
extensive margin

contribution

), (5)

where γij is given by

γij ≡
gij(z

∗
ij)

(1−Gij(z∗ij))
· ez

∗
ij

Eij(ez|z > z∗ij)
, (6)

and Eij(·|z > z∗ij) is a conditional expectation over profitability.17

A conventional way to write equation (5) is ∂ logXij/∂ log τij = (1− ε)+(1− ε)γij, where

(1 − ε) is the intensive margin, and (1 − ε)γij is the extensive margin of the partial trade

elasticity.18 The advantage of the representation in equation (5) is that it highlights the

distinct roles for the elasticity of substitution (ε) and the parameter governing the extensive

margin elasticity (γij) in determining the partial trade elasticity.19 As can be seen from

equation (5), ε governs the overall level of the trade elasticity, the contribution of the intensive

margin to that level is always unity, and the contribution of the extensive margin is governed

by γij. Hence, every dollar of new trade can be decomposed into an intensive and extensive

margin adjustment in the proportion of 1 to γij, which is notably independent from ε.

Equations (5) and (6) illustrate the important role that micro-level firm heterogeneity

plays in the aggregate measures of partial trade elasticity. From equation (5), the main source

of variation in the partial trade elasticity across origin-destination country pairs arises from

17The partial trade elasticity is derived in Appendix B.
18Chaney (2008) first suggested this decomposition in conjunction with a Pareto distribution. With Pareto

distributed zij , equation (6) simplifies to γij = (λ − 1), where λ = ξ/(ε − 1) and ξ is the Pareto tail
parameter. Substituting the definition for λ yields Chaney’s (2008) familiar formula for the partial trade
elasticity: ∂ logXij/∂ log τij = −ξ.

19Melitz and Redding (2015) provide a representation of the partial trade elasticity consistent with equation
(5).
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variation in the extensive margin elasticity, γij.
20 In turn, equation (6) demonstrates that

the extensive margin elasticity is solely determined by the shape of the log-sales distributions

summarized by the probability density and the cumulative distribution functions, gij(·) and

Gij(·), respectively, and the entry profitability threshold, z∗ij. We describe the estimation

method for γij in the next subsection.21

5.3 Estimation Method

To compute extensive margin elasticities in equation (6) we proceed by, first, estimating

the origin-destination specific distributions of firm profitability, Gij(.) and, second, using

estimated parameters of the distributions to recover the profitability entry thresholds, z∗ij.

We recover parameters of the distributionGij(·) from micro-data on log-sales distributions

by applying the estimation procedure in Section 4.1. From equation (3), we can write log-

sales, log(rij(zij)), as

log(rij(zij)) = log (Cij) + zij, (7)

where Cij =
(
ε−1
ε

)ε−1
(τijwi)

1−ε YjP
ε−1
j . Equation (7) highlights a one-to-one mapping be-

tween the distribution of log-sales and the distribution of the underlying profitability shocks.

The two distributions are equal up to a scale parameter (Cij). Hence, we uncover parame-

ters of the firms’ profitability distribution, gij(z), by fitting that distribution to the empirical

distribution of log-sales.

Given the estimated origin-destination specific distribution parameters, we follow the

20Variation in the level of the partial trade elasticity can, in principle, arise from the elasticity of substitu-
tion being destination specific. Following the vast majority of the literature we abstract away from this
generalization and leave it for future research.

21In our generalization, notice that the partial trade elasticity is origin-destination specific due to the prof-
itability entry thresholds and the profitability distributions being origin-destination specific. This is in
contrast to a more restrictive assumption of a constant partial trade elasticity in Arkolakis et al.’s (2012)
framework. A constant partial trade elasticity requires the elasticity to be independent of the endogenous
profitability entry threshold and the profitability distribution not be destination specific. As a consequence,
the most common gravity estimation approach will uncover only a sample average of origin-destination
specific partial trade elasticities, which in fact may vary due to origin-destination specific distributions.
This is also a key point in Melitz and Redding (2015).
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approach developed in Bas, Mayer, and Thoenig (2015) for recovering the threshold z∗ij from

the average-to-minimum ratio of a sales distribution.22 Using equation (3), we can express

the theoretical average-to-minimum ratio as a function of z∗ij alone:

Eij(rij(zij)|zij > z∗ij)

rij(z∗ij)
=

Eij(e
zij |zij > z∗ij)

ez
∗
ij

. (8)

Subsequently, we compute the value of z∗ij for which expression (8) equals the empirical

average-to-minimum ratio.

Our approach slightly differs from Bas, Mayer, and Thoenig (2015) in that it does not

require any knowledge of the elasticity of substitution when computing the profitability

entry threshold z∗ij or the corresponding extensive margin contribution to the partial trade

elasticity, γij. The main distinction is that our firm-level profitability construct consolidates

various types of (productivity or demand) shocks and the elasticity of substitution into a

single parameter, zij. As a result, we can use equation (7) to directly estimate parameters of

the profitability distribution, gij(.), from log export sales data, and then use equations (6)

and (8) to compute z∗ij and γij using only the estimated distribution gij(.). The advantage of

our approach lies in its ability to estimate the extensive margin of the partial trade elasticity

without estimating the elasticity of substitution, ε, which has it own challenges as extensively

discussed in Bas, Mayer, and Thoenig (2015).23

6 Quantifying Trade Elasticities

In this section, we report the quantitative magnitudes of extensive margin elasticities and the

resulting extent of variation in the partial trade elasticity across origin-destination country

pairs. We show that the Double EMG implied extensive margin elasticity estimates are small

22As the name suggests, the “average-to-minimum ratio” in a destination-year distribution is constructed as
the ratio of average sales to smallest sales record observed.

23Without loss of generality for the decomposition of trade elasticity into intensive and extensive margins, we
assume ε = 6. This value lies within the range used in the literature, see Broda and Weinstein (2006) and
Bas et al. (2015). Subsequent results on the extensive margin contribution to the partial trade elasticity
do not depend on the particular value we choose.
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and only slightly larger than those implied by a Normal distribution. As a result, there

is little variation in the partial trade elasticity. In contrast, the Exponential distribution

overestimates the extensive margin elasticity by a large order of magnitude, which falsely

attributes a large role to firm entry and exit in accounting for trade adjustments. Finally,

we show that the size of the extensive margin adjustment is exaggerated when left truncated

data are used in estimation.

6.1 Trade Elasticity Estimates

In Section 4 we showed that the Double EMG distribution closely fits the log-sales data and

both fit the data better than other distributions commonly used in the trade literature. In

this section, we proceed by comparing estimates of the extensive margin elasticity implied

by the Double EMG distribution to the estimates implied by either Normal or Exponential

distributions.

Table 2 reports summary statistics of the estimated values of the extensive margin elastici-

ties, γij, for the Double EMG, Normal, and Exponential distributions.24 Result 3 summarizes

the comparisons, as follows.

Result 3 (Quantitative magnitude of the extensive margin elasticities)

(i) The extensive margin contribution to the partial trade elasticity implied by the Double

EMG distributions is small, with the average order of magnitude being 10−5.

(ii) There is little variation in the extensive margin elasticity across origin-destination coun-

try pairs, as the standard deviation across estimates implied by the Double EMG distributions

is on the order of 10−4.

24The estimated values of the Exponential tail parameter from Section 4 all lie below unity. Such small
values of the tail parameter occur due to fitting the Exponential distribution to data percentiles 1 through
99, to be consistent with the moments used to estimate parameters of the other considered distributions
(Double EMG, Normal). When the value of the Exponential distribution tail parameter falls below unity,
the moments of the distribution necessary to compute γij are not defined. We nevertheless would like to
provide some meaningful comparison between the Double EMG and Exponentially implied trade elastici-
ties. We proceed by following the approach taken by Bas et al. (2015) and use estimates of Exponential tail
parameter inferred from fitting the distribution to the top 5% of exporters for each each destination-year.
The summary statistics for these estimated parameters are contained in Panel C of Table 1.
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To put the magnitudes reported in Result 3 in perspective, consider the average sample

value of the extensive margin elasticity implied by the Double EMG distribution, which

equals 4.2 · 10−5. This value should be understood in the context of equation (5), where the

partial trade elasticity for an average observation equals (1− ε) · (1 + 4.2 · 10−5). Given the

elasticity of substitution is ε = 6, a 1% decline in variable trade costs will increase trade by

5.002%, to which the entry and exit of firms contribute only 0.002%. To further emphasize the

small magnitude of the extensive margin adjustment, suppose that a 1% decline in variable

trade costs leads to 500 million dollars in increased export sales. According to equation (5),

every one dollar of new trade can be decomposed into an intensive and extensive margin

adjustment in the proportion of 1 to γij, or 1 to 4.2 · 10−5. Therefore, those 500 million

dollars of new trade amount to $499,979,000 of intensive versus $21,000 of extensive margin

adjustment. Hence, the extensive margin is quantitatively and economically small.

Furthermore, while the theory advanced in equation (5) attributes all origin-destination

specific variation in the partial trade elasticity to variation in the extensive margin compo-

nent, estimates of the Double EMG implied extensive margin component are so small that

there is essentially no variation. As a result, the majority of trade adjustment in response to

a decline in variable trade costs is accounted for by changes on the intensive margin. This is

confirmed in the last two columns of Table 2, which reports that the partial trade elasticity

exhibits negligible variation across destinations (5.5 · 10−4) and has an average value that

approximately equals the level of the partial trade elasticity (ε− 1 = 5).25

6.2 Distribution Specification Bias

Relative to the Double EMG estimates, the often used Normal and Exponential distributions

generate biased estimates of the extensive margin elasticity and should rather be viewed as

providing upper (Exponential distribution) and lower (Normal distribution) bounds on the

25 Our analysis does not exclude the possibility that there could be variation in the partial trade elasticity
due to variation in the elasticity of substitution, ε, across destinations. Our results merely indicate that
if there is variation in the partial trade elasticity across destinations, then it is not due to the extensive
margin.
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extensive margin elasticity estimates.This is the subject of Result 4, below.

Result 4 (Distribution Specification Bias) The Normal and Exponential distribution exten-

sive margin elasticity estimates provide lower and upper bounds, respectively, on the Double

EMG distribution implied estimates.

(i) The Normal distribution generates extensive margin elasticities that under-predict mag-

nitudes by an average of 40% relative to the Double EMG distribution.

(ii) The Exponential distribution generates extensive margin elasticities that over-predict

magnitudes by an average factor of 107 relative to the Double EMG distribution.

(iii) The larger is the mass in the right tail of a distribution, the larger is the distribution

specification bias implied by a Normal relative to the Double EMG distribution fit.

Notice from Table 2, that the value of an average extensive margin elasticity implied by

a Normal distribution is about 5 times smaller than that implied by the Double EMG distri-

bution, and the value implied by an Exponential distribution is about 10,000 times larger.

Quantitatively, these average magnitudes imply that for a hypothetical 500 million dollars

increase in total newly created trade the Normal, Double EMG, and Exponential distribu-

tions, would attribute $4,050, $21,000, and $175,000,000, respectively, to trade generated by

new entrants.

For further comparison, Panel A of Figure 6 depicts estimates of the extensive margin

elasticity γij computed using a fitted Normal (dots) versus Exponential (stars) distribution

(on the y-axis) with that computed using a fitted Double EMG distribution (on the x-axis).

Each point corresponds to an elasticity that was computed for a given destination-year. The

solid line is a 45-degrees line. For the Exponentially implied elasticities, each observation

lies above the 45-degree line, and hence, the value of the elasticity is above that implied by

the Double EMG distribution. In sharp contrast, the Normally implied elasticities for each

destination-year observation lie on or below the 45-degree line indicating that the Double

EMG implied elasticities are larger or equal to those implied by a Normal.

Table 3 further demonstrates the extent of the distribution specification bias in the ex-
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tensive margin elasticities generated by a Normal and Exponential distributions. The table

summarizes the size of and variation in the ratio of the Normal and Exponential elasticity

estimates to Double EMG estimates across destination-year observations. As can be seen

from the Table, a Normal distribution under-predicts the extensive margin elasticities by

about 40 percent, on average, relative to the Double EMG estimates. In contrast, an Ex-

ponential distribution over-predicts the extensive margin elasticities by an average factor of

107 relative to the Double EMG estimates.

Lastly, the Normal distribution will exhibit its largest deviation from an empirical log-

sales distribution that is positively skewed, and hence the extent of distribution specification

bias generated by the Normal distribution heavily depends on the behavior of the right tail.

To show this, Panel B of Figure 6 plots the ratio of extensive margin elasticity estimates from

the Double EMG to those of the Normal distribution (γDEMG
ij /γNij ), against the estimated

Double EMG tail parameter, λR, for a subsample of distributions with a fat right tail, in

particular λR < 2. Panel B of Figure 6 shows that the smaller is the estimated value of λR, the

more fat-tailed is the log-sales distribution and the larger is the distribution specification bias

implied by the Normal distribution. When the estimated tail parameter λR for a destination-

year observation is less than 1.05, the Double EMG implied extensive margin elasticity is

10 to 1,000 times larger than the elasticity implied by a Normal distribution. Furthermore,

this bias is pervasive, as 55% of observations have an estimated λR less than 2.

6.3 Sample Truncation Bias

Data restrictions pose additional challenges to correctly identifying bilateral trade elasticities.

In that regard, many customs-level data sets are truncated. For example, in the French trade

data used by Bas, Mayer, and Thoenig (2015), firms are not required to report their exports

to an EU member country, unless the value of the shipment exceeds 250,000 euros. For non-

EU member countries, firms need not report trade values below 1,000 euros. These reporting

rules are exogenous to the researcher, but they are not without consequence for estimating

policy relevant trade statistics.
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At a conceptual level, left data censoring disproportionately reduces the size of the small-

est firm that is observable to the econometrician and exaggerates its role in the sales dis-

tribution. Specifically, as is apparent from equation (6), omitting firms below a certain

threshold, increases the absolute size of the smallest firm, z∗ij, and reduces its size relative to

an average firm, Eij(e
z|z > z∗ij)/e

z∗ij . As a result, truncated samples are likely to overstate

the contribution of the extensive margin to the partial trade elasticity and hence generate

misleadingly high variation in bilateral elasticities.

In order to quantify the truncation bias in elasticity estimates due to exogenous data

censoring, we conduct the following counterfactual experiment. We take the original log-

sales data and drop all firm-destination-year observations with a value of exports below

$5,000.26 We then re-fit a Double EMG distributions to these truncated data, recompute

the average-to-minimum ratio based on the truncated sample, and finally recompute the

extensive margin elasticities using the counterfactual Double EMG distributions’ parameters

and average-to-minimum ratios.

Result 5 (Sample Truncation Bias) Consider a truncated sample due to dropping all firm-

destination export sales lower than $5,000.

(i) Data truncation generates an upward bias in the extensive margin elasticity estimates

with an average order of magnitude 103 for the Double EMG distribution.

(ii) Data truncation increases the standard deviation of the extensive margin and partial

trade elasticities by a factor of 110 for the Double EMG implied estimates.

Table 5 reports estimates of the trade elasticities for a truncated sample and compares

them to the estimates from a full sample. As can be seen from Panel B, a small data

truncation of $5,000 in firm sales per destination yields an upward bias in an extensive

margin elasticity estimate by an average factor of 6.7 · 103 for a Double EMG distribution.

Notice the increase in the average the extensive margin trade elasticity estimate implied by

the Double EMG distribution, from 2.4 · 10−5 to 0.009. To motivate the size of this bias,

26We have also computed results for thresholds of $1,000 and $10,000. The choice of threshold does not
change our qualitative results.
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suppose again that there were a reduction in variable trade costs that generates a 500 million

dollar increase in export sales. The truncated sample estimates attribute $4 million of the

increase to trade generated by entering firms, while the non-truncated sample estimates

would attribute only $21,000.

Finally, the truncated sample generates larger variation in the partial trade elasticity

estimates across destination-year observations. The standard deviation of Double EMG

distribution generated partial trade elasticities is 5.5 · 10−4 on a non-truncated sample and

increases to 0.09 on the truncated sample. The latter standard deviation moves our estimated

elasticities closer to those reported in Bas, Mayer, and Thoenig (2015).

Hence, using truncated samples of our data generates false conclusions regarding the

magnitude, variation and, therefore, economic significance of extensive margin adjustments.

7 Robustness

7.1 Alternative Origin Country

In this robustness check, we ask whether our results are specific to Brazilian export sales

during 1990-2001. We replicate each of our results using export sales data from a second

country and verify that our results are robust to changes in economic environment.

We use Peruvian export data for the period between 1993 and 2009 from the World Bank

Exporter Dynamics Database. For the detailed description of the data see Cebeci et al.

(2012), Fernandes et al. (2016), and Freund and Pierola (2012). The dataset is comparable

to the Brazilian export data and reports the value of export sales at the firm-product-

destination-year level. We find that all results are qualitatively reproduced in the Peruvian

data and in many cases we find that relationships and parameter estimates are quantitatively

similar. The complete results are presented in Appendix C.
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7.2 Product Definition

In this section, we ask whether our results are driven by the particular way in which man-

ufacturing trade is defined in our paper. Specifically, prior to aggregating the data at the

firm-destination-year level, we drop any firm-product-destination-year observations for agri-

cultural products. If a firm simultaneously exports manufacturing and agricultural products,

our approach can potentially create an abundance of small firms that might not primarily

export manufacturing-industry products. Our dataset does not contain an indicator of a

firm’s primary industry of operation. Hence, we check the robustness of our results by drop-

ping all firms that export at least one non-manufacturing product within a destination-year.

The firms that remain only export manufacturing products.

Across firm-destination-year bins, 10% of firms export any non-manufacturing prod-

ucts. For an average firm, measured as the unconditional mean across firm-destination-

years, non-manufacturing products account for 9% of export revenue. However, for those

firms that export any non-manufacturing products, revenues are highly concentrated in non-

manufacturing products with non-manufacturing products accounting for 92% of export

revenue on average. Therefore, the main text included the remaining 8% of export sales

from these 10% of firms. This section altogether excludes all sales, manufacturing and non-

manufacturing, from these 10% of firms. We find that all quantitative results are nearly

unchanged. The complete results are presented in Appendix D.

7.3 Industrial Composition

In Section 4.2 we applied the estimation procedure outlined in Section 4.1 to estimate the

distribution parameters for each of the observations in our sample. Recall that we define an

observation to be a distribution of log-export sales for a given export destination in a given

year. We conduct our analysis at the country, rather than country-industry, level to make our

results comparable to those in the literature.27 We acknowledge that properties of distribu-

27 Head et al. (2014) estimate the distributions of log-export sales of French firms in Belgium and Chinese
firms in Japan, Bas et al. (2015) estimate distributions of log-export sales for each of the French and
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tions might vary with the industrial composition of exports across destinations. To check the

robustness of our results, Appendix E repeats our estimation for the log-export sales at the

destination-year-industry level. We find that there is no statistically significant relationship

between industry shares and skewness within destination-year observations. Therefore, no

single industry drives tail fatness or skewness across destination-years, and the distribution

estimation results remain quantitatively similar.

8 Conclusion

New trade theory predicts that welfare gains can be characterized by the partial trade elas-

ticity (the elasticity of trade flows with respect to changes in variable trade costs), which

can be decomposed into an intensive margin elasticity of changes in sales by incumbent firms

and an extensive margin elasticity of changes in sales by entering and exiting firms.

In this paper we focus on the extensive margin elasticity, which depends crucially on the

distribution governing firm-level heterogeneity, and ask: what is the role of small firms in

determining the gains from trade? We find that small firms substantially attenuate the gains

from trade.

We arrive at this answer by using a dataset on Brazilian export sales that, unlike standard

trade datasets, has not been exogenously left-censored as a result of custom office rules. We

observe the full export sales distribution. Exploiting the special features of this data, we

contribute two stylized facts to the trade literature. First, export sales distributions are not

symmetric and, in fact, exhibit high variation in skewness, mostly positive but also negative,

across destinations. Second, export sales distributions have both fat right tails and fat left

tails. While it is well known that the right tail of sales distributions tend to be fat, that the

left tail is fat is new to the trade literature.

We show that these stylized facts are puzzling from the perspective of standard distri-

butional assumptions in new trade models: neither the Pareto nor log-Normal distributions

Chinese export destinations, Nigai (2017) for total French exports.
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exhibit a fat left tail or an ability to generate differences in skewness across export destina-

tions. We confront this puzzle by introducing a distribution that generalizes both the Pareto

and log-Normal distributions, the Double Exponentially Modified Gaussian distribution. We

demonstrate that, due to its ability to generate different behavior in its two tails and gen-

erate variable skewness, the Double Exponentially Modified Gaussian distribution fits the

export sales data better than either the Pareto or log-Normal distribution.

Given parameter estimates for each distribution across each export destination, we high-

light two sets of issues that arise elsewhere in the trade literature. First, a distribution se-

lection bias arises from making the wrong distributional assumptions. While the log-Normal

distribution slightly underestimates the extensive margin trade elasticity and the Pareto dis-

tribution severely overestimates it, we find that the Double Exponentially Modified Gaussian

distribution generates a very small (near zero) extensive margin trade elasticity. Second, we

show that if our dataset were left-censored in a way that was consistent with other datasets,

then there would be a truncation bias. That is, the extensive margin trade elasticity would

be too large. We find the severity of the upward bias is largest for export destinations with

fat right tails, which includes the range of standard Pareto tail estimates.

Therefore, small firms in the left tail of export distributions tend to drive the extensive

margin elasticity down. Large extensive margin elasticities that have been computed using

left-censored data overstate the contribution of the extensive margin to the gains from trade.
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Table 1: Properties of the log-sales distribution across destination-year observations
over 1990-2001.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.11 2.12 0.28 1.28 2.77

Skewness 0.03 0.02 0.24 -1.08 1.29

Nonparametric Skew 0.03 0.03 0.06 -0.19 0.21

Kurtosis 3.17 3.03 0.60 2.08 8.14

Panel B: Percentile based statistics

Interquartile Range 2.82 2.83 0.49 1.50 4.44

Kelly Skewness 0.04 0.04 0.08 -0.30 0.35

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.19 0.34

Panel C: Tail parameter estimates

Top 5% 1.42 1.27 0.62 0.39 6.67

Top 10% 1.18 1.13 0.31 0.49 2.78

Top 15% 1.08 1.04 0.25 0.52 2.58

Bottom 5% 1.21 1.13 0.50 0.44 4.77

Bottom 10% 1.07 1.04 0.29 0.45 3.67

Bottom 15% 1.01 0.98 0.23 0.48 2.77

Note: the statistics are reported across 847 destination-year observations where at least 100
firms export.
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Table 2: Trade elasticity estimates.

Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|

Distribution Mean Std. Dev. Mean Std. Dev.

Normal 8.1 · 10−6 4.9 · 10−5 5.00 2.5 · 10−4

Double EMG 4.2 · 10−5 1.6 · 10−4 5.00 5.5 · 10−4

Exponential 0.54 0.61 7.68 3.04

Note: the table reports sample means and standard deviations of the
corresponding elasticity estimates for various distributional assumptions.
For the Double EMG, and Exponential distributions the means are
reported across 281, and 705 observations respectively for which the
estimates of λR, or the tail index, respectively, are greater than 1. The
elasticities are not defined if values of the corresponding parameters are
less than 1. To compute the partial trade elasticity, the value of ε = 6 is
assumed.

Table 3: Distribution specification bias.

Normal Exponential

Distribution Mean Std. Dev. Mean Std. Dev.

Double EMG 0.61 0.37 7.6 · 107 5.9 · 108

Note: the table reports the sample mean and standard deviation of
ratios between extensive margin elasticity estimates. The columns
indicate the numerator of Normal or Exponential distribution
implied extensive margin elasticity estimates, while the row
indicates the denomenator of Double EMG implied extensive
margin elasticity estimates.
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Table 4: Properties of the log-sales distribution across destination-year observations
over 1990-2001, Sample truncated at $5,000.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 1.74 1.74 0.26 1.05 2.44

Skewness 0.59 0.60 0.27 -0.40 2.43

Nonparametric Skew 0.12 0.13 0.07 -0.17 0.38

Kurtosis 2.99 2.86 0.83 1.85 13.02

Panel B: Percentile based statistics

Interquartile Range 2.52 2.50 0.47 1.36 4.05

Kelly Skewness 0.15 0.16 0.09 -0.22 0.48

Percentile Coefficient of Kurtosis 0.28 0.28 0.02 0.21 0.36

Panel C: Tail parameter estimates

Top 5% 1.47 1.32 0.73 0.38 11.91

Top 10% 1.22 1.17 0.33 0.47 2.87

Top 15% 1.11 1.07 0.26 0.51 2.70

Bottom 5% 8.61 7.57 4.12 1.04 37.40

Bottom 10% 4.61 4.35 1.45 1.12 11.27

Bottom 15% 3.35 3.22 0.92 1.11 7.07

Note: the statistics are reported across 813 destination-year observations where at least 100
firms export and exprt value per firm-destiantion-year is $5,000 or more.
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Table 5: Sample truncation bias.

Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|

Distribution Mean Std. Dev. Mean Std. Dev.

Panel A: Elasticity Estimates

Double EMG 0.009 0.018 5.05 0.09

Panel B: Magnitude of Bias

Double EMG 6.7 · 103 2.3 · 104 1.009 0.018

Note: Panel A of the table reports sample means and standard deviations
of the corresponding elasticity estimates for various distributional
assumptions. The values are reported for a truncated sample, where the
truncation point is $5,000 sales per firm-destination. To compute the
partial trade elasticity, the value of ε = 6 is assumed. For the Double EMG
distributions, the means are reported across 87 observations for which the
estimates of λR is greater than 1. The elasticities are not defined if values
of the corresponding parameters are less than 1. Panel B reports statistics
for the ratio of the corresponding elasticity estimates from a truncated
sample relative to the full sample for the two distributions.
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Figure 1: Heterogeneity in the tail index estimates of log-sales distributions across export
destinations.
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Notes: The figure depicts a scatter plot of the right and left tail index estimates for for the top and bottom

5% of firms. Each dot in the figure corresponds to an estimate of the right and left tail indexes for a given

destination-year observation. A sample of 847 destination-year observations where at least 100 firms export.

Figure 2: An example of a Normal and a Double EMG distribution.
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unit variance. The solid line depicts a pdf for an symmetric EMG disquisition with tail parameters equal to

1.5. The dashed line depicts a pdf for a Normal distribution. The y-axis is plotted on the log scale.
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Figure 3: Comparison of model errors and tail properties.
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Figure 4: Goodness of fit statistics across each destination-year observation.
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Figure 5: Comparison of empirical to model-generated moments.
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Figure 6: Extensive margin elasticity estimates.
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Notes: Panel A of the figure depicts the estimates of the extensive margin elasticity for destination-year

observations with a Double EMG estimate of the tail parameter λR > 1. Dots (stars) plot Double EMG

against Normal (Exponential) elasticity estimates. Panel B of the figure depicts the ratio of the the Double

EMG relative to Normal extensive margin elasticity estimates for destination-year observations with a Double

EMG estimate of the tail parameter λR > 1. The elasticity is not defined for λR ≤ 1.
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A Proofs of Propositions

(For Online Publication Only)

Proposition 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼

DE(λL, λR) and parameters satisfy µ ∈ R, σ > 0, and λL, λR > 0. The random variable

z ≡ x+ y has the cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− λL
λL + λR

e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)

+
λR

λL + λR
eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)
,

the density function:

g(z) =
λLλR
λL + λR

[
e−λR(z−µ)+σ2

2
λ2RΦ

(
z − µ
σ
− λRσ

)
+ eλL(z−µ)+σ2

2
λ2LΦ

(
−z − µ

σ
− λLσ

)]
,

and the moment generating function:

Mz(t) =
λLλR

(λL + t)(λR − t)
eµt+

σ2

2
t2 .

Proof of Proposition 1

Consider Lemma 1 below.

Lemma 1 Let x and y be independent random variables such that x ∼ N (µ, σ2), y ∼ E(λ)

and parameters satisfy µ ∈ R, σ > 0, and λ > 0. The random variable z ≡ x + y has the

cumulative distribution function G : R→ [0, 1] given by:

G(z) = Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,

the density function:

g(z) = λe
−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)
,
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and the moment generating function:

Mz(t) =
λ

λ− t
eµt+

σ2

2
t2 .

Proof of Lemma 1

Let x and y be random variables such that x ∼ N (µ, σ2), y ∼ E(λ) and parameters

satisfy µ ∈ R, σ > 0 and λ > 0. For notational convenience, denote the density function

that corresponds to the Normal distribution N (µ, σ2) by f(x) = (1/σ)φ((x− µ)/σ). In the

following derivations, we will make use of the conditional expectation for log-Normal random

variables: ∫ +∞

x∗
(ex)κ f(x)dx = eκµ+ 1

2
κ2σ2

(
1− Φ

(
x∗ − µ
σ

− κσ
))

Let the random variable z ≡ x + y have the distribution function G : R → [0, 1], which we

now derive:

∫ z∗

−∞
zg(z)dz = Prob (x+ y < z∗) =

∫ z∗

−∞

(
1− e−λ(z∗−x)

)
f(x)dx

Using the conditional expectation for log-Normal random variables, we obtain:

G(z∗) = Φ

(
z∗ − µ
σ

)
− e−λz∗+(λµ+ 1

2
λ2σ2)Φ

(
z∗ − µ− λσ2

σ

)

Next we derive the density function:

∂

∂z

∫ z

−∞
zdG(z) =

∫ z

−∞
λe−λyf(z − y)dy

=
λ√
2πσ

∫ z

−∞
e−λy−

1
2( z−y−µσ )

2

dy

=
λ√
2πσ

e−λz+λµ+ 1
2
λ2σ2

∫ z

−∞
e
− 1

2

(
z−y−µ−λσ2

σ

)2

dy

g(z) = λe−λz+(λµ+ 1
2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
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Lastly, we derive the moment generating function. To do so, we will appeal to an intermediate

result, that if g(z) is a density function then it must integrate to one:

∫ +∞

−∞
g(z)dz =

∫ +∞

−∞
λe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

= e−
1
2
λ2σ2

∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy

where we have used the change of variables y = (z − µ− λσ2)/σ. Then we know that:

∫ +∞

−∞
λσe−λσy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy = e

1
2
λ2σ2

Given this result, we can use the change of variables y = (z − µ − λσ2)/σ to derive the

moment generating function:

Mz(t) =

∫ +∞

−∞
e−tzλe−λz+(λµ+ 1

2
λ2σ2)Φ

(
z − µ− λσ2

σ

)
dz

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) ·

∫ +∞

−∞
(λ− t)σe−(λ−t)σy

∫ y

−∞

1√
2π
e−

1
2
x2dxdy

=
λ

λ− t
e−

1
2
λ2σ2+t(µ+λσ2) · e

1
2

(λ−t)2σ2

=
λ

λ− t
· eµt+

σ2

2
t2

Note that the MGF for the EMG is the product of the MGF for the Exponential distribution

and the MGF for the N (µ, σ2) distribution. QED.

Deriving the cumulative distribution function, density function and moment generating

function of the Double Exponentially Modified Gaussian distribution follows steps from the

proof for Lemma 1. The main difference is that the Double Exponential distribution changes

functional form at its kink, y = 0. �

Proposition 2 (Limiting Results) Let z be a Double Exponentially Modified Gaussian dis-

tributed random variable with parameters (µ, σ, λL, λR). The random variable z is (i) an
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Exponentially Modified Gaussian distributed random variable as λL goes to infinity, (ii) an

Exponentially Modified Gaussian distributed random variable with a Normal right tail and

Exponential left tail as λR goes to infinity, (iii) a Double Exponentially distributed random

variable as σ goes to zero, where if µ 6= 0 then this limiting distribution is a shifted Double

Exponential distribution, and (iv) an Exponentially distributed random variable as σ goes to

zero and λL goes to infinity.

Proof of Proposition 2

Consider Lemma 2 below.

Lemma 2 Let z be an Exponentially Modified Gaussian distributed random variable with

parameters (µ, σ, λ). The random variable z is Normally distributed in the limit as λ goes to

infinity, that is,

lim
λ→+∞

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= Φ

(
z − µ
σ

)
.

Furthermore, the random variable z is exponentially distributed in the limit as σ goes to zero.

That is

lim
σ→0

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
= 1− e−λ(z−µ),

where, if µ > 0 then this limiting distribution is a shifted Exponential distribution on

(µ,+∞). Lastly, consider the limit with respect to the value of the random variable z. There

exists a value of z denoted z̄ such that ∀ z ≥ z̄ the distribution G(z) approaches a shifted

Exponential distribution:

[
Φ

(
z − µ
σ

)
− e−λz+

(
µλ+σ2

2
λ2

)
Φ

(
z − µ
σ
− λσ

)]
≈ 1− e−λz+

(
µλ+σ2

2
λ2

)
.

Proof of Lemma 2
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We will consider each of the three limits of G(z) in turn:

(a) λ→ +∞, (b) σ → 0, (c) z → +∞

(a) We first take the limit of G(z) as λ→ +∞. We know that

lim
λ→+∞

Φ

(
z − µ− λσ2

σ

)
= lim

λ→+∞
e−λz = 0 ∀ z ∈ R̄, z 6= 0

We must now show that exp(λµ + λ2σ2/2) reaches +∞ at a slower rate than exp(−λz) ×

Φ((z − µ− λσ2)/σ) reaches 0. To do so, we appeal to l’Hôpital’s rule:

lim
λ→+∞

∂
∂λ
e−λzΦ

(
z−µ−λσ2

σ

)
∂
∂λ
eλµ+ 1

2
λ2σ2

= lim
λ→+∞

−zΦ
(
z−µ−λσ2

σ

)
+ 1

σ
φ
(
z−µ−λσ2

σ

)
µ+ λσ2

e−λz−λµ−
1
2
λ2σ2

= 0

The limit equals zero since eλ
2σ2

converges to zero faster than linearly, e.g. faster than λσ2.

(b) Next take the limit as σ → 0. Let µ > 0. As σ approaches 0, the Normal density

becomes a point mass at µ and therefore: Φ
(
z−µ
σ

)
= 1[z ≥ µ]. Then clearly the limit of

G(z) as σ approaches 0 equals 1− exp(−λ(z − µ)) on (µ,+∞) and zero elsewhere.

(c) Lastly, we show that there exists some z̄ such that for all z ≥ z̄, G(z) ≈ 1−exp(−λ(z−

µ− 1
2
λσ2)). We must show that as z → +∞, exp(−λz) approaches 0 at a slower rate than

Φ( z−µ−λσ
2

σ
) approaches 1. To do so, apply l’Hôpital’s rule:

lim
z→+∞

e−λz

Φ( z−µ−λσ
2

σ
)

= lim
z→+∞

−λe−λz
1
σ
φ( z−µ−λσ

2

σ
)
∝ lim

z→+∞
e
−
(
λ+µ+λσ2

σ2

)
z+ 1

2( zσ )
2

= +∞

Therefore, since both functions are decreasing in z, exp(−λz) approaches 0 slower than

Φ( z−µ−λσ
2

σ
) approaches 1. Therefore, there exists z̄ sufficiently large such that:

∀ z ≥ z̄ Φ

(
z − µ
σ

)
≈ 1 and Φ(

z − µ− λσ2

σ
) ≈ 1
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and

G(z) ≈ 1− e−λz+
(
µλ+σ2

2
λ2

)

Therefore for sufficiently large values of z, the EMG is approximated by a shifted Exponential

distribution. QED.

Deriving limiting results for the Double EMG distributions follows similar steps to the

proof of Lemma 2. �

Proposition 3 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the skewness of z is given by

skew(z) = 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)− 3
2

.

Furthermore, the sign of skew(z) is determined by the relative size of the tail parameters:


skew(z) > 0 if λL > λR,

skew(z) = 0 if λL = λR,

skew(z) < 0 if λL < λR.


Proof of Proposition 3

Given the moment generating function for the Double Exponentially Modified Gaussian

distribution, we use the cumulant generating function defined as:

Cz(t) ≡ log(Mz(t)) = log(λRλL)− log(λR − t)− log(λL + t) +

(
µt+

σ2

2
t2
)
.

The n-th centered moment is given by the n-th derivative of Cz(t) evaluated at zero, or
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C
(n)
z (0). Therefore, the mean and variance are:

C ′z(t) = µ− 1

λR − t
(−1)− 1

λL + t

C ′′z (t) = σ2 +
−1

(λR − t)2
(−1)− −1

(λL + t)2

C ′′′z (t) =
−2

(λR − t)3
(−1) +

−2

(λL + t)2

which yield the first three centered moments of the Double Exponentially Modified Gaussian

Distribution:

E[x] = C ′z(0) = µ+
1

λR
− 1

λL

E[(x− E[x])2] = C ′′z (0) = σ2 +
1

λ2
R

+
1

λ2
L

E[(x− E[x])3] = C ′′′z (0) = 2

(
1

λ3
R

− 1

λ3
L

)

Therefore the skewness of the Double EMG distribution is:

skew(z) =
2
(

1
λ3R
− 1

λ3L

)
(
σ2 + 1

λ2R
+ 1

λ2L

)3/2
= 2

(
1

σ3λ3
R

− 1

σ3λ3
L

)(
1 +

1

σ2λ2
R

+
1

σ2λ2
L

)−3/2

.

Notice that the skewness can also be expressed as

skew(z) = 2
λ3
L − λ3

R

(σ2λ2
Rλ

2
L + λ2

L + λ2
R)

3
2

.

The sign properties of the skewness follow immediately. �

B Baseline Trade Model

(For Online Publication Only)
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B.1 Economic Environment

There are N countries. We will denote by i the origin country and by j a destination country.

Each country j is populated by Lj identical consumers with preferences given by a constant

elasticity of substitution utility function given by

Uj =

(
N∑
i=1

∫
ω∈Ωij

(
eθij(ω)

) 1
ε cij(ω)

ε−1
ε dω

) ε
ε−1

, (9)

where Ωij is the set of varieties consumed in country j originating from country i, cij(ω)

is the consumption of variety ω ∈ Ωij, ε is the elasticity of substitution, and θij(ω) is the

demand parameter for variety ω ∈ Ωij.
28

Each consumer owns a share of domestic firms and is endowed with one unit of labor

that is inelastically supplied to the market. Cost minimization yields optimal demand for

variety ω ∈ Ωij given by

cij(ω) = eθij(ω)pij(ω)−εYjP
ε−1
j , (10)

where pij(ω) is the price of variety ω ∈ Ωij, Yj is income in country j and Pj is the aggregate

price index in country j. The aggregate price index is given by

P 1−ε
j =

N∑
i=1

∫
ω∈Ωij

eθij(ω)pij(ω)1−εdω. (11)

B.2 Supply

As in Chaney (2008), each country is endowed with the exogenous mass Ji of prospective

entrants. Upon entry, a firm is endowed with an idiosyncratic labor productivity level ϕ and

a destination-specific demand parameter θj. Productivity and destination-specific demand

parameters are drawn from separate independent distributions. Firms face fixed fij and

28Bernard, Redding, and Schott (2010) interpret θij(ω) as variations in consumer tastes or relative demand
across different varieties. In Timoshenko (2015) θij(ω) represents product demand that firms need to learn
over time through market participation.
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variable τij costs of selling from country i to country j denominated in terms of units of

labor.

Once productivity and demand are realized, firms compete in a monopolistically com-

petitive environment. Firms maximize profits subject to the consumer demand (10) yielding

the optimal price given by

pij(ϕ) =
ε

ε− 1

τijwi
ϕ

,

where wi is the wage in country i. The corresponding firm’s optimal revenues and profits

are given by

rij(θij, ϕ) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j eθijϕε−1, (12)

πij(θij, ϕ) =
rij(θij, ϕ)

ε
− wifij. (13)

Notice from equations (12) and (13) that a firm’s profitability in market j depends on both

a firm’s productivity ϕ and a demand parameter θj in a multiplicative way. Hence a low

productivity firm can generate positive profits if the demand for its product is high, and

vise versa. Thus, selection into a market occurs based on a firm’s profitability, and not

productivity or demand alone. Denote by zij the firm’s payoff relevant state variable given

by

zij = θij + log
(
ϕε−1

)
. (14)

We will refer to zij as a firm’s profitability in market j. Given zij, we can rewrite the

firm’s optimal revenue and profit as a function of profitability zij as

rij(zij) =

(
ε− 1

ε

)ε−1

(τijwi)
1−ε YjP

ε−1
j ezij . (15)

πij(zij) =
rij(zij)

ε
− wifij. (16)
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Since there are no sunk entry costs, the profitability entry threshold is determined by the

zero-profit condition πij(z
∗
ij) = 0 and is given by

ez
∗
ij =

εwifij(wiτij)
ε−1(

ε−1
ε

)ε−1
YjP

ε−1
j

. (17)

The firm’s optimal revenue can then be written as a function of a firm’s profitability, zij,

and the profitability entry threshold z∗ij as

rij(zij) = εwifij
ezij

ez
∗
ij
. (18)

B.3 Trade Elasticity

The value of exports from country i to country j is defined as

Xij = Mij

∫ +∞

z∗ij

rij(z)
gij(z)

1−Gij(z)
dz, (19)

where Mij is the equilibrium mass of firms selling from country i to country j and is given

by

Mij = Ji(1−Gij(z
∗
ij)). (20)

The cumulative and the probability distribution functions of firms profitabilities are denoted

by Gij(z) and gij(z) correspondingly.

Proposition 4 below establishes the partial trade elasticity result.

Proposition 4 The partial elasticity of trade flows with respect to variable trade costs is

given by

∂ logXij

∂ log τij
= (1− ε)(1 + γij),
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where γij given by

γij =
gij(z

∗
ij)

(1−Gij(z∗ij))

ez
∗
ij

Eij(ez|z > z∗ij)
.

Proof: Substitute equations (18) and (20) into equation (19) to obtain

Xij = εJiwifij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz.

Using the Leibniz’s Integration Rule:

∂Xij

∂τij
= εJiwifij

[
−
∂z∗ij
∂τij

∫ +∞

z∗ij

(
ezij−z

∗
ij
)
gij(z)dz − g(z∗ij)

∂z∗ij
∂τij

]

= εJiwifij

[
−
∂z∗ij
∂τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij)− g(z∗ij)
∂z∗ij
∂τij

]
.

Now we must derive the partial derivative of the profitability threshold with respect to a

change in variable costs. To do so, we use the expression characterizing the threshold in

equation (17):

∂z∗ij
∂τij

=
∂

∂τij
log

(
εwifij(wiτij)

ε−1(
ε−1
ε

)ε−1 YjP
ε−1
J

)
=
ε− 1

τij
.

Notice that the value of trade flows can be expressed as

Xij = εJiwifije
−z∗ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij).
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Therefore, the partial elasticity of trade is:

∂ logXij

∂ log τij
=

τij
Xij

· εJiwifij
[

1− ε
τij

e−z
∗
ij(1−Gij(z

∗
ij))Eij(e

z|z > z∗ij) + g(z∗ij)
1− ε
τij

]
= (1− ε) +

g(z∗ij)

1−Gij(z∗ij)
· (1− ε)ez∗ij
Eij(ez|z > z∗ij)

= (1− ε) + (1− ε)γij

= (1− ε)(1 + γij).

as desired. �

B.4 Conditional Expectations

Finally, we derive the conditional expectation for the Double EMG distribution. Given con-

ditional expectations, it is possible to compute the extensive margin elasticity from Propo-

sition 4. The conditional expectation of the Double EMG distribution in Proposition 5 as

follows.

Proposition 5 If z is a Double Exponentially Modified Gaussian distributed random vari-

able on (−∞,+∞) then the conditional first moment on (z∗,+∞) is

∫ +∞

z∗
ezg(z)dz = Mz(1)

(
1− Φ

(
z∗ − µ
σ
− σ

))

+
1

λR − 1

λLλR
λL + λR

ez
∗−λR(z∗−µ)+σ2

2
λ2RΦ

(
z∗ − µ
σ
− λRσ

)

− 1

λL + 1

λLλR
λL + λR

ez
∗+λL(z∗−µ)+σ2

2
λ2LΦ

(
−z
∗ − µ
σ
− λLσ

)
.

Proof: Let x ∼ N (µ, σ2), y ∼ DE(λL, λR) and z be a Double EMG distributed random

variable on (−∞,+∞). Then the conditional first moment on (z∗,+∞) is:

∫ +∞

z∗
ezG(dz) =

[∫
x>z∗

∫
y>0

+

∫
x>z∗

∫ 0

z∗−x
+

∫
x<z∗

∫
y>z∗−x

]
ex+yf(x)g(y)dxdy
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First take each integral in turn and define cases. The first (case is y > 0):

∫
x>z∗

∫
y>0

ex+yf(x)g(y)dxdy =

∫
x>z∗

exf(x)dx ·
∫
y>0

eyg(y)dy

the second (case is y < 0):

∫
x>z∗

∫ 0

z∗−x
ex+yf(x)g(y)dxdy =

∫
x>z∗

ex
[∫ 0

z∗−x
eyg(y)dy

]
f(x)dx

and, lastly, the third (case is y > 0):

∫
x<z∗

∫
y>z∗−x

ex+yf(x)g(y)dxdy =

∫
x<z∗

ex
[∫

y>z∗−x
eyg(y)dy

]
f(x)dx

We can simplify the integrals in each case. Simplifying the first case:

∫ +∞

z∗
exf(x)dx ·

∫ +∞

0

eyg(y)dy = eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
·
∫ ∞

0

ey
λLλR
λL + λR

e−λLydy

= eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
· λRλL
λR + λL

−1

λR − 1
e−(λR−1)y

∣∣∣∞
0

= eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))
· λRλL
λR + λL

1

λR − 1

the second case:

∫
x>z∗

ex
(∫ 0

z∗−x
ey

λRλL
λR + λL

eλLydy

)
f(x)dx

=

∫
x>z∗

ex
(

λRλL
λR + λL

1

λL + 1

(
1− e(λL+1)(z∗−x)

))
f(x)dx

=
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− e(λL+1)z∗

∫
x>z∗

e−λLxf(x)dx

)

=
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− ez∗+λL(z∗−µ)+

λ2Lσ
2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

))
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and, lastly, the third case:

∫
x<z∗

ex
[∫

y>z∗−x
eyg(y)dy

]
f(x)dx

=

∫
x<z∗

ex
[
λRλL
λR + λL

−1

λR − 1

(
0− e−(λR−1)(z∗−x)

)]
f(x)dx

=
λRλL
λR + λL

1

λR − 1
e−(λR−1)z∗

∫
x<z∗

eλRxf(x)dx

=
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)

Summing these integrals together we obtain:

∫ +∞

z∗
ezH(dz) = eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))
· λRλL
λR + λL

1

λR − 1

+
λRλL
λR + λL

1

λL + 1

(
eµ+σ2

2 Φ

(
−z
∗ − µ− σ2

σ

)
− ez∗+λL(z∗−µ)+

λ2Lσ
2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

))

+
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)

Therefore, the final conditional expectation is:

∫ +∞

z∗
ezH(dz) =

λRλL
λR + λL

(
1

λR − 1
+

1

λL + 1

)
eµ+σ2

2

(
1− Φ

(
z∗ − µ− σ2

σ

))

+
λRλL
λR + λL

1

λR − 1
ez

∗−λR(z∗−µ)+
λ2Rσ

2

2 Φ

(
z∗ − µ− λRσ2

σ

)

− λRλL
λR + λL

1

λL + 1
ez

∗+λL(z∗−µ)+
λ2Lσ

2

2 Φ

(
−z
∗ − µ+ λLσ

2

σ

)

where

λRλL
λR + λL

(
1

λR − 1
+

1

λL + 1

)
=

λRλL
(λR − 1)(λL + 1)

as desired. �
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C Robustness on Peruvian Data

(For Online Publication Only)

In this appendix, we ask whether our results are specific to Brazilian export sales during

1990-2001. We replicate each of our results using export sales data from a second country

and verify that our results are robust to changes in economic environment.

We use Peruvian export data for the period between 1993 and 2009 from the World Bank

Exporter Dynamics Database. For the detailed description of the data see Cebeci et al.

(2012), Fernandes et al. (2016), and Freund and Pierola (2012). The dataset is comparable

to the Brazilian export data and reports the value of export sales at the firm-product-

destination-year level.

Below, we reproduce Table 1 to Table 3 and Figure 1 to Figure 6. We find that all

results are qualitatively reproduced in the Peruvian data and in many cases we find that

relationships and parameter estimates are quantitatively similar.
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Table C1: Properties of the log-sales distribution across destination-year observa-
tions over 1993-2009, Peru.

Statistic Mean Meian Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.64 2.62 0.37 1.86 3.82

Skewness -0.12 -0.13 0.34 -1.23 1.16

Nonparametric Skew 0.02 0.02 0.07 -0.29 0.31

Kurtosis 3.59 3.49 0.75 2.11 7.12

Panel B: Percentile based statistics

Interquartile Range 3.42 3.37 0.47 2.35 4.96

Kelly Skewness 0.05 0.05 0.11 -0.37 0.53

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.15 0.33

Panel C: Tail parameter estimates

Top 5% 1.17 1.08 0.46 0.42 3.77

Top 10% 0.997 0.96 0.33 0.37 3.16

Top 15% 0.89 0.86 0.25 0.36 1.81

Bottom 5% 0.74 0.63 0.46 0.25 5.22

Bottom 10% 0.69 0.60 0.31 0.31 3.38

Bottom 15% 0.69 0.62 0.25 0.31 2.21

Note: the statistics are reported across 415 destination-year observations where at least 100
firms export.
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Table C2: Trade elasticity estimates, Peru.

Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|

Distribution Mean Std. Dev. Mean Std. Dev.

Normal 1.6 · 10−6 1.4 · 10−5 5.00 6.8 · 10−5

Double EMG 7.7 · 10−6 3.6 · 10−5 5.00 1.8 · 10−4

Exponential 0.43 0.43 7.16 2.14

Note: the table reports sample means and standard deviations of the
corresponding elasticity estimates for various distributional assumptions.
For the Double EMG, and Exponential distributions the means are
reported across 81, and 244 observations respectively for which the
estimates of λR, or the tail index, respectively, are greater than 1. The
elasticities are not defined if values of the corresponding parameters are
less than 1. To compute the partial trade elasticity, the value of ε = 6 is
assumed.

Table C3: Distribution specification bias, Peru.

Normal Exponential

Distribution Mean Std. Dev. Mean Std. Dev.

Double EMG 0.64 0.42 2.0 · 108 7.2 · 108

Note: the table reports the sample mean and standard deviation of
ratios between extensive margin elasticity estimates. The columns
indicate the numerator of Normal or Exponential distribution
implied extensive margin elasticity estimates, while the rows
indicate the denomenator of Double EMG implied extensive margin
elasticity estimates.
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Figure C1: Heterogeneity in the tail index estimates of log-sales distributions across export
destinations, a scatter plot, Peru.
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Notes: The figure depicts a scatter plot of the right and left tail index estimates for for the top and bottom

5% of firms. Each dot in the figure corresponds to an estimate of the right and left tail indexes for a given

destination-year observation. A sample of 415 destination-year observations where at least 100 first export.
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Figure C2: Goodness of fit statistics across each destination-year observation, Peru.
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Figure C3: Comparison of empirical to model-generated moments, Peru.
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Notes: Scatter plots show 50th percentile, interquartile range and Kelly skewness generated by the Normal

distribution (Panels A, B and C), Exponential distribution (Panels D, E and F), and Double EMG distri-

bution (Panels G, H and I) against the empirically observed statistics (x-axis) across destination-year pairs.
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Figure C4: Extensive margin elasticity estimates, Peru.
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Notes: Panel A of the figure depicts the estimates of the extensive margin elasticity for destination-year

observations with a Double EMG estimate of the tail parameter λR > 1. Dots (stars) plot Double EMG

against Normal (Exponential) elasticity estimates. Panel B of the figure depicts the ratio of the Double EMG

relative to Normal extensive margin elasticity estimates for destination-year observations with a Double EMG

estimate of the tail parameter λR > 1. The elasticity is not defined for λR ≤ 1.
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D Robustness on Sample Selection

(For Online Publication Only)

In this appendix, we ask whether our results are driven by the particular way in which

manufacturing trade is defined in our paper. Specifically, prior to aggregating the data at the

firm-destination-year level, we drop any firm-product-destination-year observations for agri-

cultural products. If a firm simultaneously exports manufacturing and agricultural products,

our approach can potentially create an abundance of small firms that might not primarily

export manufacturing-industry products. Our dataset does not contain an indicator of a

firm’s primary industry of operation. Hence, we check the robustness of our results by drop-

ping all firms that export at least one non-manufacturing product within a destination-year.

The firms that remain only export manufacturing products.

Across firm-destination-year bins, 10% of firms export any non-manufacturing prod-

ucts. For an average firm, measured as the unconditional mean across firm-destination-

years, non-manufacturing products account for 9% of export revenue. However, for those

firms that export any non-manufacturing products, revenues are highly concentrated in non-

manufacturing products with non-manufacturing products accounting for 92% of export

revenue on average. Therefore, the main text included the remaining 8% of export sales

from these 10% of firms. This section altogether excludes all sales, manufacturing and non-

manufacturing, from these 10% of firms.

Below, we reproduce Table 1 to Table 3 and Figure 4 to Figure 6. We find that all

quantitative results are nearly unchanged.
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Table D1: Properties of the log-sales distribution across destination-year observa-
tions over 1990-2001, sample selection robustness.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 2.10 2.11 0.28 1.28 2.76

Skewness 0.03 0.02 0.24 -1.07 1.25

Nonparametric Skew 0.03 0.03 0.06 -0.20 0.20

Kurtosis 3.16 3.03 0.58 2.08 8.17

Panel B: Percentile based statistics

Interquartile Range 2.81 2.82 0.49 1.49 4.31

Kelly Skewness 0.05 0.05 0.08 -0.30 0.35

Percentile Coefficient of Kurtosis 0.26 0.26 0.02 0.19 0.34

Panel C: Tail parameter estimates

Top 5% 1.43 1.29 0.62 0.40 6.67

Top 10% 1.19 1.14 0.31 0.48 3.05

Top 15% 1.08 1.05 0.25 0.53 2.75

Bottom 5% 1.22 1.14 0.53 0.44 7.51

Bottom 10% 1.08 1.04 0.29 0.45 3.67

Bottom 15% 1.02 0.99 0.24 0.48 2.77

Note: the statistics are reported across 845 destination-year observations where at least 100
firms export.
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Table D2: Trade elasticity estimates, sample selection robustness.

Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|

Distribution Mean Std. Dev. Mean Std. Dev.

Normal 8.5 · 10−6 5.0 · 10−5 5.00 2.5 · 10−4

Double EMG 3.8 · 10−5 1.7 · 10−4 5.00 8.3 · 10−4

Exponential 0.54 0.61 7.70 3.07

Note: the table reports sample means and standard deviations of the
corresponding elasticity estimates for various distributional assumptions.
For the Double EMG, and Exponential distributions the means are
reported across 279, and 713 observations respectively for which the
estimates of λR, or the tail index, respectively, are greater than 1. The
elasticities are not defined if values of the corresponding parameters are
less than 1. To compute the partial trade elasticity, the value of ε = 6 is
assumed.

Table D3: Distribution specification bias, sample selection
robustness.

Normal Exponential

Distribution Mean Std. Dev. Mean Std. Dev.

Double EMG 0.62 0.36 6.8 · 107 5.2 · 108

Note: the table reports the sample mean and standard deviation of
ratios between extensive margin elasticity estimates. The columns
indicate the numerator of Normal or Exponential distribution
implied extensive margin elasticity estimates, while the rows
indicate the denomenator of Double EMG implied extensive margin
elasticity estimates.
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Figure D1: Goodness of fit statistics across each destination-year observation, sample selec-
tion robustness.
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Figure D2: Comparison of empirical to model-generated moments, sample selection robust-
ness.
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Notes: Scatter plots show 50th percentile, interquartile range and Kelly skewness generated by the Nor-

mal distribution (Panels A, B and C), Exponential distribution (Panels D, E and F), and Double EMG

distribution (Panels G, H and I) against the empirically observed statistics (x-axis) across destination-year

pairs.
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Figure D3: Extensive margin elasticity estimates, sample selection robustness.
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Notes: Panel A of the figure depicts the estimates of the extensive margin elasticity for destination-year

observations with a Double EMG estimate of the tail parameter λR > 1. Dots (stars) plot Double EMG

against Normal (Exponential) elasticity estimates. Panel B of the figure depicts the ratio of the Double EMG

relative to Normal extensive margin elasticity estimates for destination-year observations with a Double EMG

estimate of the tail parameter λR > 1. The elasticity is not defined for λR ≤ 1.
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E Robustness on Industrial Composition

(For Online Publication Only)

In this appendix, we ask whether the documented properties of export sales distributions

across destination-years are systematically related to industry heterogeneity. We find that

there is no statistically significant relationship between industry shares and skewness within

destination-year observations. Therefore, no single industry drives tail fatness or skewness

across destination-years.

Table E1 reproduces results from Table 1 and reports statistics over destination-year

observations in which each firm’s sales of products within a particular industry are de-

meaned by that industry’s destination-year average. The table shows that controlling for

industry composition induces negative skewness, fatter left tails and thinner left tails of

destination-year(-industry) observations. Therefore, controlling for industry composition ar-

tificially shrinks the size of firms across industries and has no economic significance within

the class of trade models studied in this paper.

We reproduce Figure 4 to Figure 6 and show the Double EMG provides a superior fit

to export sales data across destination-year observations. This is because left tails become

fatter after controlling for industry composition.

Finally, we reproduce Table 2 to Table 3 and Figure 4 to Figure 6. We find that the

magnitude of the distribution specification bias is quantitatively similar.
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Table E1: Properties of the log-sales distribution across destination-year observa-
tions over 1990-2001, demeaned by industry.

Statistic Mean Median Standard

Deviation

Min Max

Panel A: Moment based statistics

Standard Deviation 1.99 2.01 0.27 1.25 2.70

Skewness -0.31 -0.28 0.28 -1.51 0.40

Nonparametric Skew -0.04 -0.04 0.06 -0.26 0.14

Kurtosis 3.16 3.01 0.65 2.15 8.12

Panel B: Percentile based statistics

Interquartile Range 2.70 2.72 0.41 1.62 3.86

Kelly Skewness -0.04 -0.03 0.09 -0.41 0.21

Percentile Coefficient of Kurtosis 0.27 0.27 0.02 0.18 0.34

Panel C: Tail parameter estimates

Top 5% 2.25 1.93 3.18 0.63 90.45

Top 10% 1.73 1.63 0.54 0.83 8.69

Top 15% 1.52 1.46 0.40 0.92 5.35

Bottom 5% 1.14 1.05 0.49 0.36 4.44

Bottom 10% 1.02 0.97 0.30 0.38 2.65

Bottom 15% 0.96 0.93 0.24 0.42 2.13

Note: the statistics are reported across 847 destination-year observations where at least 100
firms export.
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Table E2: Trade elasticity estimates, industry composition robust-
ness.

Extensive Margin Partial Trade Elasticity,

Elasticity, γij |(1− ε)(1 + γij)|

Distribution Mean Std. Dev. Mean Std. Dev.

Normal 1.4 · 10−5 5.8 · 10−5 5.00 2.9 · 10−4

Double EMG 2.7 · 10−5 2.8 · 10−4 5.00 0.0014

Exponential 1.26 3.19 11.31 15.95

Note: the table reports sample means and standard deviations of the
corresponding elasticity estimates for various distributional assumptions.
For the Double EMG, and Exponential distributions the means are
reported across 734, and 839 observations respectively for which the
estimates of λR, or the tail index, respectively, are greater than 1. The
elasticities are not defined if values of the corresponding parameters are
less than 1. To compute the partial trade elasticity, the value of ε = 6 is
assumed.

Table E3: Distribution specification bias, industry composi-
tion robustness.

Normal Exponential

Distribution Mean Std. Dev. Mean Std. Dev.

Double EMG 0.54 0.36 9.1 · 108 9.9 · 109

Note: the table reports the sample mean and standard deviation of
ratios between extensive margin elasticity estimates. The columns
indicate the numerator of Normal or Exponential distribution
implied extensive margin elasticity estimates, while the rows
indicate the denomenator of Double EMG implied extensive margin
elasticity estimates.
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Figure E1: Goodness of fit statistics across each destination-year observation, industry com-
position robustness.
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Figure E2: Comparison of empirical to model-generated moments, industry composition
robustness.
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Notes: Scatter plots show 50th percentile, interquartile range and Kelly skewness generated by the Nor-

mal distribution (Panels A, B and C), Exponential distribution (Panels D, E and F), and Double EMG

distribution (Panels G, H and I) against the empirically observed statistics (x-axis) across destination-year

pairs.
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Figure E3: Extensive margin elasticity estimates, industry composition robustness.

10-15 10-10 10-5 100
Double EMG Elasticity

10-15

10-10

10-5

100

N
or
m
al

an
d
E
xp

on
en
ti
al

E
la
st
ic
it
y

Panel A

1 1.2 1.4 1.6 1.8 2
Right-Tail Parameter, λR

10-1

100

101

102

103

104

105

T
h
e
R
at
io

of
D
ou

b
le

E
M
G

re
al
ti
ve

to
N
or
m
al

E
la
st
ic
it
y
E
st
im

at
e

Panel B

Notes: Panel A of the figure depicts the estimates of the extensive margin elasticity for destination-year

observations with a Double EMG estimate of the tail parameter λR > 1. Dots (stars) plot Double EMG

against Normal (Exponential) elasticity estimates. Panel B of the figure depicts the ratio of the Double EMG

relative to Normal extensive margin elasticity estimates for destination-year observations with a Double EMG

estimate of the tail parameter λR > 1. The elasticity is not defined for λR ≤ 1.
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