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Abstract
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ditions, this dimension of firm heterogeneity is often overlooked. Differences between factor
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tinct regional labor markets in firm input use, productivity and location by combining firm
and population census data. Considering modern China as a country with substantial regional
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1 Introduction

A number of studies document large and persistent differences in productivity across both countries

and firms.1 However, these differences remain largely ‘some sort of measure of our ignorance’

(Abramovitz, 1956). This paper inquires to what extent the supply characteristics of regional

input markets might help explain such systematic productivity dispersion across firms. It would be

surprising if disparate factor markets result in similar outcomes, when clearly the prices and quality

of inputs available vary considerably. Modeling firm adaptation to different factor markets provides

insights and testable predictions about how firms produce and where they choose to locate.

Differences between factor markets, especially for labor, are likely to be especially stark in de-

veloping economies undergoing urbanization (Lewis, 1954), or when government policies increase

relocation costs beyond those normally present.2 Even the US labor market, which is considered

relatively fluid, exhibits high migration costs as measured by the wage differential required to

drive relocation (Kennan and Walker, 2011). Thus, free movement of factors does not mean fric-

tionless movement, and recent work has indicated imperfect factor mobility has sizable economic

effects (Topalova, 2010). Rather than considering the forces which cause workers to locate across

space, this paper instead takes a different turn to inquire what existing differences in regional input

markets imply for firm input use, productivity and location.

Although there might be many complementary ways to address our question, we take an ap-

proach rooted in the general equilibrium trade literature to understand how local endowments im-

pact firms which enter endogenously, as typified by Bernard, Redding, and Schott (2007). We

extend their model to incorporate entry across regional markets and richer employment structures.

Each region is endowed with a different distribution of skill types and wages across workers. In-

dustries vary in team technology, which is their ability to substitute between different types of labor

(e.g. Bowles, 1970). Firms hire teams of workers by choosing the optimal combination of workers

given local conditions. Since each firm’s optimal labor force varies by industry technology and

region, the comparative suitability of regions varies by industry. Firms thus locate in proportion to

the cost advantages available.

In the model, finding new employees entails fixed costs and the ease of finding any type of

worker increases with their regional supply. Therefore firm hiring depends on the joint distribution

of worker types and wages. Since labor demand depends on technology and regional labor mar-

kets, this implies effective labor costs vary by region and industry. These labor costs help explain

differences in productivity.3 But are these differences economically important? To quantify real

1See Syverson (2011) for a review.
2Institutional mobility constraints, such as the hukou system in China, likely further exacerbate differences.
3Effective labor costs are driven by the complementarity of regional endowments with industry technology, and

the paper refers to these additional real production possibilities as ‘productivity’.

2



world supply conditions, we use the model to derive estimating equations which fix: 1) hiring by

wage and worker type distributions, 2) substitution into non-labor inputs, and 3) firm location in

response to local factor markets.

The estimation strategy combines manufacturing and population census data for China in the

mid-2000s, a setting which exhibits substantial variation in labor market conditions. By revealing

how firm demand for skills varies with local conditions, the model allows recovery of the unit

costs for labor across China. Our estimates imply an interquartile difference in effective labor

costs of 30 to 80 percent. A second stage estimates production functions, explicitly accounting for

regional cost differences. Since firms are capable of substituting into non-labor inputs, productivity

differences are smaller than labor cost differences. Once substitution is accounted for, labor costs

result in interquartile firm productivity differences of 3 to 17 percent, and explain 4 to 43 percent of

the variance of productivity.4 Furthermore, we show that economic activity locates where regional

costs are lowest, as implied by the model.

We conclude this section by relating the paper to existing work. The paper then continues by

laying out a model that incorporates a rich view of the labor hiring process. The model explains

how firms internalize local labor market conditions to maximize profits, resulting in an industry

specific unit cost of labor by region. Section 3 places these firms in a general equilibrium, monop-

olistic competition framework, in particular addressing the determination of factor prices and firm

location. Section 4 explains how the model can be estimated with a simple nested OLS approach.

Section 5 discusses details of the data, while Section 6 presents our model estimates and uses them

to explain the effect of different regional input markets on firm behavior. Section 7 concludes.

Related work. Our consideration of firms as dependent on local factor markets is based on

models typified by the Heckscher-Ohlin-Vanek theory of international trade (e.g. Vanek, 1968).

The departures from H-O-V in our model relax assumptions about perfect labor substitutability and

homogeneous factor markets, which quantifies the role of local labor markets. On the product mar-

ket side, we consider many goods as indicated by Bernstein and Weinstein (2002) as appropriate

when considering the locational role of factor endowments. We follow a multisector approach sim-

ilar to Melitz (2003), but add free entry by firms across regions. A firm’s optimal location depends

on local costs which arise from the regional distribution of worker types and wages, but competi-

tion from firms which enter the same region prevent complete specialization. The model quantifies

the intensity of firm entry and shows that within country, advantageous local factor markets are

important for understanding specialization patterns.5

Recently, both Borjas (2009) and Ottaviano and Peri (2010) have emphasized the importance

4These substantial differences underscore Kugler and Verhoogen (2011): since TFP is often the ‘primary measure
of [...] performance’, accounting for local factor markets might substantially alter estimates of policy effects.

5In spirit, this result is akin to Fitzgerald and Hallak (2004) who study the role of cross country productivity
differences in specialization. In our case, differences in unit labor costs predict specialization across regions.
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of more complete model frameworks to estimate substitution between worker types. In distinction

to the labor literature, our interest is firm substitution across factor markets. Dovetailing with this

are theories proposing that different industries perform optimally under different degrees of skill

diversity. Grossman and Maggi (2000) build a theoretical model explaining how differences in

skill dispersion across countries could determine comparative advantage and global trade patterns.

Building on this work, Morrow (2010) models multiple industries and general skill distributions,

and finds that skill diversity is explains productivity and export differences in developing countries.

The importance of local market characteristics, especially in developing countries, has recently

been emphasized by Karadi and Koren (2012). These authors calibrate a spatial firm model to

sector level data in developing countries to better account for the role of firm location in measured

productivity. Moretti (2011) reviews work on local labor markets and agglomeration economies,

explicitly modeling spatial equilibrium across labor markets. Distinct from this literature, we

take the outcome of spatial labor markets as given and focus on the trade offs firms face and the

consequences of regional markets on effective labor costs and firm location.6,7

Although we are unaware of other studies estimating model primitives as a function of local

market characteristics, reduced form empirical work is consonant with the theoretical implications.

Iranzo, Schivardi, and Tosetti (2008) find that higher skill dispersion is associated with higher

TFP in Italy. Similarly, Parrotta, Pozzoli, and Pytlikova (2011) find that diversity in education

leads to higher productivity in Denmark. Martins (2008) finds that firm wage dispersion affects

firm performance in Portugal. Bombardini, Gallipoli, and Pupato (2011) use literacy scores to

show that countries with more dispersed skills specialize in industries characterized by lower skill

complementarity. In contrast, this paper combines firm and population census data to explicitly

model regional differences, leading to micro founded identification and estimates. The method

used is novel, and results of this paper highlight the degree to which firm behavior are influenced

through the availability of inputs at the micro level.8

Clearly this study also contributes to the empirical literature on Chinese productivity. Ma, Tang,

and Zhang (2011) show that exporting is positively correlated with TFP and that firms self select

into exporting which, ex post, further increases TFP. Brandt, Van Biesebroeck, and Zhang (2012)

estimate Chinese firm TFP, showing that new entry accounts for two thirds of TFP growth and that

6Several papers have explored how different aspects of labor affect firm-level productivity. There is substantial
work on the effect of worker skills on productivity (Abowd Kramarz and Margolis (1999, 2005), Fox and Smeets
(2011)). Other labor characteristics that drive productivity include managerial talent and practices (Bloom and Reenen,
2007), social connections among workers (Bandiera, Barankay, and Rasul, 2009), organizational form (Garicano and
Heaton, 2010) and incentive pay (Lazear, 2000).

7Determinants of productivity include market structure (Syverson (2004)), product market rivalry and technology
spillovers (Bloom, Schankerman, and Van Reenen (2007)) and vertical integration (Hortaçsu and Syverson (2007),
Atalay, Hortacsu, and Syverson (2012)).

8The importance of backward linkages for firm behavior are a recurring theme in both the development and eco-
nomic geography literature, see Hirschman (1958) and recently Overman and Puga (2010).
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TFP growth dominates input accumulation as a source of output growth. Hsieh and Klenow (2009)

posit that India and China have lower productivity relative to the US due to resource misallocation

and compute how manufacturing TFP in India and China would increase if resource allocation was

similar to that of the US. This paper uncovers local factors that determine productivity. How this

interacts with the above mechanisms is a potential area for further work.9

2 The Role of Skill Mix in Production

This section develops a model of hiring in which firms respond to both the wages and quantities of

locally available worker types. Firms combine homogeneous inputs (materials, capital) and differ-

entiated inputs (types of labor). While homogeneous inputs are perfectly mobile within industries,

we take the distribution of labor endowments as given. Special cases of our model would include

perfect factor mobility (equal endowments in all regions) or high migration costs (equalization up

to mobility costs). Industries have different technologies available for combining types of labor

into teams. We proceed with a detailed specification of the labor hiring process, solving for firms’

optimal responses to local labor market supply conditions. This quantifies the unit cost for labor

by region in terms of observable local conditions and model parameters.

2.1 Firm Production

Firms within an industry T face a neoclassical production technology FT (M,K,L) which combines

materials M, capital K and labor L to produce output. An industry specific capital stock KT is

mobile within each industry, and in equilibrium is available at rental rate rT
K . Similarly, an industry

specific stock of materials MT is mobile and available at price rT
M. While M and K are composed

of homogeneous units, effective labor L is produced by combining heterogeneous worker types.

There are S skill types of workers which are distributed unequally across regions R. The dis-

tribution of worker types in region R is denoted aR =
(
aR,1, . . . ,aR,S

)
. The regional wages for

each type are take as exogenous by workers and firms, and in equilibrium are denoted wR =(
wR,1, . . . ,wR,S

)
. Workers do not contribute equally to output. This occurs for two reasons. First,

each type provides an industry specific level of human capital mT
i . Second, when a worker meets a

firm, this match has a random quality h ≥ 1 which follows a Pareto distribution, Ψ(h)≡ 1−h−k.

In order to hire workers, a firm must pay a fixed search cost of f effective labor units, at which

point they may hire from a distribution of worker types aR. The firm hires on the basis of match

quality, and consequently chooses a minimum threshold of match quality for each type they will

9Such regional differences might help explain the Chinese export facts of Manova and Zhang (2012) and the
different impact of liberalization across trade regimes found by Bas and Strauss-Kahn (2012).
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retain, h = (h1, . . . ,hS).
10 Upon keeping a preferred set of workers, the firm may this process N

times until achieving their desired workforce. At the end of hiring, the amount of human capital

produced by each type i is given by

Hi ≡ N ·aR,im
T
i

∫ ∞

hi

hdΨ. (2.1)

From a firm’s perspective, the threshold of worker match quality h is a means to choose an optimal

level of H. However, as a firm lowers its quality threshold, it faces an increasing average cost of

each type of human capital Hi . These increasing average costs induce the firm to maintain hi ≥ 1

and to increase N to search harder for suitable workers.

The amount of L produced by the firm depends on the composition of a team through a tech-

nological parameter θ T in the following way:

L ≡
(

Hθ T

1 +Hθ T

2 + . . .+Hθ T

S

)1/θ T

. (2.2)

Notice that in the case of θ T = 1, this specification collapses to a model where L is the total level

of human capital ∑Hi. More generally, the Marginal Rate of Technical Substitution of type i for

type i′ is (Hi/Hi′)
θ T−1. θ T < 1 implies worker types are complementary, so that the firm’s ideal

workforce tends to represent a mix of all types (Figure 2.1a). In contrast, for θ T > 1, firms are more

dependent on singular sources of human capital as L becomes convex in the input of each single

type (Figure 2.1b).11 Below, we show that despite the convexity inherent in Figure 2.1b, once

firms choose the quality of their workers through hiring standards h, the labor isoquants resume

their typical shapes as in Figure 2.1c. This avoids the possibility that some worker types are never

hired, in line with real world data patterns.

Figure 2.1: Human Capital Isoquants

(a) Supermodular Production in H (b) Submodular Production in H (c) Submodular Production in h

10This assumption is familiar from labor search models (see Helpman, Itskhoki, and Redding (2010)). Unlike
Helpman, et al., here differences in hiring patterns are determined by local market conditions.

11See Morrow (2010) for a more detailed interpretation of super- and sub-modularity and implications.
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Although the technology θ T is the same for all firms in an industry, firms do not all face the

same regional factor markets. Explicitly modeling these disparate markets emphasizes the role of

regional heterogeneity in supplying human capital inputs to the firm in terms of both price and

quality. This provides not only differences in productivity across regions by technology, but since

industries differ in technology, local market conditions are more or less amenable to particular

industries. We now detail the hiring process, introducing different markets and deriving firms’

optimal hiring to best accommodate these differences.

2.2 Unit Labor Costs by Region and Technology

The total costs of hiring labor depend on the regional wage rates wR, the availability of workers

aR, and the unit cost of labor in region R using technology T , labeled cT
R . Since the total number

of each type i hired is NaR,i (1−Ψ(hi)), the total hiring bill is

Total Hiring Costs : N

[
∑

i

wR,iaR,i (1−Ψ(hi))+ f cT
R

]
. (2.3)

To produce a given vector (H1, . . . ,HS), the firm faces a trade-off between the quantity and

quality of workers hired. For instance, the firm might hire a large number of workers and “cherry

pick” the best matches by choosing high values for h. Alternatively, the firm might save on inter-

viewing costs f by choosing a low number of prospectives N and permissively low values for h.

Local trade offs and the dependence on the regional labor supply characteristics aR and wR is made

explicit by considering the technology and region specific cost function CT (H|aR,wR), defined by

CT ≡ min
N,h

N

[
∑

i

aR,iwR,i (1−Ψ(hi))+ f cT
R

]
where Hi = NaR,im

T
i

∫ ∞

hi

hdΨ ∀i. (2.4)

Letting µi denote the Lagrange multiplier for each of the S cost minimization constraints, the first

order conditions for {hi} imply µi = wR,i/mT
i hi, while the choice of N implies

CT (H|aR,wR) = ∑
i

µiHi = N ∑wR,iaR,i

∫ ∞

hi

h/hidΨ. (2.5)

Equation (2.5) shows that the multipliers µi are the marginal cost contribution (per skill unit) to Hi

of the last type i worker hired. The cost function CT implies the unit labor cost of L in region R is

Unit Labor Cost Problem : cT
R ≡ min

H
CT (H|aR,wR) subject to L = 1. (2.6)
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The unit labor cost function may be solved (Appendix D.4) as

Unit Labor Costs : cT
R =

[
∑

i hired

[
aR,i

(
mT

i

)
kw1−k

R,i / f (k−1)
]θ T /β T

](β T /θ T)/(1−k)

, (2.7)

where

β T ≡ θ T + k− kθ T . (2.8)

The trade off between being more selective (high h) and avoiding search costs ( f cT
R) is clearly

illustrated by combining Equations (2.3) and (2.5), which shows:

∑
i

aR,iwR,i

∫ ∞

hi

(h−hi)/hidΨ= f cT
R . (2.9)

The LHS of Equation (2.9) decreases in h, so when a firm faces lower interviewing costs it can

afford to be more selective by increasing h. Conversely, in the presence of high interviewing

costs, the firm optimally “lowers their standards” h to increase the size of their workforce without

interviewing additional workers.12

2.3 Optimal Hiring Patterns

The above reasoning shows the relationship between technology and the optimal choice of worker

types. It is intuitive that if the right tail of the match quality distribution is sufficiently thick, there

are a few excellent matches for each type of worker, so all types are hired.13 Since match quality

follows a Pareto distribution with shape parameter k, expected match quality is E [h] = k/(k−1).

As k → 1 match quality increases, so for k sufficiently close to one, all worker types should be

hired. To be precise, a sufficient condition for a firm to optimally hire every type of worker, stated

as Proposition 1, is that β T of (2.8) is positive. This clearly holds for θ T ≤ 1, and for θ T > 1,

the condition is equivalent to k < θ T/
(
θ T −1

)
. This induces the isoquants depicted in Figure

2.1c, which illustrates a more standard trade off between different types of workers, so long as the

coordinates are transformed to the space of hiring standards h.

Proposition 1. If β T > 0 then it is optimal for a firm to hire all types of workers.

Proof. See Appendix.

12The number of times a firm goes to hire workers, N, can be solved as N = 1/ f k. Thus, N is decreasing in both
hiring costs and k. Increases in k imply lower match quality, so that repeatedly screening workers has lower returns.

13This is important, not only for the analytical convenience of avoiding complete specialization in the hiring of
worker types, but also because we find that each region-industry combination hires all types of workers in our data.
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Thus, for β T > 0, all worker types are hired. The optimal share of workers of type i hired by

firm j under technology T in region R, labeled sT
R,i j, is fixed by (2.6):14

sT
R,i j = a

θ T /β T

R,i w
−k/β T

R,i

(
mT

i

)
kθ T /β T (

c̃T
R

)(k−1)θ T /β T

( f (k−1))−θ T /β T

. (2.10)

where c̃T
R denotes the unit labor cost function at wages

{
w

k/(k−1)θ T

R,i

}
.15 Notice that in (2.6) , unlike

most production models, the factor prices wR are not sufficient to determine the factor shares a firm

will buy. The availability of workers aR is crucial in determining shares hired because costly search

makes firms sensitive to the local supply of each worker type.

2.4 Unit Costs: The Role of Substitution

Equation (2.7) summarizes the cost of one unit of labor L in terms of the Pareto shape parameter

k, the technology θ T and regional characteristics aR and wR. In order to solve for total unit costs

(which include non-labor costs), we assume each production function FT is of a Cobb-Douglas

form with constant returns to scale:

FT (M,K,L) = MαT
M KαT

K LαT
L . (2.11)

It is then straightforward to derive total unit costs from (2.7) and (2.11) as

Total Unit Costs : uT
R =

(
rT

M/αT
M

)αT
M
(
rT

K/αT
K

)αT
K
(
cT

R/αT
L

)αT
L , (2.12)

where uT
R represents the regional component of unit costs for industry T in region R. Within an

industry, productivity then varies across regions as in the following example: if firm 1 in region

R and firm 2 in region R′ face unit labor costs of cT
R and cT

R′ and have the same wage bill W , they

will employ labor of L1 = W/cT
R and L2 = W/cT

R′ . Thus, if these firms hire the same capital and

material inputs (K,M), then the ratio of their output is

Y 1/Y 2 =
(

MαT
M KαT

K L
αT

L

1

)
/
(

MαT
M KαT

K L
αT

L

2

)
= (L1/L2)

αT
L =

(
cT

R′/cT
R

)αT
L .

Industry differences in productivity therefore depend on 1) the ratio of regional labor costs and 2)

the intensity αT
L of labor in production. Estimating both allows quantification of regional produc-

tivity differences. However, we first resolve factor prices and firm location in general equilibrium.

14See Supplemental Appendix.
15Formally c̃T

R ≡ minH CT
(

H|aR,
{

w
−k/θ T (1−k)
R,i

})
subject to L = 1.
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3 Firm Production under Monopolistic Competition

This section combines the insights into firm behavior just developed into a general equilibrium

model of monopolistic competition. Firms, who are ex ante identical, choose among regions to

locate. Key to a firm’s location decision are the expected profits of entry. These profits depend on

1) the distribution of worker types and wages and 2) the competition present from other firms who

enter the region. We characterize production and location choices conditional on local labor mar-

kets. Most strikingly, lower regional production costs attract more firms for any given technology,

which determines the intensity of economic activity. Furthermore, we show an equilibrium wage

vector exists which supports these choices by firms for any distribution of labor endowments. Thus,

endowment distributions as implied by complete labor mobility or migration models are consistent

with our framework.

3.1 Firms and Consumers

Each region R is endowed with a population PR composed of S worker types. Firms may enter any

region R by paying a sunk entry cost Fe. Firms then receive a random cost draw η j ∼ G and face a

fixed production cost fe.16 Akin to Bernard, Redding, and Schott (2007), firms combine different

types of inputs to produce. Each firm j produces a distinct variety, and in equilibrium a mass of

firms MT
R enter. Entrants with cost draws less than a prohibitively high cost level ηT

R produce. MT
R

and ηT
R together determine the set of varieties available to consumers.

Consumer preferences over varieties j and quantities
{

QT
R j

}
take the Dixit-Stiglitz form

UT
R ≡U

(
M

T
R ,η

T
R ,Q

T
R

)
=M

T
R

∫ ηT
R

0

(
QT

R j

)ρ
dG( j)

in each region and industry, with total utility U (M,η ,Q)≡ ΠT ΠR

(
UT

R

)σT
R , where σT

R are relative

weights put on final goods normalized so that ∑T,R σT
R = 1. As shown in the Appendix, each σT

R

has the usual interpretation as the share of income spent on goods from each region and technology

pair (R,T ).17

Firms are the sole sellers of their variety, and thus are monopolists who provide their variety

at a price PT
R j. Consumers, in turn, face a vector of prices

{
PT

R j

}
, and a particular consumer with

16This follows Melitz (2003). G is assumed to be absolutely continuous with finite mean.
17Note that since the demand for goods from each (R,T ) pair enter preferences multiplicatively, complete special-

ization cannot occur which considerably simplifies the analysis.
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income I has the following demand curve for each variety:

QT
R j = I ·

(
PT

R jU
T
R /σT

R

) 1
ρ−1 /∑

t,r

(
σ t

r

) 1
ρ−1 M

t
r

∫ η t
r

0

((
Pt

r,z

)ρ
U t

r

) 1
ρ−1

dG(z) . (3.1)

Clearly, even if consumers have different incomes, aggregate demand for variety j corresponds

to that of a representative consumer with income equal to aggregate income, IAgg. Since labor is

supplied inelastically, IAgg is necessarily

IAgg = ∑
R

∑
i

wR,iaR,iPR︸ ︷︷ ︸
Total Wages of Type i in R

+∑
T

rT
MMT + rT

KKT

︸ ︷︷ ︸
Non−labor Income

. (3.2)

After paying an entry cost of Fe output units, firms know their cost draw, which paired with

regional input markets determine their total unit cost uT
R . Firms maximize profits

πT
R j

(
PT

R j

)
=
(
PT

R j −uT
Rη j

)
QT

R j −uT
R fe

by choosing an optimal price PT
R j = uT

Rη j/ρ , resulting in a markup of 1/ρ over costs. Firms who

cannot make a positive profit do not produce to avoid paying the fixed cost of fe output units. Since

profits decrease in costs, there is a unique cutoff cost draw ηT
R which implies zero profits, while

firms with η j < ηT
R produce. As there are no barriers to entry besides the entry cost Fe, firms enter

in every region until expected profits are zero. This yields the

Spatial Zero Profit Condition : E
[
πT

R j

]
= Fe, ∀R,T.

It is shown in the Appendix that the cutoff cost draw ηT
R depends only on fe, Fe, and G, so there is

a unique cutoff cost that does not vary by region or industry. Having determined firm behavior in

the product market, we now examine input markets.

3.2 Regional Factor Market Clearing

The remaining equilibrium conditions are that input prices guarantee firm input demand exhausts

materials, capital stocks, and each regional pool of workers. To fix expenditure, we assume each

budget share σT
R is proportional to PR, so that σT

R = σTPR for some σT .18 Since production is

Cobb-Douglas, the share of total costs (equal to IAgg) which go to each factor is the factor output

18This assumption is justified by the implication that two regions which have identical skill distributions have the
same wage schedule.
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elasticity, so full resource utilization of materials and capital requires

MT = αT
MσT IAggP/rT

M, KT = αT
K σT IAggP/rT

K. (3.3)

where P≡ ∑RPR is the total population. These two equations capture the allocation of technology

specific resources across regions.

In contrast, effective labor of LT
R is produced by each technology in each region. Since the

wage bill LT
RcT

R must receive a share αT
L of total revenues,

Aggregate Labor Demand : LT
R = αT

L σT IAggPR/cT
R . (3.4)

Embedded in each LT
R is the set of workers hired by firms attendant to regional market condi-

tions. The total demand for employees of each type in region R implied by Equation (2.10) must

equal the supply of aR,iPR, yielding the regional resource clearing conditions. Wages are therefore

determined by

aR,iwR,i = ∑
T

σT

︸︷︷︸
Industry Share Per Capita

· αT
L︸︷︷︸

Labor Share

·Hθ T

R,i /Σ jH
θ T

R, j︸ ︷︷ ︸
Type Share

·IAgg ∀R, i. (3.5)

Equation (3.5) shows that type i’s contribution to mean wages, aR,iwR,i, is the sum over income

spent an industry, times labor’s share, times the wages attributable to each type.19

Solving Equation (3.5) requires finding a wage for each worker type in each region that fully

employs all workers. To do so, first note that the resource clearing conditions determine wages,

provided an exogenous vector of unit labor costs
{

cT
R

}
, proved in the Appendix:

Lemma. There is a wage function W that uniquely solves (3.5) given unit labor costs.

Of course, unit labor costs are not exogenous as in the Lemma, but rather depend on endoge-

nous wages {wR,i}. However, the lemma does show that the following mapping:

{wR,i} 7→
Equation 2.7

{
cT

R ({wR,i})
}

7→
Lemma

W
({

cT
R ({wR,i})

})
,

which starts at one wage vector {wR,i} and ends at another wage vector W is well defined. This

mapping is shown in the Appendix to have a fixed point, which implies

Proposition 2. An equilibrium wage vector exists which clears each regional labor market.

19In equilibrium, the type share is

Hθ T

R,i /Σ jH
θ T

R, j =
(

aR,i

(
mT

i

)
kw1−k

R,i

)θ T /β T

/Σ j

(
aR, j

(
mT

j

)
kw1−k

R, j

)θ T /β T
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3.3 Limited Factor Price Equalization

Since workers are imperfectly substitutable, they induce spillovers within firms, and consequently

are not paid their marginal product.20 Mirroring this, the equation for unit labor costs shows that

regions with different skill distributions, say region R and R′, typically cannot have both cT
R = cT

R′

and wR = wR′ . However, factor price equalization for labor holds in a limited fashion in two ways.

First, Equation (3.4) shows the industry wage bill per capita is equalized, formally

cT
RLT

R/PR = cT
R′L

T
R′/PR′ for all region pairs

(
R,R′

)
.

Second, summing across types in (3.5) implies

Average Wages : ∑
i

aR,iwR,i = ∑
T

αT
L σT IAgg,

so average wages are constant across regions. This is summarized as

Proposition 3. Average wages are equalized across regions.

Proposition 3 shows that while our model allows for heterogeneity of wages by worker type,

general equilibrium forces still imply that factor price equalization holds on average.

3.4 Regional Specialization of Firms

Of course, differences in input costs will influence the relative concentration of firms across re-

gions. Since regions may vary substantially in population size P, the most relevant metric is the

number of firms per capita, MT
R ·G

(
ηT

R

)
/PR. The impact of different regional costs can be clearly

seen by fixing an industry T and considering the ratio of firms per capita in region R versus R′ as

in Equation (3.6):

Firms per Capita, R to R′ :
MT

R ·G
(
ηT

R

)
/PR

MT
R′ ·G

(
ηT

R′

)
/PR′

=
uT

R′

uT
R

=

(
cT

R′

cT
R

)αT
L

(3.6)

Equation (3.6) shows that areas with lower unit labor costs have more firms per capita. Addition-

ally, the larger the share of labor in production, αT
L , the more important are differences between

regions. This relationship is summarized as

Proposition 4. Within an industry, regions with lower labor costs have more firms per capita.

The next section lays out a strategy to structurally estimate model parameters.

20Such spillovers are internalized by firms in the model. The extent to which spillovers might also occur across
industries is beyond the scope of this study, however see Moretti (2004) for evidence in the US context.
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4 Estimation Strategy

This section lays out an estimator for the structural model parameters above. The estimator in-

volves two regressions, with a simple intervening computation. The first stage equation determines

firm labor demand, and unlike many approaches, is based on the firm-level shares of workers hired

across regions. The second stage equation uses regional unit labor costs from the first stage to

estimate the production function. Feasibility is illustrated by simulating a data set consistent with

the model above and recovering model primitives accurately with the estimator.

4.1 First Stage Estimation

Equation (2.10) determines the share of each type of workers hired in each region R and industry

T . Taking logs and allowing for errors εi j across firms and types implies

lnsT
R,i j =−

k

β T
lnwR,i +

θ T

β T
lnaR,i +

θ T

β T
k lnmT

i +
θ T (k−1)

β T
ln

c̃T
R

f (k−1)
+ εi j, (4.1)

To estimate this equation we use a combination of type and region dummies.21 To further explain

how regional variation identifies the model we discuss equilibrium hiring predicted by Equation

(4.1) in Appendix D.2.

In order to control for firm characteristics which might influence hiring patterns across worker

types, mT
i is allowed to vary with firm observables labeled Controls j:

mT
i j ≡ mT

i · exp
(
Controls jγ

T
i

)
, (4.2)

where γT
i is a type-industry specific estimate which influences the value of each worker type in an

industry. The inclusion of Controls j makes type specific human capital vary by firm, and accord-

ingly we denote unit labor costs as cT
R j. We now discuss how the first stage estimates are used to

estimate the production function in a second stage.

4.2 Second Stage Estimation

From above we can estimate θ T ,k,mT
i /mT

S
,γT

i and therefore can estimate regional differences in

unit labor cost functions, ∆ lncT
R ≡ E

[
lncT

R j|R,T,Controls j

]
−E

[
lncT

R j|T
]
. From above, revenues

21We suggest the convention of creating of type and region fixed effects, omitting the highest type fixed effect. The
remaining type coefficients then correspond to the estimates of

(
θ T/β T

)
k lnmT

i /mT
S

.
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PT
R jQ

T
R j for a firm j satisfy

lnPT
R jQ

T
R j = αT

M lnM j +αT
K lnK j +αT

L lnL j − lnρη j. (4.3)

As firm expenditure on labor L · cT
R j equals the share αT

L of revenues PT
R jQ

T
R j, we have L jc

T
R j =

αT
L PT

R jQ
T
R j and taking differences with the population mean gives

∆ lnL j = ∆ lnPT
R jQ

T
R j −∆ lncT

R j. (4.4)

Taking differences of Equation (4.3) with the population mean and using (4.4) yields

∆ lnPT
R jQ

T
R j = αT

M∆ lnM j +αT
K ∆ lnK j +αT

L ∆ lnPT
R jQ

T
R j −αT

L ∆ lncT
R j −∆ lnη j.

Rearranging yields the estimating equation

∆ lnPT
R jQ

T
R j =

αT
M

1−αT
L

∆ lnM j +
αT

K

1−αT
L

∆ lnK j −
αT

L

1−αT
L

∆ lncT
R j −

1

1−αT
L

∆ lnη j. (4.5)

The entire estimation procedure is now briefly recapped.22

4.3 Estimation Procedure Summary

1. Using sT
R,i j, the share of workers of type i hired in region R and industry T by firm j, estimate

Equation (4.1) for each industry, using type and region dummies.

2. Recover θ̂ T , k̂, m̂T
i /mT

S
and γ̂T

i . Bootstrap standard errors or use the delta method.

3. Calculate ∆̂ lncT
R j from Equation (2.7) using regional data and estimates from Step 2.

4. Estimate Equation (4.5) using ∆̂ lncT
R j.

Having laid out both a model detailing the interaction of firm technologies with local market con-

ditions and specifying an estimation strategy, we now apply the method to China. The next section

discusses these data in detail while the sequel presents our results.

22This specification is structural, but treats some model parameters as ancillary. In the Appendix, we illustrate
the estimator by simulating firms which obey the production model specified above and apply these steps. In the
simulation, the two stage estimator explains 97% of the variation in firm output, suggesting that the time savings of
this estimator likely outweigh any gain from a completely specified estimator.
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5 Data

Firm data come from the 2004 Survey of Industrial Firms conducted by the Chinese National

Bureau of Statistics, which includes all state owned enterprises and private enterprises with sales

over 5 million RMB. The data include firm ownership, location, industry, employees by education

level, profit and cash flow statements. Firm capital stock is reported fixed capital, less reported

depreciation while materials are measured by value. For summary statistics, see Appendix E.3.

From the Survey, a sample was constructed of manufacturing firms who report positive net fixed

assets, material inputs, output, value added and wages.23 The final sample includes 141,464 firms

in 284 prefectures and 19 industries at the two digit level.

Regional wage distributions are calculated from the 0.5% sample of the 2005 China Population

Census. The census contains the education level by prefecture of residence, occupation, industry

code, monthly income and weekly hours of work. We restrict the sample to employees age 15 to

65 who report positive wages and hours of work. The regional wage distribution is recovered from

the average annual income of employees by education using census data.24

In addition, GIS data from the China Data Center at the University of Michigan locates firms

at the county and prefecture level. Port data is provided by GIS data and supplemented by inland

port data from the World Port Index. These data provide controls for urban status, distance to port

and Economic Zone status.

Figure 5.1a illustrates the prefectures of China, which we define as regions from the perspective

of the model above. Prefectures illustrated by a darker shade in the Figure operate under substan-

tially different government policies and objectives. These regions typically have large minority

populations or historically distinct conditions, with the majority declared as autonomous regions,

and have idiosyncratic regulations, development, and educational policies.25 We restrict attention

to the lighter shaded regions of Figure 5.1a, preserving 284 prefectures displaying distinct labor

market conditions.26

23Our results are robust to exclusion of firms with fewer than 8 employees which operate in a different legal regime.
24While firm data is from 2004 and census data is from 2005, firm skill mix is remarkably stable over time: Ilmakun-

nas and Ilmakunnas (2011) find the standard deviation of plant-level education years is very stable from 1995-2004
in Finland, and Parrotta, Pozzoli, and Pytlikova (2011) find that a firm-level education diversity index was roughly
constant over a decade in Denmark.

25See the Information Office of the State Council of the People’s Republic of China document cited.
26In 2005, China was composed of thirty three Provinces and we exclude the five Autonomous Provinces and one

predominantly minority Province (Qinghai) which has a very low density of population and economic activity.
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Figure 5.1: Chinese Prefectures

(a) Chinese Prefectures (b) Average Monthly Income of Employees (2005)

5.1 Regional Variation

Key to our analysis is regional variation in skill distribution and wages. Here we briefly discuss

both, with further details in Appendix E. Monthly incomes vary substantially across China as

illustrated in Figure 5.1b. This is due to both the composition of skills (proxied by education)

across regions and the rates paid to these skills. Figure 5.2 contrasts educational distributions of

the labor force. Figure 5.2(a) shows those with a Junior High School education (the mandated level

in China), while Figure 5.2(b) displays those with a Junior College or higher level of attainment.

Figure 5.2: Low and High Educational Attainment Across China (2005)

(a) % Labor Force with ≤ Junior High School (b) % Labor Force with ≥ Junior College

The differing composition of input markets across China in 2004-2005 stem from many factors,

including the dynamic nature of China’s rapidly growing economy, targeted economic policies

and geographic agglomeration of industries across China.27 Faber (2012) finds that expansion of

China’s National Trunk Highway System displaced economic activity from counties peripheral

to the System. Similarly, Baum-Snow, Brandt, Henderson, Turner, and Zhang (2012) show that

mass transit systems in China have increased the population density in city centers, while radial

27We consider regional price variation at a fixed point in time. Reallocation certainly occurs and is very important
in explaining dynamics (e.g. Borjas (2003)) but are outside the scope of this paper.
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highways around cities have dispersed population and industrial activity. An overview of Chinese

economic policies is provided by Defever and Riano (2012), who quantify their impact on firms.

Of particular interest for labor markets are substantial variation in wages and the attendant

migration this induces. The quantitative extent to which labor market migration has been stymied

by the hukou system of internal passports is not well studied, although its impact has likely lessened

since 2000.28 Given that rural to urban migration typifies the pattern of structural transformation

underway, we control for rural and urban effects for each type of worker below. Nonetheless, it

remains unclear to what degree the hukou system alters labor flows under the present system. In

particular, high income and highly educated workers can more easily move among urban regions

as local governments are likely to approve their migration applications (Chan, Liu, and Yang,

1999). It therefore seems likely that the size of labor markets accessible to workers is extremely

heterogeneous. Given what little is known about the actual determinants of migration in China,

modeling firm decisions when faced with dynamically changing input markets is an interesting

avenue for further work.

5.2 Worker Types

Our definition of workers is people between ages 15 and 65 who work outside the agricultural

sector and are not employers, self-employed, or in a family business. Our definition of distinct,

imperfectly substitutable worker types is based primarily on formal schooling attained. Census

data from 2005 shows that the average years of schooling for workers in China ranges from 8.5 to

11.8 years across provinces, with sparse postgraduate education. The most common level of formal

education is at the Junior High School level or below. Reflecting substantial wage differences by

gender within that group, we define Type 1 workers as Junior High School or Below: Female and

Type 2 workers as Junior High School or Below: Male.29 Completion of Senior High School

defines Type 3 and completion of Junior College or higher education defines Type 4.

Having discussed the data, we now apply the estimation procedure developed above.

6 Estimation Results

This section reports our estimation results, then turns to a discussion of the quantitative labor cost

and productivity differences accounted for by local market conditions in China. The section con-

28The Hukou system and its reform in the late 1990s are well explained in Chan and Buckingham (2008). The per-
sistence of such a stratified system has engendered deep set social attitudes which likely affect economic interactions
between Hukou groups, see Afridi, Li, and Ren (2012).

29Differentiation of gender for low skill labor is especially important in developing countries as a variety of influ-
ences result in imperfect substitutability across gender. Bernhofen and Brown (2011) distinguish between skilled male
labor, unskilled male labour and female labour and find that the factor prices across these types differ substantially.
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tinues by testing the firm location implications of the model, finding broad support that economic

activity locates where estimated unit labor costs are lower. Finally, we compare estimation results

of our unit cost based method with one approach common in the literature, which assumes that

labor types are perfectly substitutable.

6.1 Estimates of Market Conditions and Production Technologies

The full first stage regression results for several manufacturing industries in China are presented

in Tables A.3 and A.4 of Appendix C. A representative set of estimates for the General Machines

industry are presented in Table 1. The first box in Table 1, labeled Primary Variables, are con-

sistent with the model. Though values for the coefficients
(
θ T/β T

)
lnmi/m4 are not specified by

the model, their estimated values do increase in type in Table 1, which is consonant with formal

education increasing worker output.

Table 1: First Stage Results: General Machines

Primary Variables ln(% Hired) Firm Controls
ln(wR,i) -2.687*** m1 ∗Urban Dummy -1.384***
ln(aR,i) 1.794*** m2 ∗Urban Dummy -0.980***
m1 (≤Junior HS: Female) -10.170*** m3 ∗Urban Dummy 0.427***
m2 (≤Junior HS: Male) -6.171*** m4 ∗Urban Dummy 2.336***
m3 (Senior High School) -3.180*** m1∗% Foreign Equity -2.448***

m2∗% Foreign Equity -1.864***
m3∗% Foreign Equity 0.311***

Regional Controls m4∗% Foreign Equity 3.847***
m1∗% Non-Ag Hukou -5.957*** m1 ∗ ln(Firm Age) 0.934***
m2∗% Non-Ag Hukou -3.072*** m2 ∗ ln(Firm Age) 0.403***
m3∗% Non-Ag Hukou -3.218*** m3 ∗ ln(Firm Age) 0.143***
m4∗% Non-Ag Hukou -7.026*** m4 ∗ ln(Firm Age) 0.351***
Observations: 62,908. R2 : 0.139 Includes Regional Fixed Effects
Standard errors in parentheses. Significance: *** p<.01, ** p<.05, * p<.1.

The remaining two boxes include regional controls from the Census and firm level controls

from the manufacturing survey. The regional controls are by prefecture, and include the percent-

age of each type with a non-agricultural Hukou. The firm level controls include the share of foreign

equity, the age of the firm, and whether the firm is in an urban area. Inclusion of controls for aver-

age worker age, which control for accumulated skill or vintage human capital, do not appreciably

alter the results. Other controls which did not appreciably alter the results include State Ownership

and the percentage of migrants in a region.

These first stage estimates are interesting in themselves, as the model then implies the unit cost
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function for labor by region. The dispersion of estimated unit labor costs in the General Purpose

Machine industry are depicted in Figure 6.1.

Figure 6.1: Geographic Dispersion of Unit Labor Costs: General Machines

The model primitives of our two stage estimation procedure across industries are summarized

in Tables 2 and 3. Standard errors are calculated using a bootstrap procedure stratified on industry

and region, presented in the Appendix. Table 2 displays the estimated model primitives, showing a

range of significantly different technologies θ T and match quality distributions through k. Table 3

shows the second stage estimation results, where the regional unit labor costs are calculated using

regional data and the first stage estimates.

Table 2: Model Primitive Estimates

Industry k θ Industry k θ

Beverage 2.12 (.38) 1.24 (.08) Paper 6.25 (3.8) 0.73 (.11)
Electrical 2.60 (.15) 1.22 (.02) Plastic 3.51 (.29) 1.08 (.03)
Food 1.59 (.36) 1.28 (.13) Printing 3.93 (.60) 1.04 (.04)
General Machines 2.50 (.14) 1.22 (.03) PC & AV 2.21 (.14) 1.41 (.04)
Iron & Steel 3.21 (.56) 1.00 (.06) Rubber 1.63 (.61) 1.15 (.19)
Leather & Fur 2.15 (.70) 0.76 (.14) Specific Machines 1.63 (.18) 1.43 (.07)
Precision Tools 2.34 (.18) 1.43 (.05) Textile 3.73 (.36) 0.95 (.03)
Metal Products 3.20 (.24) 1.10 (.03) Transport 1.26 (.24) 1.38 (.13)
Non-ferrous Metal 2.89 (.38) 1.15 (.05) Wood 1.52 (.22) 1.62 (.17)
Non-metal Products 2.02 (.16) 1.25 (.04) Standard Errors reported in parentheses.
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Table 3: Second Stage Estimates
Industry αL αK αM Industry αL αK αM

Beverage .13 (.05) .10 (.01) .70 (.04) Paper .18 (.36) .14 (.03) .53 (.28)

Electrical .25 (.01) .14 (.01) .47 (.01) Plastic .27 (.04) .14 (.01) .41 (.02)

Food .14 (.08) .09 (.01) .70 (.06) Printing .09 (.06) .22 (.01) .55 (.03)

General Machines .17 (.02) .12 (.01) .60 (.01) PC & AV .16 (.01) .21 (.01) .43 (.01)

Iron & Steel .40 (.06) .07 (.01) .48 (.05) Rubber .06 (.15) .13 (.02) .63 (.10)

Leather & Fur .10 (.11) .13 (.02) .59 (.07) Specific Machines .10 (.03) .16 (.01) .55 (.02)

Precision Tools .20 (.01) .16 (.01) .43 (.01) Textile .12 (.05) .11 (.01) .61 (.03)

Metal Products .24 (.01) .14 (.01) .46 (.01) Transport .04 (.03) .15 (.01) .65 (.02)

Non-ferrous Metal .40 (.03) .08 (.01) .43 (.02) Wood .22 (.11) .10 (.02) .56 (.08)

Non-metal Products .20 (.02) .07 (.01) .61 (.02) Standard Errors reported in parentheses.

While the capital coefficients may seem low, they are not out of line with other estimates which

specifically account for material inputs (e.g. Javorcik (2004)). For the specific case of China, there

are few studies estimating production coefficients.30 The most comparable study is Fleisher and

Wang (2004) who find microeconomic estimates for αK in the range of .40 to .50 (which does

not differentiate between capital and materials) and these estimates compare favorably with the

combined estimates of αK +αM in Table 3.

6.2 Implied Productivity Differences Across Firms

Table 4 quantifies the implied differences in unit labor costs and productivity across regions. The

cT
R column displays the interquartile (75%/25%) unit labor cost ratios by industry, where unit labor

costs have been calculated according to the model. The uT
R column contains the differences in

productivity implied by unit labor costs as laid out in Section 2.4, taking into account substitution

into non-labor inputs. For example, consider two firms in General Machines at the 25th and 75th

unit labor cost percentile. If both firms have the same wage bill, the labor (L) available to the lower

cost firm is 1.41 times greater than the higher cost firm. From Table 3 above, the estimated share

of wages in production is αT
L = .17, so the lower cost firm will produce 1.41.17 = 1.06 times as

much output as the higher cost firm, holding all else constant.

30Though not directly comparable, macroeconomic level estimates include Chow (1993) and Ozyurt (2009) who
find much higher capital coefficients. These studies do not account for materials.
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Table 4: Intraindustry Unit Labor Cost and Productivity Ratios

cT
R uT

R cT
R uT

R

Industry 75/25 75/25 Industry 75/25 75/25
Beverage 1.51 1.06 Paper 1.66 1.07
Electrical 1.38 1.08 Plastic 1.35 1.09
Food 1.81 1.09 Printing 1.37 1.03
General Machines 1.41 1.06 PC & AV 1.44 1.06
Iron & Steel 1.34 1.13 Rubber 2.16 1.04
Leather & Fur 1.92 1.04 Specific Machines 1.99 1.08
Precision Tools 1.80 1.13 Textile 1.37 1.04
Metal Products 1.33 1.07 Transport 4.01 1.04
Non-ferrous Metal 1.45 1.17 Wood 1.47 1.10
Non-metal Products 1.42 1.08

Table 4 indicates that the range of total unit costs faced by firms within the same industry

are indeed substantial, even after explicitly taking into account the technology θ T and the ability

to substitute across several types of local workers. However, the second stage estimates indicate

these differences are attenuated by substitution into capital and materials. Thus, while differences

in regional markets indicate an interquartile range of 30-80% in unit cost differences, substitution

into other factors reduces this range to between 3-17%.31

Table 5 examines the variance of productivity by industry under our unit cost method (Column

1) compare to estimating output by a Cobb-Douglas combination of capital, materials and the

number of each worker type (Column 2). Column 3 of Table 5 shows the average percentage that

unexplained productivity is reduced per firm under the unit labor cost method.

Table 5: Percentage of Productivity Explained by Unit Cost Method

Unit Four Avg % Unit Four Avg %

Industry Cost σ2 Types σ2 Reduced Industry Cost σ2 Types σ2 Reduced

Beverage .41 .54 .18 Paper .36 .65 .30

Electrical .40 .67 .27 Plastic .22 .64 .43

Food .37 .61 .28 Printing .49 .56 .10

General Machines .44 .59 .16 PC & AV .73 .94 .21

Iron & Steel .32 .46 .19 Rubber .55 .56 .08

Leather & Fur .23 .66 .43 Specific Machines .51 .61 .10

Precision Tools .45 .46 .07 Textile .39 .45 .11

Metal Products .48 .69 .22 Transport .58 .59 .04

Non-ferrous Metal .27 .43 .24 Wood .26 .45 .27

Non-metal products .44 .56 .15

31Most models used in production estimation assume perfect labor substitutability. Such models imply that, condi-
tional on wages, the local composition of the workforce is irrelevant for hirin. Our approach is sensitive to local factor
supply and an empirical comparison with other models is presented in Appendix C.2.
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Since firms locate freely, the model predicts that these substantial cost differences drive eco-

nomic activity towards more advantageous locations, which we now examine.

6.3 Firm Location

Per capita volumes of economic activity across regions are determined by Equation (3.6), which

states that relatively lower industry labor costs should attract relatively more firms to a region.

Table 7 summarizes estimates of this relationship, controlling for regional distance to the near-

est port (weighted by the share of value added in a region). Whenever the relationship between

value added and labor costs is statistically significant, the relationship is negative, in line with the

model.32 While the point estimates vary, the median significant estimates is about -.8, indicating a

10% increase in unit labor costs is associated with an 8% decrease in value added per capita.

Table 6: Determinants of Regional (Log) Value Added per Capita

Std 100 km Std Std
Industry ln

(
cT

R

)
Err to Port Err Const Err Obs R2

Beverage -0.696b (.274) -0.122 (.200) 18.96a (3.36) 155 .03
Electrical -0.057 (.403) -1.567a (.259) 11.98b (4.80) 166 .22
Food -0.553b (.229) -0.397b (.179) 15.49a (2.15) 171 .04
General Machines -0.705c (.400) -1.314a (.340) 19.68a (4.86) 195 .11
Iron & Steel -1.245b (.565) -0.576a (.194) 16.30a (2.22) 160 .06
Leather & Fur -1.255a (.249) -1.028b (.421) 25.81a (3.05) 89 .27
Precision Tools -0.267 (.300) -1.135b (.432) 13.13a (3.39) 68 .07
Metal Products -0.236 (.463) -1.239a (.260) 13.24a (4.86) 157 .14
Non-ferrous Metal -1.977a (.544) -0.468c (.275) 27.29a (4.57) 139 .10
Non-metal Products -0.827a (.290) -0.910a (.155) 20.89a (3.38) 259 .11
Paper -0.911a (.197) -0.320 (.246) 20.04a (2.08) 159 .12
Plastic -0.556 (.352) -1.406a (.221) 16.86a (3.99) 159 .22
Printing 0.103 (.655) -0.123 (.257) 8.54 (7.12) 98 .01
PC & AV -0.212 (.366) -0.741b (.333) 13.92a (4.60) 90 .04
Rubber -0.424c (.219) -0.470 (.398) 14.06a (2.07) 79 .06
Specific Machines -0.316c (.184) -0.680a (.194) 14.74a (2.28) 167 .07
Textile -0.934a (.273) -1.168a (.153) 19.70a (2.44) 186 .18
Transport -0.105 (.099) -1.119a (.253) 12.69a (1.30) 168 .10
Wood -2.234a (.338) -1.038a (.267) 47.02a (5.63) 133 .20
Note: a, b and c denote 1, 5 and 10% significance level respectively.

32These results are robust if distance is unweighted, and to the inclusion of Economic Zone status.
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7 Conclusion

This paper examines the importance of local supply characteristics in determining firm input usage

and productivity. To do so, a theory and empirical method are developed to identify firm input

demand across industries and heterogeneous labor markets. The model derives labor demand as

driven by the local distribution of wages and available skills. Firm behavior in general equilibrium

is derived, and determines firm location as a function of regional costs. This results in an estimator

which can be easily implemented in two steps. The first step exploits differences in firm hiring

patterns across distinct regional factor markets to recover firm labor demand by type. The second

step uses the first stage to introduce local labor costs into production function estimation. Both

steps characterize the impact of local market conditions on firm behavior through recovery of

model primitives. This is of particular interest when explaining the relative productivity or location

of firms, especially in settings where local characteristics are known to be highly dissimilar.

Our empirical strategy combines information from the Chinese manufacturing, population cen-

sus, and geographic data from the mid-2000s. Our estimates imply an interquartile difference in

labor costs of 30 to 80 and productivity differences of 3 to 17 percent. The results suggest that team

technologies combined with favorable factor market conditions explain substantial differences in

firm input use and productivity. This shows that modeling a firm’s local environment yields sub-

stantial insights into production patterns that are quantitatively important.

The importance of local factor markets for understanding firm behavior suggests new dimen-

sions for policy analysis. For instance, regions with labor markets which generate lower unit labor

costs tend to attract higher levels of firm activity within an industry. As unit labor costs depend

not only on the level of wages, but rather the distribution of wages and worker types that represent

substitution options, this yields a more varied view of how educational policy or flows of different

worker types could impact firms. Taken as a whole, our results show that policy changes which

influence the composition of regional labor markets will have sizable effects on firm behavior,

productivity and location.

Finally, nothing precludes the application of this paper’s approach beyond China, and it is

suitable for analyzing regions which exhibit a high degree of labor market heterogeneity. As the

model affords the interpretation of trade between countries which have high barriers to immigration

but low barriers to capital and input flows, it is also suitable for analyzing firm behavior across

national borders. Further work could leverage or extend the approach of combining firm, census

and geographic data to better understand the role of local factor markets on firm behavior.
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Appendix

The organization of the Appendix is as follows: Section A contains proofs of results discussed

in the main text. Section B evaluates the efficacy of the reduced form model estimator. Section

C contains more detail regarding model estimates. Three supplemental appendices are provided

for online publication: Section D contains additional details on the model solution and properties.

Section E contains summary statistics. Section F contains supplemental empirical results.

A Further Model Discussion and Proofs

A.1 Optimality of Hiring All Worker Types

Proposition. If β T > 0 then it is optimal for a firm to hire all types of workers.
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Proof. Let cT
R denote a firm’s unit labor cost when all worker types are hired, and čT

R the unit labor

cost if a subset of types T ⊂ {1, . . .S} is hired. For the result, we require that cT
R ≤ čT

R for all T.

Considering a firm’s cost minimization problem when T are the only types available shows with

Equation (2.7) that

čT
R =

[
∑
i∈T

[
aR,i

(
mT

i

)
kw1−k

R,i / f (k−1)
]θ T /β T

](β T /θ T)/(1−k)

.

Considering then that

cT
R/čT

R =

[
1+

(
∑
i/∈T

[
aR,i

(
mT

i

)
kw1−k

R,i

]θ T /β T

/∑
i∈T

[
aR,i

(
mT

i

)
kw1−k

R,i

]θ T /β T
)](β T /θ T)/(1−k)

,

clearly cT
R ≤ čT

R so long as β T/θ T (1− k)≤ 0, which holds for β T > 0 since k > 1.

A.2 Existence of Regional Wages to Clear Input Markets

What is required is to exhibit a wage vector {wR,i} that ensures Equation (3.5) holds. Since all

prices are nominal, WLOG we normalize IAgg = 1 in the following.

Lemma. There is a wage function that uniquely solves (3.5) given unit labor costs.

Proof. Formally, we need to exhibit W such that

aR,i =WR,i

({
cT ′

R′

})−1

∑
t

α t
Lσ t
(
ct

R

)k/β t−1



WR,i

({
cT ′

R′

})1−k

aR,i (m
t
i)

k

f (k−1)




θ t/β t

∀R, i.

Fix
{

cT ′

R′

}
and define hR,i (x)≡ ∑t α t

Lσ t (ct
R)

k/β t−1 (
x1−kaR,i (m

t
i)

k/ f (k−1)
)θ t/β t

, gR,i (x)≡ aR,ix.

For the result we require a unique x s.t. gR,i (x) = hR,i (x). gR,i is strictly increasing and ranges from

0 to ∞, while hR,i (x) is strictly decreasing, and ranges from ∞ to 0, so x exists and is unique.

Lemma. The function
{

cT
R ◦W

({
cT

R

})}
, where cT

R is the unit cost function of Equation (2.7), has

a fixed point
{

ĉT
R

}
and so W

({
ĉT

R

})
is a solution to Equation (3.5).

Proof. We first show that any equilibrium wage vector must lie in a strictly positive, compact set

×R,i

[
wR,i,wR,i

]
. From (3.5), Hθ T

R,i /Σ jH
θ T

R, j ∈ [0,1] so wR,i ≤ wR,i ≡ ∑t α t
Lσ t/aR,i. Let

bR ≡ min
i

∑
t

α t
Lσ t
(
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(
mt

i

)
k
)θ t/β t

/∑
i
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(
mt
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k
]θ t/β t

aR,i,
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and we will show that a lower bound for equilibrium wages is wR ≡
[

bR, . . . , bR

]
for each R.

Consider that for W evaluated at
{

cT
R (wR)

}
,

WR,i = ∑
t

α t
Lσ t
(

aR,i

(
mt

i

)
k (WR,i/wR)

1−k
)θ t/β t

/∑
i

[
aR,i

(
mt

i

)
k
]θ t/β t

aR,i. (A.1)

Evaluating Equation (A.1), if WR,i ≤ wR then WR,i ≥ wR, and otherwise, WR,i ≥ wR so {wR} is

a lower bound for W
({

cT
R (wR)

})
. Since necessarily W

({
cT

R (ŵR)
})

= {ŵR}, W is increasing in{
cT

R

}
, and cT

R (wR) is increasing in wR, we have {ŵR}=W
({

cT
R (ŵR)

})
≥W

({
cT

R (wR)
})

≥{wR}.

In conclusion, all equilibrium wages must lie in ×R,i

[
wR,i,wR,i

]
.

Now define a strictly positive, compact domain for
{

cT
R

}
, ×R
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cT

R ,c
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]
, by
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this domain. By above, WR,i
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. Also by above,

C
({

cT
R

})
≥
{

cT
R ◦W

({
cT

R (wR)
})}

≥
{

cT
R ({wR})

}
=
{

cT
R

}
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into itself

and by Brouwer’s fixed point theorem, there exists a fixed point
{

ĉT
R

}
, which implies W

({
ĉT

R

})
is

an equilibrium wage vector.

B Model Simulation and Estimator Viability

A model simulation was constructed using parameters given in Table A.1. In the simulation, firms

maximize profits conditional on local market conditions, and applying the estimator above pro-

duces Tables A.2a and A.2b. The Estimate column contains results while the model values are

reported in the Predicted column. The estimates are very close to the predicted values. Figure A.1

further confirms this by plotting the simulated and predicted differences in the share of workers

hired. For ease of comparison, Figure A.1 plots regional frequencies along the horizontal axis and

(linearly) normalized wages for each worker type. As the Figure suggests, the R2 in both cases are

high: .99 for the first stage and .97 for the second stage.
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Figure A.1: Simulation Fit

Table A.1: Simulation details

Variable Description Value

θ T Technological parameter. 2
k Pareto shape parameter. 1.5
{mi} Human capital shifters. {4,8,12,16,20}
{wR,i} Regional wages by type. ∼LogNormal µ = (12,24,36,48,60), σ = 1/3.
{aR,i} Regional type frequencies. ∼LogNormal µ = (.4, .3, .15, .1, .05), σ = 1/3,

scaled so that frequencies sum to one.
K, M Firm capital and materials. ∼LogNormal µ = 1, σ = 1.
L Level of L employed by firm. Profit maximizing given K, M and region.
αM,αK ,αL Production Parameters. αM = 1/6, αK = 1/3, αL = 1/2.
Control Misc variable for output. ∼LogNormal µ = 0, σ = 1.
Coeff Exponent on Control. Control Coeff= π .{

ω j

}
Firm idiosyncratic wage costs. ∼LogNormal µ = 0, σ = .1.

Sample: 200 regions with 20 firms per region, with errors ∼LogNormal(µ = 0, σ = 1/2).
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Table A.2: Simulation Results

(a) Simulation First Stage Estimates: Technology and Human Capital

Variable Parameter Estimate Std Err Predicted

{lnaR,i}
(
θ T/β T

)
3.912 .0019 4

{lnwR,i}
(
−k/β T

)
-2.922 .0021 -3

Dummy (Type = 1)
(
θ T/β T

)
k (lnm1/m5) -9.376 .0057 -9.657

Dummy (Type = 2)
(
θ T/β T

)
k (lnm2/m5) -5.295 .0045 -5.498

Dummy (Type = 3)
(
θ T/β T

)
k (lnm3/m5) -2.950 .0031 -3.065

Dummy (Type = 4)
(
θ T/β T

)
k (lnm4/m5) -1.274 .0024 -1.339

(b) Simulation Second Stage Estimates: Production Parameters

Variable Parameter Estimate Std Err Predicted

lnM αM/(1−αL) .3298 .0079 .3333
lnK αK/(1−αL) .6680 .0080 .6667
lncRT −αL/(1−αL) -.9303 .0748 -1
Control Control Coeff 3.148 .0079 3.141

C Model Estimates
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Table
A

.3:
F

irstS
tage

E
stim

ates
I

Electrical General Iron & Leather Precision Metal Non-ferrous
Industry Beverage Equip Food Machines Steel & Fur Equipment Products Metal

Dependent Variable: ln(%type)
ln(wR,i) -1.808a -2.977a -0.870 -2.687a -2.150a -0.708c -4.517a -3.174a -3.096a

ln(aR,i) 1.673a 1.878a 1.489a 1.794a 1.018a 0.636a 3.358a 1.439a 1.627a

m1 (≤Junior HS: Fem) -8.447a -9.491a -3.186 -10.170a 7.190a -2.052 -13.450a -5.800a -1.189
m2 (≤Junior HS: Male) -5.947c -7.181a -1.504 -6.171a 12.370a -1.089 -11.160a -2.176c 3.768c

m3 (Senior High School) -2.470 -4.475a 1.123 -3.180a 14.210a -2.058c -4.100b -0.758 6.119a

m1∗% Non-Ag Hukou 0.837 -7.619a -2.341b -5.957a -2.373c -4.544a -7.142a -6.038a -4.591a

m2∗% Non-Ag Hukou 0.306 -3.272a -1.880 -3.072a -1.355 -2.882c -3.957c -1.805b -0.370
m3∗% Non-Ag Hukou -1.102 -0.593 -0.837 -3.218a -2.394a -1.606b 0.315 -1.104b -0.903
m4∗% Non-Ag Hukou -3.913 -4.572a -0.426 -7.026a 10.130a -8.496a 1.793 -2.491b 3.403
m1 ∗Urban Dummy -0.271 -1.379a -1.462a -1.384a -1.393a -0.0822 -1.032a -1.408a -1.188a

m2 ∗Urban Dummy -0.007 -0.991a -1.085a -0.980a -0.585a -0.128 -1.176a -0.533a -0.601a

m3 ∗Urban Dummy 0.286c 0.139b 0.175 0.427a 0.503a 0.220c -0.249 0.247a 0.108
m4 ∗Urban Dummy 2.212a 1.513a 1.743a 2.336a 3.275a 0.683a 1.053a 2.147a 1.791a

m1∗% Foreign Equity 0.531a 1.030a 0.841a 0.934a 0.751a -0.107 1.952a 0.876a 1.366a

m2∗% Foreign Equity 0.422a 0.678a 0.661a 0.403a 0.354a -0.0680 1.840a 0.335a 0.432a

m3∗% Foreign Equity 0.106 0.259a 0.197b 0.143a 0.083 0.257a 0.574a 0.145a 0.093
m4∗% Foreign Equity -0.005 0.232a 0.015 0.351a -0.069 0.249 0.033 -0.150 0.589a

m1 ∗ ln(Firm Age) -2.803a -0.215 -0.983a -2.448a -2.160a 0.113 0.727b -0.627a -2.156a

m2 ∗ ln(Firm Age) -2.290a -0.547a -0.494c -1.864a -1.662a -0.190b 0.319 -0.788a -1.838a

m3 ∗ ln(Firm Age) 0.714a -0.114 0.016 0.311a 0.862a 0.198 -0.510b 0.417a 0.695a

m4 ∗ ln(Firm Age) 2.840a 1.621a 2.301a 3.847a 5.656a 3.133a 0.279 3.488a 4.413a

Regional dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 8,900 48,960 15,228 62,908 18,704 19,408 10,808 42,744 14,428
R-squared 0.124 0.117 0.098 0.139 0.168 0.208 0.246 0.124 0.145
Note: a, b and c denote 1, 5 and 10% significance level respectively.
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Table
A

.4:
F

irstS
tage

E
stim

ates
II

Other PC & AV Specific Transport
Industry Non-metal Paper Plastic Printing Equipment Rubber Machines Textile Equip Wood

Dependent Variable: ln(%type)
ln(wR,i) -1.693a -1.542a -3.324a -3.491a -3.371a -0.854 -1.260a -2.230a -0.372 -1.220b

ln(aR,i) 1.664a 0.332b 1.321a 1.212a 2.785a 1.267a 1.961a 0.830a 1.477a 2.286a

m1 (≤Junior HS: Fem) -7.246a -3.469c -7.881a -5.515b -13.770a -1.997 -10.130a 1.588 -6.326a -10.890a

m2 (≤Junior HS: Male) -3.128a -0.645 -4.596a -2.913 -11.970a 0.188 -4.811a 2.703b -3.359b -9.086a

m3 (Senior High School) -0.808 0.076 -2.657b -1.849 -7.325a 2.347 -1.515 3.468a -1.290 -6.106b

m1∗% Non-Ag Hukou -2.750a -6.210a -6.682a -5.979a -7.176a -5.162a -4.763a -6.271a -5.279a -0.301
m2∗% Non-Ag Hukou -1.750a -6.148a -4.710a -4.386a -5.210a -2.819c -4.295a -5.555a -3.153a -0.308
m3∗% Non-Ag Hukou -2.198a -3.251a -2.685a -1.835b 0.597 -3.361a -1.463a -3.264a -1.039b -2.549a

m4∗% Non-Ag Hukou -3.926a -7.690a -7.074a -4.440c -3.291a -2.211 -2.447 -4.025a -3.450b -13.060a

m1 ∗Urban Dummy -1.333a -0.691a -1.057a -1.711a -1.881a -0.819a -1.597a -0.650a -1.130a -1.630a

m2 ∗Urban Dummy -0.834a -0.338b -0.590a -1.170a -1.619a -0.603a -1.234a -0.421a -0.714a -0.720a

m3 ∗Urban Dummy 0.250a 0.350a 0.272a 0.198 -0.512a -0.035 0.216b 0.285a 0.233a 0.129
m4 ∗Urban Dummy 2.570a 2.644a 2.413a 2.251a 0.902a 2.211a 1.924a 2.709a 1.381a 3.331a

m1∗% Foreign Equity 0.834a 0.407a 0.877a 0.193 1.340a 0.620a 1.588a 0.214a 1.023a 0.415a

m2∗% Foreign Equity 0.244a 0.153c 0.361a -0.029 1.072a 0.234c 0.750a 0.202a 0.547a 0.176
m3∗% Foreign Equity 0.028 0.039 0.048 0.242a 0.294a 0.002 0.169a 0.137a 0.129a -0.142
m4∗% Foreign Equity -0.310a -0.012 0.000 0.176 -0.160b -0.191 0.097 0.442a 0.168b 0.197
m1 ∗ ln(Firm Age) -1.016a -1.899a -0.857a -0.247 0.310 -0.576 -1.601a -0.384a -1.266a -0.423
m2 ∗ ln(Firm Age) -0.768a -0.819a -0.773a -0.402 0.223 -0.242 -1.675a -0.058 -1.171a 0.066
m3 ∗ ln(Firm Age) 0.105 0.457a 0.398a -0.023 -0.049 0.319 0.100 0.445a 0.588a -0.468
m4 ∗ ln(Firm Age) 3.429a 4.850a 3.776a 3.143a 0.321a 2.577a 1.629a 4.391a 2.298a 3.850a

Regional dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 61,388 22,792 36,940 13,528 26,796 8,848 31,264 73,168 34,528 14,516
R-squared 0.150 0.164 0.130 0.107 0.188 0.120 0.177 0.221 0.129 0.245
Note: a, b and c denote 1, 5 and 10% significance level respectively.
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C.1 Residual Comparison: Unit Labor Costs vs Substitutable Labor

Of particular interest for work on productivity are the residuals remaining after the second esti-

mation step, which are often interpreted as idiosyncratic firm productivity. Figure A.1 contrasts

unexplained productivity (estimation residuals) when unit labor costs are used with estimates that

measure labor by including the employment of each worker type. Examining the 45 degree line

also plotted in the Figure, a general pattern emerges: above average firms under the employment

measure are slightly less productive under the unit cost approach, while below average firms are

more productive. This suggests that a more detailed analysis of the role of local factor markets

may substantially alter interpretation of differences in firm productivity.

Figure A.1: Productivity: Unit Labor Costs vs Total Employment (General Machines)

C.2 Comparison with Conventional Labor Measures

The estimates above reflect a procedure using regional variation to recover the unit cost of labor.

Often, such information is not incorporated into production estimation. Instead, the number of

employees or total wage bill are used to capture the effective labor available to a firm. The mean

of the second stage estimates using these labor measures are contrasted with our method in Table

A.5 (full results in Table A.13 of the Supplemental Appendix). The production coefficients using

the total wage bill or total employment are very similar, reflecting the high correlation of these

variables. However, both measures mask regional differences in factor markets. Once local sub-

stitution patterns are taken into account explicitly, substantial differences emerge.33 Most notably,

the capital share tends to be higher under our approach, while the labor share is substantially lower.

33The residuals remaining after the second estimation step, which are often interpreted as idiosyncratic firm pro-
ductivity, are compared in Appendix C.1.
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Table A.5: Second Stage Estimates vs Homogeneous Labor Estimates
Unit Labor Cost Total Wage Bill Total Employment

αL αK αM αL αK αM αL αK αM

Average 0.18 0.13 0.55 0.29 0.09 0.54 0.28 0.09 0.58

Pushing this comparison further, Table A.12 predicts the propensity to export of firms by resid-

ual firm productivity. The first column shows the results under our unit cost method. The second

and third columns show the results when labor is measured as perfectly substitutable (either by em-

ployment of each type or wages). Note that in all cases, regional and industry effects are controlled

for. The Table illustrates that productivity estimates which account for regional factor markets are

almost twice as important in predicting exports as the other measures. Section F.2 of the Appendix

shows that similar results hold when examining sales growth and three year survival rate: produc-

tivity under the unit cost approach is more important in predicting firm performance, suggesting

the other measures conflate the role of advantageous factor markets with productivity.

Table A.6: Explaining Propensity to Export with Productivity

Export Dummy (2005)
Productivity under Unit Cost method 0.0242***

(0.00393)
Productivity under L = 4 Types 0.0131***

(0.00241)
Productivity under L = Wage Bill 0.0168***

(0.00252)
Prefecture and Industry FE Yes Yes Yes
Observations 141,409 141,409 141,409
R-squared 0.202 0.201 0.202
Standard errors in parentheses. Significance: *** p<.01, ** p<.05, * p<.1.

D Supplemental Derivations

D.1 Derivation of Region-Techonology Budget Shares

The expressions which fix the cutoff cost draw ηT
R and mass of entry MT

R can be neatly summarized

by defining the mass of entrants who produce, M̃T
R , and the (locally weighted) average cost draw

in each region, η̃T
R :

M̃
T
R ≡M

T
RG
(
ηT

R

)
, η̃T

R ≡
∫ ηT

R

0

(
ηT

z uT
R

(
UT

R

)1/ρ
)ρ/(ρ−1)

dG(z)/G
(
ηT

R

)
.
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Using the profit maximizing price PT
R j and combining Equations (2.12), (3.2) and (3.1) then yields

the equilibrium quantity produced,

QT
R j = ρIAgg

(
uT

Rη j

(
UT

R /σT
R

)1/ρ
)ρ/(ρ−1)

/uT
Rη j ∑

t,r

(
σ t

r

)1/(1−ρ)
M̃

t
rη̃

t
r. (D.1)

Aggregating revenues using Equation (D.1) shows that each consumer’s budget share allocated to

region R and industry T is

Consumer Budget Share for R,T :
(
σT

R

)1/(1−ρ)
M̃

T
R η̃T

R /∑
t,r

(
σ t

r

)1/(1−ρ)
M̃

t
rη̃

t
r. (D.2)

Consequently, since free entry implies expected profits must equal expected fixed costs, the mass

of entrants MT
R solves the implicit form34

1−ρ

ρ
IAgg

(
(
σT

R

)1/(1−ρ)
M̃

T
R η̃T

R /∑
t,r

(
σ t

r

)1/(1−ρ)
M̃

t
rη̃

t
r

)
=M

T
RuT

R

(
feG
(
ηT

R

)
+Fe

)
, (D.3)

while the equilibrium cost cutoffs ηT
R solve the zero profit condition35

1−ρ

ρ
IAgg

(
σT

R

)1/(1−ρ)
(

uT
RηT

R

(
UT

R

)1/ρ
)ρ/(ρ−1)

= uT
R fe ∑

t,r

(
σ t

r

)1/(1−ρ)
M̃

t
rη̃

t
r. (D.4)

Equations (D.3) and (D.4) fix ηT
R since combining them shows

∫ ηT
R

0

(
ηT

z /ηT
R

)ρ/(ρ−1)
dG(z)/G

(
ηT

R

)
= 1+Fe/ feG

(
ηT

R

)
.

In particular, ηT
R does not vary by region or technology. Thus, Equation (D.4) shows that

UT
R uT

R/σT
R =

[
(1−ρ) IAgg/ρ fe ∑

t,r

(
σ t

r

)1/(1−ρ)
M̃

t
rη̃

t
r

]1−ρ

/
(
ηT

R

)ρ
. (D.5)

where the RHS does not vary by region or technology. Combining this equation with (3.1) shows

QT
R j = QT ′

R′ j for all (T,R) and (T ′,R′), so that MT
RuT

R/σT
R =MT ′

R′ u
T ′

R′/σT ′

R′ . At the same time, using

34To see a solution exists, note that for fixed prices,
{

η̃T
R

}
, and

{
ηT

R

}
, necessarily MT

R ∈ AT
R ≡[

0,(1−ρ) IAgg/ρuT
RFe

]
. Existence follows from the Brouwer fixed point theorem on the domain ×R,T AT

R for

H
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35To see a solution exists, note that for fixed prices,
{
MT ′

R′

}
and

{
UT

R

}
, the LHS ranges from 0 to ∞ as ηT

R varies,

while the RHS is bounded away from 0 and ∞ when min
{

η̃ t
rG
(
η t

r

)}
> 0. η̃T

R G
(
ηT

R

)
> 0 follows from inada type

conditions on goods from each T and R.
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Equation (D.5) reduces (D.2) to

Consumer Budget Share for R,T : M
T
RuT

R/∑
t,r

M
t
ru

t
t = σT

R /∑
t,r

σ t
r = σT

R .

Since ∑t,r σ t
r = 1, each region and industry receive a share σT

R of consumer expenditure.

D.2 Regional Variation in Input Use

Equation (4.1) specifies the relative shares of each type of worker hired. Since input markets are

competitive, firms and workers take regional labor market characteristics as given. As characteris-

tics such as wages worker availability and human capital vary, the share of each labor type hired

differs across regions. These differences can be broken up into direct and indirect effects. Direct

effects ignore substitution by holding the unit labor cost c̃RT constant, while indirect effects mea-

sure how regional differences give rise to substitution. The direct effects are easy to read off of

Equation (4.1), showing:

Direct Effects : d lnsR,T,i/d lnwR,i|c̃RT constant =−k/β T < 0, (D.6)

d lnsR,T,i/d lnaR,i|c̃RT constant = θ T/β T > 0, (D.7)

d lnsR,T,i/d lnmT
i

∣∣
c̃RT constant = kθ T/β T > 0. (D.8)

These direct effects have the obvious signs: higher wages (wR,i ↑) discourage hiring a particular

type while greater availability (aR,i ↑) and higher human capital (mT,i ↑) encourage hiring that type.

The indirect effects of substitution through c̃RT are less obvious as seen by

d ln c̃k
RT/d lnwR,i =

(
k/θ T

)[
aR,i

(
mT

i

)
kw

1−k−β T /θ T

R,i

]θ T /β T

c̃
k(θ T /β T)
RT > 0, (D.9)

d ln c̃k
RT/d lnaR,i =−

[
aR,i

(
mT

i

)
kw

1−k−β T /θ T

R,i

]θ T /β T

c̃
k(θ T /β T)
RT < 0, (D.10)

d ln c̃k
RT/d lnmT

i =−k
[
aR,i

(
mT

i

)
kw

1−k−β T /θ T

R,i

]θ T /β T

c̃
k(θ T /β T)
RT < 0. (D.11)

Thus, the indirect effects counteract the direct effects through substitution. To see the total of the

direct and indirect effects, define the Type-Region-Technology coefficients χi,R,T :

χi,R,T ≡ 1−
[
aR,i

(
mT

i

)
kw

1−k−β T /θ T

R,i

]θ T /β T

c̃
k(θ T /β T)
RT .
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Investigation shows that each χi,R,T is between zero and one. Combining Equations (D.6-D.8) and

Equations (D.9-D.11) shows that the direct effect dominates since

Total Effects : d lnsR,T,i/d lnwR,i =
[
−k/β T

]
χi,R,T < 0, (D.12)

d lnsR,T,i/d lnaR,i =
[
θ T/β T

]
χi,R,T > 0, (D.13)

d lnsR,T,i/d lnmT
i =

[
kθ T/β T

]
χi,R,T > 0. (D.14)

Equations (D.12-D.14) summarize the relationship between regions and labor market charac-

teristics. For small changes in labor market characteristics, the log share of a type hired in linear

in log characteristics with a slope determined by model parameters and a regional shifter χi,R,T .

These (local) isoquants for the share of type i workers hired in region R are depicted in Figure A.1.

Figure A.1: Local isoquants for Share of Workers Hired

D.3 Regional Variation in Theory: Isoquants

Equations (D.12-D.14) also characterize local isoquants of hiring the same share of a type across

regions. It is immediate that for small changes in market characteristics,
(

∆w, ∆a, ∆m

)
, the

share of a type hired is constant so long as

−
(
k/θ T

)
∆w/wR,i +∆a/aR,i + k∆m/mT

i = 0.

For instance, firms in regions R and R′ will hire the same fraction of type i workers for small

differences in characteristics (∆w,∆a) so long as

∆w/∆a =
(
θ T/k

)
wR,i/aR,i. (D.15)
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By itself, an increase in type i wages ∆w would cause firms to hire a lower share of type i workers

as indicated by the direct effect. However, Equation (D.15) shows that firms would keep the same

share of type i workers if the availability ∆a increases concurrently so that Equation (D.15) holds.

D.4 Derivation of Unit Labor Costs

Unit labor costs by definition solve

Unit Labor Costs : cT
R ≡ min

H
CT (H|aR,wR) subject to L =

(
Hθ T

1 +Hθ T

2 + . . .+Hθ T

S

)1/θ T

= 1.

Under the parameterization Ψ(h) = 1−h−k, Equations (2.1) become

Hi = aR,ik/(k−1) ·mT
i h1−k

i ·N. (D.16)

From the FOCs above, wR,iHi/mT
i hiCT (H|aR,wR) = Hθ T

i /∑ j Hθ T

j , and L = 1 =
(

∑ j Hθ T

j

)1/θ T

so

hi = wR,iH
1−θ T

i /mT
i CT (H|aR,wR) . (D.17)

Substitution now yields

Hi = aR,ik/(k−1) ·mT
i

(
wR,iH

1−θ T

i /mT
i CT (H|aR,wR)

)1−k

·N. (D.18)

Further reduction and the definition of β T shows that

H
β T

i = Hθ T+k−kθ T

i = aR,ik/(k−1) ·
(
mT

i

)
kw1−k

R,i CT (H|aR,wR)
k−1

N. (D.19)

Again using
(

∑ j Hθ T

j

)1/θ T

= 1 then shows

1 = ∑
i

[
aR,ik/(k−1) ·mT

i
kw1−k

R,i

(
cT

R

)k−1
N
]θ T /β T

. (D.20)

From the definition of the cost function we have (substituting in D.17)

cT
R = N

[
∑

i

aR,iwR,ih
−k
i + f cT

R

]
= ∑

i

wR,i ((k−1)/k)Hi/mT
i hi +N f cT

R .
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Therefore from wR,iHi/mT
i hiCT (H|aR,wR) = Hθ T

i it follows

1 = ∑
i

(k−1)/k ·Hθ T

i +N f = (k−1)/k+N f ,

and therefore N = 1/ f k. Now from Equation (D.20), cT
R is seen to be Equation (2.7).

D.5 Derivation of Employment Shares

Combining Equations (D.17), (D.19) and N = 1/ f k shows

hi = a
(1−θ T)/β T

R,i

(
mT

i

)
−θ T /β T

w
1/β T

R,i

(
cT

R

)−1/β T

/( f (k−1))(1−θ T)/β T

. (D.21)

Let AT
R,i be the number of type i workers hired to make L = 1, exclusive of fixed search costs. By

definition, AT
R,i = N|L=1 ·aR,i (1−Ψ(hi)) = aR,ih

−k
i / f k. Using Equation (D.21),

AT
R,i = k−1 (k−1)a

θ T /β T

R,i

(
mT

i

)
kθ T /β T

w
−k/β T

R,i

(
cT

R

)k/β T

((k−1) f )−θ T /β T

.

Labor is also consumed by the fixed search costs which consist of N|L=1 · f = 1/k labor units.

Therefore, if ÃT
R,i denotes the total number of type i workers hired to make L = 1, necessarily

ÃT
R,i = AT

R,i + ÃT
R,i/k so ÃT

R,i = k (k−1)−1
AT

R,i, and the total number of type i workers hired in

region R using technology T is LT
R ÃT

R,i. The total number of employees in R, T is ∑i LT
R ÃT

R,i =

LT
R

(
cT

R

)k/β T (
c̃T

R

)(1−k)θ T /β T

, where c̃T
R denotes the unit labor cost function at wages

{
w

k/(k−1)θ T

R,i

}
36.

E Supplemental Summary Statistics

E.1 Educational Summary Statistics

UNICEF suggests that the typical Chinese primary school entrance age is 7 (Source: childinfo.org).

Compulsory education lasts nine years (primary and secondary school) and ends around age six-

teen. Figure A.1a illustrates the average years of schooling for the Chinese labor force, while Table

A.7 displays the frequency of each worker type and their average monthly wages by Province.

36Formally c̃T
R ≡ minH CT

(
H|aR,

{
w
−k/θ T (1−k)
R,i

})
subject to L = 1.
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Figure A.1: Chinese Educational Attainment (2005)

(a) Labor Force Schooling (2005)

Table A.7: Educational and Wage Distribution by Province (2005)

Province Fraction of Labor Force by Education Avg Monthly Wage by Education
≤Junior HS ≤Junior HS Senior College ≤Junior HS ≤Junior HS Senior College

(Female) (Male) HS or Above (Female) (Male) HS or Above

Anhui 0.296 0.485 0.155 0.063 581 862 866 1210
Beijing 0.140 0.284 0.299 0.277 796 1059 1314 2866
Chongqing 0.272 0.408 0.227 0.093 582 820 872 1379
Fujian 0.348 0.453 0.146 0.052 695 942 1103 1855
Gansu 0.216 0.399 0.271 0.114 507 738 869 1135
Guangdong 0.327 0.362 0.231 0.080 748 967 1281 2719
Guizhou 0.292 0.478 0.162 0.069 572 758 925 1189
Hainan 0.328 0.334 0.259 0.080 532 694 894 1527
Hebei 0.230 0.515 0.190 0.066 515 793 832 1233
Heilongjiang 0.217 0.393 0.285 0.104 515 740 797 1096
Henan 0.229 0.428 0.234 0.109 487 675 714 1079
Hubei 0.271 0.384 0.264 0.081 541 757 809 1262
Hunan 0.263 0.444 0.229 0.063 634 828 889 1267
Jiangsu 0.314 0.400 0.210 0.076 758 994 1086 1773
Jiangxi 0.291 0.456 0.196 0.056 525 783 794 1240
Jilin 0.204 0.382 0.307 0.107 522 745 809 1163
Liaoning 0.250 0.410 0.219 0.120 576 822 848 1366
Shaanxi 0.203 0.406 0.277 0.114 497 731 805 1149
Shandong 0.288 0.441 0.203 0.068 602 823 863 1398
Shanghai 0.221 0.321 0.272 0.186 891 1155 1450 3085
Shanxi 0.169 0.520 0.221 0.089 502 872 857 1113
Sichuan 0.277 0.480 0.162 0.081 541 737 829 1477
Tianjin 0.258 0.321 0.285 0.136 995 1019 1074 1617
Yunnan 0.275 0.495 0.160 0.070 504 697 896 1542
Zhejiang 0.357 0.469 0.129 0.045 817 1097 1299 2333
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E.2 Provincial Summary Statistics

Table A.8: Descriptive Statistics by Province (2005)

Manufacturing Population Census
Firm Avg # of # Region- Monthly Avg Yrs

Province Count Workers Regions Industries Wage School

Anhui 2,296 208 17 822 832 8.925

Beijing 3,676 145 2 128 1665 11.542

Chongqing 1,574 287 3 184 862 9.606

Fujian 7,534 212 9 504 945 8.170

Gansu 461 274 14 658 805 9.728

Guangdong 21,575 275 21 1269 1137 9.607

Guizhou 812 246 9 464 805 8.565

Hainan 126 149 3 151 830 9.772

Hebei 5,104 231 11 623 781 9.527

Heilongjiang 921 256 13 622 774 10.197

Henan 5,849 228 17 798 720 10.053

Hubei 2,685 247 14 742 789 9.731

Hunan 3,500 195 14 751 843 9.588

Jiangsu 22,197 170 13 756 1013 9.431

Jiangxi 1,501 245 11 556 766 9.208

Jilin 927 274 9 477 796 10.340

Liaoning 5,141 170 14 770 865 10.152

Shaanxi 1,207 368 10 548 787 10.068

Shandong 12,958 216 17 947 825 9.596

Shanghai 9,857 147 2 119 1577 10.569

Shanxi 1,118 386 11 619 847 9.895

Sichuan 3,209 238 21 887 800 9.149

Tianjin 2,671 195 2 128 1119 10.243

Yunnan 733 240 16 695 794 8.675

Zhejiang 27,639 144 11 629 1098 8.201

E.3 Industrial Summary Statistics

Table A.9 presents the distribution of firms by industry and other descriptive statistics.
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Table A.9: Manufacturing Survey Descriptive Statistics (2005)

Share of

# of # of Avg # of White State Foreign

Industry firms Regions workers Female Collar Export Equity Equity

Beverage 2,225 155 219.20 0.281 0.114 0.150 0.107 0.121

Electrical 12,241 166 201.58 0.289 0.106 0.351 0.030 0.195

Food 3,807 171 193.98 0.321 0.091 0.266 0.060 0.202

General Machines 15,727 195 152.68 0.205 0.117 0.262 0.047 0.115

Iron & Steel 4,676 160 227.40 0.148 0.088 0.101 0.032 0.056

Leather & Fur 4,852 89 320.70 0.362 0.036 0.682 0.005 0.335

Precision Tools 2,702 68 214.89 0.296 0.180 0.457 0.063 0.299

Metal Products 10,686 157 146.93 0.233 0.086 0.332 0.028 0.161

Non-ferrous Metal 3,607 139 157.75 0.186 0.093 0.180 0.035 0.093

Non-metal Products 15,347 259 195.57 0.207 0.090 0.169 0.059 0.088

Paper 5,698 159 151.05 0.269 0.061 0.127 0.026 0.131

Plastic 9,235 159 140.47 0.298 0.065 0.327 0.019 0.235

Printing 3,382 98 133.01 0.303 0.084 0.118 0.150 0.109

PC & AV 6,699 90 402.04 0.342 0.120 0.571 0.038 0.459

Rubber 2,212 79 226.25 0.294 0.067 0.377 0.027 0.218

Specific Machines 7,816 167 176.76 0.197 0.154 0.244 0.072 0.166

Textile 18,292 186 222.43 0.390 0.044 0.406 0.018 0.168

Transport 8,632 168 252.01 0.228 0.120 0.240 0.088 0.138

Wood 3,629 133 137.04 0.288 0.050 0.290 0.025 0.137

F Supplemental Empirical Results

F.1 Verisimilitude of Census and Firm Wages

One of the main concerns about combining census data with manufacturing data is the representa-

tiveness of regional labor market conditions in determining actual wages within firms. It turns out

they are remarkably good predictors of a firm’s labor expenses. We construct a predictor of firm

wages based on Census data and test it as follows: First, compute the average wages per prefec-

ture. Second, make an estimate CensusWage by multiplying each firm’s distribution of workers

by the average wages of each type from the population census. Third, regress actual firm wages

on CensusWage. The results are presented in Table A.10 of Appendix F.1. Not only is the R2 of

this predictor very high for each industry, but the coefficient on CensusWage is close to one in all

cases, showing that one-for-one the census based averages are excellent at explaining the variation

in the wage bill across firms.
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Table A.10: Census Wages as a Predictor of Reported Firm Wages

Industry Dependent Variable: ln(Firm Wage)
ln(Census Wage) Std Dev Constant Std Dev Obs R2

Beverage 1.052*** (0.0147) -0.904*** (0.204) 2223 0.85
Electrical 1.018*** (0.0103) -0.370*** (0.138) 12213 0.86
Food 1.032*** (0.0104) -0.602*** (0.144) 3766 0.83
General Machines 1.020*** (0.0063) -0.365*** (0.091) 15711 0.84
Iron & Steel 1.049*** (0.0082) -0.777*** (0.116) 4663 0.87
Leather & Fur 0.982*** (0.0112) 0.116 (0.165) 4851 0.87
Precision Tools 1.018*** (0.0221) -0.332 (0.308) 2689 0.83
Metal Products 1.012*** (0.0094) -0.286** (0.130) 10654 0.83
Non-ferrous Metal 1.054*** (0.0092) -0.833*** (0.127) 3588 0.88
Non-metal Products 0.981*** (0.0085) 0.16 (0.122) 15329 0.80
Paper 1.012*** (0.0086) -0.335*** (0.120) 5695 0.82
Plastic 1.015*** (0.0129) -0.340** (0.170) 9214 0.85
Printing 1.055*** (0.0135) -0.839*** (0.189) 3377 0.83
PC & AV 1.021*** (0.0172) -0.354 (0.224) 6685 0.86
Rubber 1.000*** (0.0132) -0.133 (0.182) 2195 0.87
Specific Machines 1.036*** (0.0105) -0.580*** (0.139) 7780 0.83
Textile 0.981*** (0.0060) 0.132 (0.084) 18281 0.86
Transport 1.050*** (0.0071) -0.755*** (0.099) 8618 0.86
Wood 0.965*** (0.0136) 0.309 (0.197) 3619 0.78
Standard errors in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1.

F.2 Firm Performance Characteristics and Productivity

Table A.11: Explaining Growth with Productivity

Sales Growth Rate (2005-7)
Productivity under Unit Cost method -0.0839**

(0.0372)
Productivity under L = 4 Types -0.0619***

(0.0239)
Productivity under L = Wage Bill -0.0607**

(0.0258)
Prefecture and Industry FE Yes Yes Yes
Observations 119,159 119,159 119,159
R-squared 0.027 0.027 0.027
Standard errors in parentheses. Significance: *** p<.01, ** p<.05, * p<.1.
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Table A.12: Explaining Survival with Productivity

Survival Rate (2005-7)
Productivity under Unit Cost method 0.0188***

(0.00230)
Productivity under L = 4 Types 0.0115***

(0.00157)
Productivity under L = Wage Bill 0.0103***

(0.00157)
Prefecture and Industry FE Yes Yes Yes
Observations 141,409 141,409 141,409
R-squared 0.023 0.023 0.022
Standard errors in parentheses. Significance: *** p<.01, ** p<.05, * p<.1.

F.3 Production Estimates by Method

Table A.13 compares the production coefficients under three measures of labor: unit labor costs,

total wages, and employment of each worker type. In the latter case, the coefficient for type i

workers are labeled α i
L.

Table A.13: Second Stage Estimates vs Homogeneous Labor Estimates
Unit Labor Cost Total Wage Bill Employment of Each Type

Industry αL αK αM αL αK αM α1
L α2

L α3
L α4

L αK αM

Beverage .13 .10 .70 .23 .06 .71 .07 .01 .07 .06 .07 .75

Electrical .25 .14 .47 .34 .12 .47 .06 .02 .08 .12 .12 .53

Food .14 .09 .70 .16 .06 .73 .07 .03 .09 .08 .12 .52

General Machines .17 .12 .60 .25 .09 .61 .03 .01 .09 .03 .06 .76

Iron & Steel .40 .07 .48 .25 .07 .68 .04 .03 .06 .08 .10 .66

Leather & Fur .10 .13 .59 .27 .09 .55 .01 .07 .11 .05 .06 .71

Precision Tools .20 .16 .43 .44 .08 .38 .02 .13 .07 .05 .09 .57

Metal Products .24 .14 .46 .30 .12 .48 .09 .03 .05 .23 .11 .44

Non-ferrous Metal .40 .08 .43 .17 .10 .65 .03 .04 .06 .02 .06 .71

Non-metal Products .20 .07 .61 .20 .06 .67 .04 .04 .10 .07 .11 .55

Paper .18 .14 .53 .28 .11 .52 .09 .02 .10 .08 .14 .47

Plastic .27 .14 .41 .31 .13 .43 .04 .01 .08 .06 .09 .65

Printing .09 .22 .55 .40 .14 .44 .07 .02 .10 .10 .17 .51

PC & AV .16 .21 .43 .48 .14 .35 .11 .07 .08 .24 .16 .41

Rubber .06 .13 .63 .31 .07 .55 .05 .07 .08 .11 .06 .56

Specific Machines .10 .16 .55 .31 .10 .48 .03 .01 .06 .13 .11 .53

Textile .12 .11 .61 .29 .07 .56 .03 .09 .08 .08 .06 .58

Transport .04 .15 .65 .31 .09 .53 .03 .03 .06 .10 .09 .59

Wood .22 .10 .56 .23 .08 .62 .03 .07 .07 .08 .07 .63

Average .18 .13 .55 .29 .09 .54 .05 .03 .08 .09 .10 .59
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