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Abstract

At the macro level, developing countries present low TFP and trade less than
their size and geography would predict. At the micro level, they are character-
ized by small firm size and persistent within-industry misallocation. I develop a
tractable multi-country general equilibrium model of production and international
trade in which heterogeneous producers face both domestic distortions to firm size
and costly entry into export markets. Since larger firms engage more intensely
in international trade, misallocation induced by size distortions impacts aggregate
productivity by also affecting the economy’s trade volumes and gains from trade.
I explore the quantitative properties of the model calibrated to firm-level and ag-
gregate data from the manufacturing sector of 77 major economies. I find that
the trade channel greatly multiplies the effect of size distortions on aggregate TFP.
Firm selection and factor reallocation amongst surviving firms totally account for
this amplification, whereas the contribution from changes in firm entry is actually
dampened by trade. Moreover, I find that cross-country differences in size distor-
tions can account for a substantial share of the international dispersion in output per
worker, but only when countries are integrated through trade. JEL classification:
F12, F63, L25, O11, O47
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1 Introduction

At the aggregate level, developing countries present low Total Factor Productivity (TFP)
and export less than their size and geography would predict.1 At the disaggregate level,
they are characterized by small firm size and persistent within-industry misallocation.2

This paper aims to connect these two sets of facts. In so doing, the paper provides a
tractable extension of quantitative multi-country models of international trade that in-
corporates cross-country differences in firm size distribution and in allocative efficiency
across firms. I then use the model to assess quantitatively how misallocation stemming
from distortions correlated with firm size and barriers to international trade interact
to engender aggregate outcomes. In particular, are the gains from improved domestic
allocative efficiency mitigated by international trade because of terms-of-trade effects
- just like the gains from factor accumulation or technological progress? Or are these
gains amplified by exposure to trade? From a policy perspective, does trade liberaliza-
tion complement or substitute domestic reforms that improve the allocation of resources
across establishments?

At the heart of my analysis is the fact that exporting is costly and, therefore, highly
concentrated among large producers.3 Even within the selective set of exporters, larger
and more productive firms tend to export more of each good, and a wider variety of
goods, to more and farther destinations. Under these circumstances, I argue that cor-
related distortions not only affect firm selection and the allocation of factors among
domestic firms, but they also shrink the size of the export sector relative to costs of
entering foreign markets, thereby depressing the economy’s trade performance. I then
show that this last effect, which I refer to as trade channel, is quantitatively important
in reinforcing the aggregate productivity losses from misallocation induced by distor-
tions to firm size distribution. Importantly, this amplification is absent in a trade model
without endogenous firm selection, i.g, one in which all entrants produce and sell to all
markets like in Krugman [1980]. In this case, a superior micro allocation is equivalent to
a positive aggregate productivity shock, whose gain in an open economy is moderated
by depreciation of terms of trade.

My starting point is a multi-country general equilibrium model of production and trade
with heterogeneous firms, in the spirit of Chaney [2008] and Di Giovanni and Levchenko
[2012], extended to incorporate key elements from the misallocation and productivity lit-
erature. Trade is balanced and labor is mobile across firms and sectors within a country
but immobile across countries. Each economy has two sectors: a perfectly competitive

1For evidence on the relationship between TFP and output per worker, see Hall and Jones [1999] and
Caselli [2005]. For evidence on export performance, trade costs, and output per worker, see Helpman
et al. [2008], Waugh [2010], and Tombe [2015].

2See Alfaro et al. [2008], Bartelsman et al. [2013], Hsieh and Klenow [2014], Poschke [2014], Bento
and Restuccia [2016] and the excellent review by Hopenhayn [2014].

3See Bernard et al. [2007] and Eaton et al. [2011].
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service sector, which combines labor with intermediate inputs to produce a nontradable
final good; and a manufacturing sector, with monopolistic competition, CES demand,
and free-entry of ex-ante identical producers of intermediate inputs for domestic and
foreign markets. As in Melitz [2003], after entry these producers face fixed operating
costs and fixed and variable international trade costs, which yields endogenous selection
into production and exporting.

Upon paying a cost to start a business, the entrepreneur discovers her physical total
factor productivity (TFPQ), which comes from a known Pareto distribution. Consistent
with micro evidence, I assume that both the scale and the shape parameters of this
distribution are country-specific. Therefore, countries may differ in their firm size dis-
tribution simply because they are working with different technologies. Conditional on
her productivity, the entrepreneur then draws an exogenous size distortion in the form
of an idiosyncratic wedge on total revenues, as in Bartelsman et al. [2013] and Hsieh and
Klenow [2014]. Both distortions and TFPQ determine equilibrium firm size, with firms
facing higher distortions selling and employing less than in the first-best equilibrium. To
the extent that resource allocation is driven by distortions rather than by productivity,
there will be differences in the marginal revenue product of factors across firms.

Revenue wedges increase in TFPQ according to a country-specific distortion schedule,
whose slope controls the severity of distortions to firm size. A steeper slope implies that
the gap between actual and first-best firm size increases faster in firm productivity, rep-
resenting a business environment less conducive to firm growth. This modeling device
serves as a simple and abstract representation of a myriad of market and policy-related
domestic frictions that effectively penalize large, more productive establishments relative
to small, less productive ones. Examples of detailed mechanisms that would map into
this distortion schedule include: (i) quality of the managerial delegation environment
(Akcigit et al. [2016]); (ii) factor market frictions (Hopenhayn and Rogerson [1993] and
Midrigan and Xu [2014]); (iii) rent-seeking and unequal regulation enforcement (Aterido
et al. [2007]); and (iv) size-dependent policies (Guner et al. [2008] and Garicano et al.
[2016]). After learning her idiosyncratic factors, the manufacturer makes production and
export decisions.

I use this framework first to study the effects of correlated distortions on key economic
outcomes in a closed-economy setting. First, a steeper distortion schedule decreases the
expected value of entry, reducing the creation of manufacturing firms and the measure of
intermediate inputs available for the service sector. Second, a steeper schedule hinders
the expansion of the most efficient firms, which in equilibrium weakens the competitive
pressure on less efficient firms, reducing average firm size and worsening the selection of
producers in the market. Finally, a steeper schedule increases the dispersion of idiosyn-
cratic distortions, aggravating the misallocation of factors among surviving producers.
These three elements result in low aggregate TFP and output per worker.
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What are the additional consequences of correlated distortions when the economy opens
to international trade? The building block to answering this question is the gravity
equation that describes bilateral trade flows in the model. According to this equation,
for any given selection of exporting firms, distortions affect aggregate exports through
changes in the number and in the volume of exported varieties. This impact is akin to the
one from changes in the aggregate state of technology in the gravity model of Eaton and
Kortum [2002]. More importantly, correlated distortions also affect the selection of firms
into export markets as well as the relative size of marginal and infra-marginal exporting
firms. These latter effects introduce a relationship between domestic distortions and
the extensive-margin elasticity of aggregate exports with respect to trade costs. Since
distortions grow in firm size and only the largest firms select into exporting, a steeper
schedule makes aggregate exports more sensitive to trade barriers. In this sense, the
same trade barrier (i.g, geography) will represent a larger impediment to exporting for
more distorted economies.

If the aggregate losses from correlated distortions are larger or smaller in an open econ-
omy will depend on two factors. First, since large establishments benefit from trade
liberalization the most, correlated distortions reduce the reallocation gains from trade
for any given level of trade openness. The second factor is the effect of distortions on
trade openness itself. On the one hand, distortions increase the price of domestic goods
- an appreciation of terms of trade. This creates an incentive for domestic buyers to
substitute away from these goods, increasing imports and trade openness. In this case
trade could help alleviate the losses from distortions. On the other hand, correlated
distortions disproportionately harm large firms, precisely those that are more likely to
access export markets. This force works in the opposite direction, i.e, to decrease trade
openness and the gains from trade. Therefore, if trade amplifies or dampens the effects
of distortions is ultimately an empirical matter.

To take the model to the data, I assemble a cross-country dataset that combines ag-
gregate information on manufacturing production, bilateral trade flows, and trade costs
with establishment-level data on revenues and input use. I divide the calibration of the
model into three steps. The first step estimates the country-specific distortion schedules
in the manufacturing sector. The microdata come from the latest version of the World
Bank Enterprise Survey (2016). Earlier versions of this dataset have been used by other
studies in the misallocation literature (see Asker et al. [2014] and Bento and Restuccia
[2016]). As in Hsieh and Klenow [2009], the model predicts that establishment-level rev-
enue productivity (TFPR) is proportional to the marginal revenue product of factors,
and thus identifies the idiosyncratic distortions faced by establishments.4 Additionally,
by imposing the model’s demand structure on establishment revenues I am able to iden-

4This relationship only applies to the revenue productivity of variable factors of production. In my
data, it is not possible to disentangle variable from fixed costs. Given this limitation, my procedure is
valid under the assumption that in the data all measured costs are variable, and the fixed operating cost
represents the entrepreneur’s opportunity cost as in Lucas [1978].

4



tify establishment-level TFPQ. I then estimate the slope of the distortion schedule as
the within-sector elasticity between TFPR and TFPQ.5 The estimates reveal that these
slopes decline sharply with development. Whereas in OECD countries a doubling of es-
tablishment efficiency is associated with a 10-25 percent increase in average distortions,
in developing economies it leads to an increment of 35-60 percent.

The second step recovers trade elasticities through the estimation of the structural grav-
ity equation. This specification differs from the usual estimators in the gravity literature
in two crucial aspects. First, the trade elasticity with respect to trade costs varies across
exporters. Second, the interaction between importer’s fixed effect and exporter’s firm
size distribution makes the loglinearized version of the gravity equation nonlinear in
parameters. To deal with the computational burden of estimating a nonlinear model
with hundreds of parameters, I use the method in De la Roca and Puga [2017] which
estimates a nonlinear model through an iterative sequence of linear estimators.

In contrast to the common assumption in the quantitative gravity literature, I find a con-
siderable dispersion in manufacturing trade elasticities across origin countries. Whereas
OECD economies present trade elasticities between 4 and 5,6 developing economies dis-
play much higher elasticities, ranging between 7 and 12. As predicted by the theory,
steeper distortion schedules at the micro level are associated with higher trade elastici-
ties at the macro level. Armed with the outcomes from steps one and two, I calibrate the
dispersion of TFPQ in each country such that the model matches the empirical trade
elasticities.

The final step calibrates trade costs and technology parameters such that the model
perfectly matches the empirical world matrix of bilateral trade. The calibrated model
successfully reproduces salient features of the cross-country data at both aggregate and
disaggregate levels. First, it correctly predicts the large international differences in pro-
ductivity per worker - the correlation between real output per worker in the model and in
the data is .84. Second, it reproduces 60% of the empirical relationship between average
manufacturing firm size and aggregate output per worker. Third, it replicates 92% of the
observed elasticity between the share of manufacturing firms that export and aggregate
productivity. Finally, the model reproduces 38% of the cross-country variation in the
within-sector dispersion in TFPR, and 21% of the variation in TFPQ.

5The benchmark estimation is based on a sample that includes only firms whose domestic sales
correspond to at least 95% of total revenues. The results are insensitive to restricting the sample to
purely domestic firms. I exclude exporters from the sample for three reasons: first, the distortion
schedule is meant to capture domestic distortions that do not respond to trade liberalization; second,
the existence of fixed export costs can introduce a positive correlation between TFPQ and TFPR even
in the absence of domestic distortions; third, in the model, the formulas that link unobservables like
TFPQ and TFPR and observables like revenues, value added and input use only hold for domestic sales.

6Recent papers, mainly based on manufacturing trade between developed countries, have found values
in this same interval. See Costinot and Rodriguez-Clare [2013] and Simonovska and Waugh [2014a].
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With the calibrated model in hand, I study the general equilibrium effects of correlated
distortions on aggregate outcomes. I first quantify the output losses from distortions
when the economy is able to trade at the estimated trade costs. This exercise consists
of endowing each country in the sample - one at a time - with the “US efficiency” and
then computing the new trade equilibrium. The US slope is a crucial benchmark in this
context because even an undistorted economy can look distorted because of overhead
costs, adjustment costs, or model misspecification.7

I find a cross-country average gain in output per worker of 27%. The bulk of this effect
comes from the selection and reallocation channels - 24 percentage points - whereas the
entry channel plays a minor role. I then perform a similar exercise in the closed-economy
case, in which the world economy becomes just a set of isolated domestic economies. The
average gain from eliminating distortions significantly drops to 14%. Selection and re-
allocation channels totally account for this reduction, with their contribution to output
increase falling from 24 to 11 percentage points. Therefore, the trade channel greatly
reinforces the selection and reallocation mechanisms through which micro distortions
affect aggregate productivity.

I further find that on average 63% of the trade channel comes from the increase in
the reallocation gains from trade given the initial level of trade openness, and 37% from
expansion of the trade openness itself. Intuitively, a less distorted economy is better
able to scale up the production of its most efficient firms - and force the exit of its least
efficient producers - after trade liberalization comes into effect. Likewise, the reduc-
tion of correlated distortions increases firm size relative to export entry costs, thereby
promoting export sales. This last effect helps to reduce the gap in trade openness in
manufactures between developed and developing economies observed in the data. Fur-
thermore, it suggests that domestic policies and institutions that distort the firm size
distribution can have significant unintended consequences for trade performance.

My last counterfactual exercise addresses the following question: in a world economy
integrated through trade, what does the international distribution of productivity look
like when all countries have converged to the “US efficiency”? In this counterfactual sce-
nario, two factors affect each country’s output per worker: (i) the direct impact examined
earlier, and (ii) the indirect “trade-transmitted” impact stemming from improvements
in allocative efficiency in the rest of the world. I find that the international inequality

7Bartelsman et al. [2013] emphasize that if data on input use include overhead costs, then average
productivity does not identify marginal productivity anymore. In this case, we could observe within-
sector dispersion in TFPR and equalization of marginal products across establishments. Moreover, the
presence of overhead costs introduce a positive covariance between establishment TFPQ and TFPR
even in the absence of distortions. Asker et al. [2014] show that in the presence of adjustment costs,
high time-series volatility in TFPQ can generate high cross-section dispersion in TFPR. In this case as
well, TFPQ is positively correlated with TFPR even in the absence of distortions. Finally, dispersion
in markups can generate a positive relationship between TFPQ and TFPR as shown by Bernard et al.
[2003] and Peters [2013].
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in output per worker decreases substantially - the variance of log productivity decreases
by 49%, and the 90th to 10th percentile ratio decreases by 48%. This convergence ef-
fect becomes negligible when international trade is shut down. Therefore, misallocation
induced by distortions to firm size potentially contributes to a significant share of cross-
country differences in standards of living, and international trade is instrumental for this
contribution.

Related Literature

This paper mainly relates to a recent research agenda on the relationship between micro-
level heterogeneity and aggregate industry outcomes. The working hypothesis of this
literature is that market imperfections and/or policy-related frictions may prevent pro-
ductive factors from flowing to the most efficient firms in the industry, thereby reducing
aggregate productivity. One branch of this research agenda has studied the impact of
frictions in input and in output markets on aggregate productivity in closed-economy
models - see Buera et al. [2011] and Moll [2014] for financial frictions, Lagos [2006] for
labor market frictions, and Peters [2013] for imperfect competition in output markets.
Another strain of work, based on the seminal contributions of Melitz [2003] and Bernard
et al. [2003], has investigated how international trade affects industry performance by
inducing reallocations across heterogeneous producers.

My contributions to this literature are twofold. First, I show that in the presence of
firm selection into domestic and export markets, international trade is a natural and
quantitative relevant amplifier of the aggregate effects from domestic micro distortions.
This result is important because the quantitative results found in the closed-economy
literature, despite being large in absolute terms, still fall short at explaining the im-
mense observed cross-country differences in output per worker.8 Second, I show that
micro distortions quantitatively matter for assessing the reallocation gains from trade.9

This paper also relates to the literature on gains from trade and firm heterogeneity.
Arkolakis et al. [2012] (ACR) highlight that the new trade models with firm heterogene-
ity deliver the same gains from trade as traditional models with representative firms.
This equivalence rests on two results. First, the same equation describes gains from
trade in the two classes of models, and this equation depends on two sufficient statistics:
the level of trade openness (which is observed) and the trade elasticity. Second, the
estimation of the trade elasticity is not model-specific because both models deliver the

8See Hopenhayn [2014].
9Some few papers have studied the interaction between trade and misallocation. Manova [2013]

studies the effect of capital misallocation among heterogeneous producers and export performance. Her
exercise does not fully solve for and estimate the structural parameters of the model though, which
prevents it from assessing the general equilibrium effects of financial frictions on aggregate productivity
and trade. Ho [2010] develops a two-country model to study the interplay between trade and firm-level
distortions in the context of India’s 1991 trade liberalization. Finally, Tombe [2015] and Swikecki [2017]
introduce frictions at the sector level into quantitative trade models.
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same estimating gravity equation.10 My contribution is to show that if the distribution
of firm size varies across countries, then the second result no longer holds true. In this
case, the estimation of trade elasticities - which are now origin-country-specific - and the
magnitude of gains from trade will differ across models.

Methodologically, my contribution is closer to Simonovska and Waugh [2014b], who
show that models with micro heterogeneity imply different estimates of trade elastici-
ties, and therefore different gains from trade, than representative-firm models. Melitz
and Redding [2015] also stress that the equivalence result is not valid under more gen-
eral distributions of firm-level productivity. My results show that even in the standard
case with Pareto distribution, the selection effects highlighted by the new trade models
matter in the aggregate exactly because they interact with the distribution of firm size,
which is a country-specific object.

Related, this paper extends the workhorse quantitative multi-country trade model to
allow for country-specific distributions of firm size. I develop a novel numerical method
to compute the general equilibrium in this highly nonlinear environment.11 I also prove
that, under mild assumptions, the general equilibrium exists and is unique. Spearot
[2016] also introduces this rich kind of cross-country heterogeneity in a multi-country
gravity model. My paper differs from his study in two crucial methodological aspects.
First, I solve and estimate the model in levels instead of in differences. My strategy is
more costly because it requires the calibration of all structural parameters of the model,
but it allows me to perform a broader set of counterfactual exercises in general equilib-
rium, beyond those based on changes of trade costs. Second, I show empirically that the
cross-country variation in macro-level trade elasticities reflects differences in firm-level
distortions observed in the microdata.

Finally, this paper offers a potential mechanism to rationalize the results in Helpman
et al. [2008] and Waugh [2010]. These papers find that trade costs have to be system-
atically asymmetric in order for a standard gravity model to fit the data on trade flows
between developed and developing countries. In particular, export costs need to be sys-
tematically higher for poor countries. I show empirically that this asymmetry in trade
costs in part captures differences in domestic distortions to firm size distribution, which
have been extensively documented by the empirical development literature.12 Separat-
ing differences in trade costs from differences in trade elasticities does not affect the fit

10The structural interpretation of the trade elasticity still differs across models. In representative-firm
models, it captures the elasticity of substitution across varieties; in models with micro heterogeneity,
it captures the dispersion of micro-level productivity. For estimation methods of trade elasticities, see
Mayer [2014] and Caliendo and Parro [2014].

11My numerical method combines bisection and fixed point algorithms, and it easily applies to a setting
with an arbitrarily large number of countries. Yang [2017] develops a gravity model with log-normal
distribution of firm-level productivities, in which the dispersion of draws varies across export countries.
His quantitative exercises, however, are limited to a world economy with 10 countries.

12Fieler [2011] shows that this asymmetry can also be rationalized by introducing nonhomothetic
preferences and multiple classes of goods into a Ricardian gravity model.
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of the trade model in hand, but is fundamental for assessing the gains from trade. More-
over, this distinction is crucial from a policy perspective. On the one hand, if high trade
costs are the main restrictions on exports, policies targeted at improving transportation
infrastructure and at promoting trade agreements are the right remedy. On the other
hand, if export performance is weak because firms are too small to overcome trade costs,
reforms of financial and labor markets are a better alternative.

Road Map

Section (2), which follows, documents the basic facts that motivate my investigation.
Section (3) provides the theoretical framework. Section (4) describes the empirical im-
plementation of the model and the main empirical results. I present the counterfactual
exercises in Section (5) and Section (6) concludes. The appendix (A) contains proofs,
monte carlo simulations, additional results and details of data construction.

2 Basic Facts

I divide the empirical regularities that motivate my study into two categories: aggre-
gate and disaggregate. The aggregate facts correspond to cross-country correlations
between measures of trade performance and labor productivity at the industry level.
The disaggregate facts involve cross-country differences in firm size distribution and in
within-industry allocative efficiency. Some of these facts have been documented by pre-
vious work, so I purposely keep their description brief. Since the bulk of international
trade is in manufactured goods, my analysis focuses on the manufacturing sector. Unless
otherwise noted, the data are for the year 2006.

Trade-Distance Elasticity and Labor Productivity

Helpman et al. [2008], Waugh [2010] and Tombe [2015] show that bilateral trade costs
inferred from bilateral trade flows are systematically asymmetric, with poor countries
facing larger costs to export relative to rich countries. In this paper I explore an al-
ternative hypothesis: that the same trade cost represents a larger trade barrier for less
productive origin countries. I do that by allowing for the elasticity of trade flows with
respect to trade barriers to vary according to exporter’s labor productivity. Figure (1)
shows a scatterplot of French and Polish foreign sales of Chemical Products (ISIC 242)
against geographic distance to the destination. Comparing these two exporters is illus-
trative because despite having relatively similar geographic access to foreign markets,
they differ considerably in labor productivity - in 2006, value added per worker in the
French chemical sector was three times higher than in Poland. The difference in elastic-
ities is large and significant. Whereas a 10% increase in distance decreases Polish sales
by 22.2%, it reduces French sales by only 10.4%.
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Figure 1: Trade-Distance Elasticity

Note: The horizontal axis measures the logarithm of distance to destination in Kilometers (Km). The
vertical axis measures the logarithm of sales to a destination as a share of total sales. Data for 2006.
Sector 242 in ISIC Rev. 2. Labor productivity in France is US$ 136,000, and in Poland US$ 45,000
(Dollars of 2006). Sources: COMTRADE, UNIDO and CEPII.

To study this hypothesis more systematically, I combine data on bilateral trade flows,
bilateral trade barriers, and value added per worker for 77 countries in 52 manufacturing
industries (3 digit ISIC Rev. 2). I estimate

log(Xk
ji) = αkj + κki + (βk1 + βk2y

k
i )log(dji) + θkZji + εkji (1)

where Xk
ji represents sales from country i to country j in sector k, αkj and κki are importer

and exporter fixed effects, dji is geographic distance between countries i and j, yki is labor
productivity (standardized across origin countries), Zji is a vector including indicators
of common language and shared border, and εkji is the regression error. When βk1 < 0, a

positive βk2 means that exports decrease slower in distance for more productive exporters.

Figure (2) reports the parameters
{
−2βk2
βk1

}52

k=1
, which measure the percentage decrease in

elasticity caused by an increase of two standard deviations in labor productivity.13

13Labor productivity is measured as value added per worker in dollars of 2006. The conversion uses
the average period exchange rates as given in the International Monetary Fund International Financial
Statistics (IFS).
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Figure 2: Trade-Distance Elasticity and Labor Productivity

Note: The bars measure the percentage decrease in trade-distance elasticity from increasing labor
productivity by two standard deviations. Robust standard errors, with *** meaning significant at 1%;
**, significant at 5%; *, significant at 10%. The sample only includes strictly positive trade flows.
Sources: COMTRADE, UNIDO and CEPII.

In 37 out of 52 sectors, more productive exporters have lower (in absolute terms) trade-
distance elasticities. Among the 15 sectors with the opposite sign, only 6 present co-
efficients statistically different from zero. Within the set of sectors with positive and
significant coefficients, the reduction in elasticities varies between 10% (Glass Products)
and 37% (General Machinery). In summary, these results demonstrate that sales from
more productive country-industry pairs are not only larger in levels but also decrease less
rapidly in geographic barriers. The latter fact does not easily conform to the standard
quantitative gravity model.

Why do more productive origin countries present lower trade-distance elasticities? Is
it the case of their average sales per firm being less sensitive to trade costs? Is it the
case of their number of exporting firms decreasing less rapidly in trade costs? Or is it
a combination of intensive and extensive margin effects? To shed light on these ques-
tions, one needs data that decomposes bilateral trade flows into number of exporters
and average sale per exporter. I use the World Bank’s Exporter Dynamics Database
(EDD),14 which contains this decomposition for 38 origin countries and 159 destinations
in the period 1997-2011. To increase country coverage, I use a version of the EDD that
consolidates sectoral trade flows into a single manufacturing category.

14Fernandes et al. [2016] describes this dataset in detail.
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Table (1) presents the estimates of specification (1) applied to the two measures of
export performance. Whereas distance negatively affects both measures (especially the
number of exporters), its interaction with labor productivity is only significant in the
first regression. These results suggest that the extensive margin is the main driver of
the above relationship, i.e, exports from less productive countries fall more rapidly in
distance because less firms are able to access more distant markets.15

Table 1: Trade-Distance Elasticity and Labor Productivity: Decomposition

(1) (2)
VARIABLES Number of Exporters Average Export

Distance -1.318*** -0.268***
(0.0727) (0.0800)

Distance*(Labor Productivity) 0.0567*** -0.00475
(0.00705) (0.00752)

Observations 10,736 10,736
R-squared 0.794 0.693

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: The dependent variables, distance and productivity are in logarithms. Data are for manufactur-
ing trade. Labor productivity refers to aggregate output per worker in PPP dollars of 2006. Controls
include time, importer and exporter fixed effects, and indicators for common language and for shared
border. Sources: CEPII, EDD and Penn World Tables 8.0.

Trade Openness and Labor Productivity

The second aggregate fact is the positive relationship between trade openness and aggre-
gate labor productivity. Fieler [2011] and Caron et al. [2014] document this fact using
the ratio of aggregate trade to GDP as a measure of trade openness. I show that this
pattern still holds when we restrict the analysis to trade in manufactures. Figure (3)
presents a scatterplot of home trade shares (share of total manufacturing expenditure
devoted to domestic goods) against labor productivity. Doubling labor productivity is
associated with a decrease of 7.2 percentage points in manufacturing home bias - the
cross-country average home bias is 47%.

15Fernandes et al. [2015] show that the extensive margin explains 40-60% of the variation in bilateral
trade.

12



Figure 3: Trade-Openness and Labor Productivity

Note: The horizontal axis measures labor productivity. The vertical axis measures home bias in the
manufacturing sector. Home bias is measured as the share of manufacturing expenditures devoted to
domestic goods. Domestic expenditure = Gross Domestic Production - Total Exports + Total Imports.
Both variables are partialled out of variation in country size. Sources: COMTRADE, UNIDO and Penn
World Tables 8.0.

Average Firm Size and Labor Productivity

One of the most robust findings in the empirical development literature is that small
production units carry out a great share of the economic activity in developing countries.
In the agricultural sector, Adamopoulos and Restuccia [2014] document a 34-fold differ-
ence in the average operational scale of farms between rich and poor countries. Lagakos
[2016] documents stark cross-country differences in the composition of the retail sector.
Whereas developing economies concentrate employment in traditional, small-scale shops,
modern big-box stores dominate employment and value added in developed countries.

A similar pattern applies to manufacturing. Figure (4) presents a strong correlation
between average manufacturing firm size, measured as the number of persons engaged
per establishment, and aggregate labor productivity. The data on firm size are from
Bento and Restuccia [2016] and are based on national census, representative survey
and registry datasets. This dataset is particularly suitable for cross-country analysis
for two reasons. First, it covers both registered and unregistered establishments. This
is important because informal establishments are both smaller and more prevalent in
developing economies. In fact, previous cross-country studies have found a negative as-
sociation between firm size and development in part because its samples only include
formal businesses. Second, the dataset includes in its definition of employment both
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paid and unpaid workers, which is particularly relevant in developing countries, where
many establishments are family owned and operated.

The positive association between firm size and aggregate productivity also holds in time-
series data. Poschke [2014] documents this association for the US during the twentieth
century. Buera and Fattal-Jaef [2014] also show that growth in average firm size and
in aggregate productivity followed structural reforms in Japan, South Korea, Singapore
and Chile.

Figure 4: Average Firm Size and Labor Productivity

Note: The horizontal axis represents the logarithm of labor productivity measured as GDP per worker in
2006 PPP dollars. The vertical axis represents the logarithm of average firm size measured as the number
of engaged persons per establishment. Data on firm size were collected during the period 2000-2012.
Sources: Bento and Restuccia [2016] and Penn World Tables 8.0.

A Glance at Correlated Distortions

Recent work in economic growth and development has highlighted the interplay between
firm-level heterogeneity and the business environment as an important determinant of
cross-country differences in firm size distribution and in aggregate productivity. The
working hypothesis of this literature is that small firm size and low aggregate produc-
tivity is in part due to frictions that prevent the more efficient entrepreneurs of the
economy from expanding and from driving out of the market low productive producers.
Given their dependence on firm size, these frictions are conventionally called correlated
distortions. The recent development of micro-level datasets that are comparable across
countries has allowed for the empirical assessment of this hypothesis - see Bartelsman
et al. [2009], Hsieh and Klenow [2009], Bartelsman et al. [2013] and Bento and Restuccia
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[2016].

I postpone a detailed discussion of the dataset and strategy to identify correlated distor-
tions for the empirical section (4). In this subsection I briefly describe the methodology
and present a illustrative result. Following Hsieh and Klenow [2009], I combine firm-level
data with the structure of the model to recover firm-level TFPQ and TFPR. Through
the lens of the model, TFPR is proportional to firm’s marginal productivity. Therefore,
a high TFPR in the data is interpreted by the model as a high idiosyncratic distortion.
I then compute the within-sector elasticity between TFPQ and TFPR to measure how
fast firm-level distortions grow in firm productivity. This elasticity is zero in a first-best
economy. Higher slopes are then interpreted as representing business environments less
conducive to firm expansion. Due to its tractability and relatively low data require-
ments, this formulation has become common in the macro development literature - see
Buera and Fattal-Jaef [2014], Poschke [2014], Hsieh and Klenow [2014] and Bento and
Restuccia [2016].

Figure (5) shows scatterplots of firm-level TFPQ and TFPR for three countries: Spain,
a high income country; Chile, a middle income country that has experienced major
structural reforms in the last decades; and India, a low income economy. There is a
clear relationship between correlated distortions and development. A two-fold growth
in TFPQ increases revenue productivity by 17% in Spain, by 26% in Chile, and by 44%
in India. Through the lens of the model, these results imply that larger firms in India
face more obstructions to growth than in Chile, whose firms, by their turn, face more
distortions than in Spain. In the rest of the paper, I will argue that this cross-country
variation in correlated distortions allows us to connect all the facts described above in a
parsimonious fashion.
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Figure 5: Correlated Distortions: Spain, Chile and India

Note: Logarithm of TFPQ and TFPR are measured in deviations from sectoral averages (ISIC 2-digit
Rev. 2). Relative TFPQ is recovered assuming a demand elasticity of 3. Only firms whose domestic
revenues comprise at least 95% of total sales are included. The empirical section explains in detail the
computation of establishment-level measures.

3 Theoretical Framework

This section describes the quantitative model used in the paper. The minimalist frame-
work to study the effects of correlated distortions on international trade and on aggregate
productivity must include: (i) distributions of firm-level productivity that capture cross-
country differences in technology; (ii) distortion schedules representing cross-country
differences in the business environment; (iii) bilateral trade costs that reflect both ge-
ographic and institutional barriers to trade; and (iv) endogenous entry and exit into
domestic and export markets. It is fundamental that the inclusion of these features do
not compromise the amenability of the model to quantitative analysis.

Service Sector

Consider a world economy comprising N countries indexed by i. There is a mass of Li
workers in country i. Labor is the only factor of production and is freely mobile within a
country but immobile between countries. The representative consumer’s utility is linear
in the nontradable final good (Ci) and her budget constraint is Yi = wiLi+Πi+Ri. The
consumer spends her entire income, which is the sum of total wages (wiLi), distributed
profits (Πi), and net government transfers (Ri). The service sector is perfectly compet-
itive and produces the final good according to the following Cobb-Douglas production
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function
Ci = (Lsi )

α(Ii)
1−α (2)

where Lsi is labor employed in the service sector and Ii is a bundle of intermediate inputs.
The parameter α controls the share of total labor employed in the service sector. The
input bundle is a CES aggregator of intermediate varieties as follows

Ii =

(∫
Ωi

q(ω)
σ−1
σ dω

) σ
σ−1

(3)

where q(ω) is the quantity of variety ω and σ > 1. The set Ωi is determined endoge-
nously and includes both domestic and imported varieties. The expenditure on variety
ω is

xi(ω) =

(
pi(ω)

Pi

)1−σ
Zi (4)

where Zi is the total amount spent on inputs by the service sector and Pi is the input

price index

(
Pi ≡

(∫
Ωi
pi(ω)1−σdω

) 1
1−σ
)

. The perfect competition assumption implies

that Zi = (1− α)Yi.

Manufacturing Sector

The manufacturing sector is characterized by a steady state equilibrium of firms in mo-
nopolistic competition. In country i, a mass κi of ex-ante identical entrepreneurs pays
an exploration cost of wif

e
i . This term captures the direct and indirect costs with taxes,

regulations and permits required to start a business. Djankov et al. [2002] document
that the amount of time, the monetary cost and the number of procedures necessary
just to start a business vary widely across countries. Importantly, these measures are
strongly negatively correlated with output per worker. According to the World Bank’s
Doing Business Survey, in 2006 the regulatory cost to open a firm, measured as a share
of income per capita, was 0.7% in the US and 51% in Ecuador. After the payment, the
producer access a TFPQ draw (ω) from the following Pareto distribution

Gi(ω) = 1−Aθii ω
−θi (5)

This distribution is the most common choice in the literature on trade with heterogeneous
firms for a number of reasons. First, it provides analytical tractability for the solution
and estimation of the multi-country general equilibrium. Second, standard processes of
technological innovation give rise to Pareto-distributed techniques (see Arkolakis [2016]).
Third, empirical evidence shows that the firm size distribution (which derives from the
distribution of TFPQ in the basic model) is well approximated by Pareto (see Axtell
[2001] and Di Giovanni et al. [2011]).

Two parameters characterize country i’s technology. The scale parameter (Ai) con-
trols average TFPQ and reflects factors that equally affect all firms (independently of
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size). In other words, growth of Ai improves aggregate productivity while keeping the
relative productivity between any pair of firms constant. This parameter is a catch-all
variable capturing elements such as the state of technology and stocks of human and
physical capital, which are not explicitly modeled in my framework.

The shape parameter (θi) controls the dispersion of TFPQ. The assumption that this
dispersion is country-specific gives the model more flexibility to match the cross-country
differences in firm size distribution. It also prevents the theory from attributing all
those differences to variation in distortions. Even in the absence of frictions, countries
will differ in their size distribution because of technological reasons. Moreover, since
the aggregate gains from selection and reallocation crucially depend on the country’s
degree of heterogeneity of TFPQ, it is important to discipline this parameter with the
microdata available for the country in question.

Manufacturing firms use labor as the sole input of a linear production function. The
total cost of selling q units of product ω from origin i to destination j is:

cji(ω, q) =
qwidji
ω

+ wifji (6)

The term dji ≥ 1 is the iceberg trade cost, which captures tariffs and transportation
costs,16 and fji is the fixed cost of serving destination j - like search and contractual
costs, costs to adapt the product to local standards, regulations, and other non-tariff
barriers. I assume that the fixed cost is entirely paid at the source country. For every
country i, dii and fii are normalized to one. Thus, we can interpret the domestic fixed
cost as the entrepreneur’s opportunity cost of running a business.17 If the variable profit
from domestic sales is less than this cost, then the firm terminates its operation. Fixed
and iceberg trade costs can be asymmetric, reflecting both geographic and policy barri-
ers to international trade.

Firm ω from country i faces an idiosyncratic distortion τi(ω) that works as a tax/subsidy
on total revenues. The after-tax revenue from sales to destination j is

rji(ω) = τi(ω)xji(ω) (7)

where xji(ω) is j’s spending on i’s variety ω as defined in equation (4). If τi(ω) > 1
the distortion works as a subsidy; if τi(ω) < 1, as a tax. The wedge distorts firm’s
decision both at the intensive margin - how much to sell - and at the extensive margin -
how many markets to enter. Introducing idiosyncratic distortions in the model as taxes
and subsidies is simply an analytical convenience. These wedges can also be taxes and
subsidies, but in the context of the model they serve as a parsimonious representation of

16To avoid the existence of arbitrage opportunities, I assume that ∀ i, j, l dil ≤ djl + dij .
17Kehoe et al. [2016] shows that the aggregate outcomes of a Melitz model are the same as in a model

with occupational choice a la Lucas [1978] when fixed costs are interpreted as the entrepreneur’s forgone
wage.
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the whole set of policies and institutions that distort firm size.18 I assume the following
deterministic relationship between τi(ω) and ω:

τi(ω) =
bi
ωγi

(8)

This distortion schedule depends on two parameters: level (bi) and slope (γi). I ad-
just bi such that E(τi(ω)) = 1 ∀ γi.19 Without this adjustment, a higher slope would
mechanically increase the average tax rate, thereby affecting the relative price of the
input bundle and the economy’s terms of trade. Therefore, such correction allows me
to isolate the consequences of changes in micro distortions from the more conventional
effects produced by distortions to macro prices. The first part of the firm’s problem is to
determine the optimal price and quantity in each potential destination by maximizing
after-tax profit πji(ω):

max
qji,pji

τi(ω)pji(ω)qji(ω)− cji(ω, qji(ω))

s.t. qji(ω) = Zjpji(ω)−σP σ−1
j

Defining m ≡ σ
σ−1 as the undistorted markup, the optimal price is just the product of

markup and marginal cost: pji(ω) =
(
mωγi
bi

)(
widji
ω

)
. Note that when γi 6= 0 there is

markup dispersion across active producers. After-tax revenue, which is proportional to
after-tax profit, is

rji(ω) = bσi (mwidji)
1−σ(ZjP

σ−1
j )ωσ−1−σγi (9)

In principle, γi could be so high that after-tax sales and profits become decreasing
in TFPQ, reverting the competitive advantage of more efficient producers. To avoid
this extreme case, I assume that ∀i the following non-ranking reversal condition is
true:

εi ≡ σ − 1− σγi > 0 (10)

Intuitively, condition (10) assures that, despite heavier distortions, more productive firms
still make higher after-tax profits and, therefore, sell more and access more markets than
less productive firms. I show in the empirical section that the estimates of {γi}Ni=1 sat-
isfy this condition for the values of σ usually used in the trade and macro literatures.
The second part of the firm’s problem is choosing which destinations - domestic market
included - to serve. Firm ω activates market j if and only if πji(ω) ≥ 0. For each pair
(j, i) there is a threshold productivity ω∗ji such that πji(ω

∗
ji) = 0.

Aggregation and Equilibrium

18It is straightforward to demonstrate that this revenue wedge is isomorphic to an idiosyncratic tax
on variable factors of production. See Hsieh and Klenow [2009].

19More specifically: bi = (θi+γi)
θi

Aγii .
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Country j’s input price index is the implicit solution of

P 1−σ
j =

N∑
i=1

κi

∫ ∞
ω∗
ji

pji(ω)1−σdGi(ω) (11)

where Pj affects the right-hand side through the selection of foreign sellers (ω∗ji). The
integrals converge if, and only if, ∀i the following regularity condition is satisfied

χi ≡ θi + (σ − 1)(γi − 1) > 0 (12)

Condition (12) subsumes the regularity condition of traditional gravity models with
Pareto or Frechet distributions of micro technologies (θ > σ − 1). This condition
rules out the case in which buyers can achieve an arbitrarily low price index by con-
centrating demand on a few extremely productive inputs. In particular, it rules out
the Zipf’s law case (θ = σ − 1). Under condition (12), all the aggregate objects in
the model are well defined. For instance, the aggregate sale from country i to coun-
try j is finite and given by Xji = κi

∫∞
ω∗
ji
xji(ω)dGi(ω); distributed profit is Πi =

κi

(∑N
j=1

∫∞
ω∗
ji
πji(ω)dGi(ω)− wifei

)
; and net government transfer to consumers is Ri =

κi

(∑N
j=1

∫∞
ω∗
ji
xji(ω)dGi(ω)−

∑N
j=1

∫∞
ω∗
ji
rji(ω)dGi(ω)

)
.

I now have all the elements necessary to define the general equilibrium. I demonstrate
in the appendix that for parameters {σ, α}, {Ai, Li, γi, θi, fei }Ni=1 that satisfy conditions
(10) and (12) and trade costs (fji, dji)

N
i,j=1, there exists a unique (up to scale) vector

{wi, Pi, κi, Ri}Ni=1 such that:

• Consumers and firms behave optimally

• Goods and labor markets clear

• Balanced Trade ∀i Yi =
∑N

j=1Xji

• Free Entry ∀i Πi = 0

• ∀i Pi satisfies equation (11)

Correlated Distortions and Aggregate Productivity in a Closed Economy

To gain intuition about how correlated distortions and trade costs interact to deter-
mine aggregate productivity in the model, it is illustrative to begin by studying the
effects of distortions in a closed economy. In this environment, distortions affect output
per worker through three channels, namely, firm entry, resource allocation and firm se-
lection. It is useful to describe each of these channels separately before analyzing their
combined effect. Starting with the entry channel it can be shown that balanced trade,
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labor market equilibrium and free entry in the manufacturing sector imply that

κi =
(σ − 1− σγi)

σθifei
(1− α)Li (13)

Therefore, a steeper distortion schedule reduces the creation of manufacturing firms.
Intuitively, more severe correlated distortions disproportionately decrease profits from
higher draws of TFPQ, which makes entry less appealing. This impact is similar to
the one caused by higher entry costs and affects aggregate productivity by reducing the
measure of inputs available for the service sector - see equation (3). Equation (13) also
reveals a complementarity between policies that reduce costs to start a firm and policies
that improve allocative efficiency among existing firms. For example, the effect on firm
creation of reforms in credit markets is larger when entry barriers are lower.

The second channel is the misallocation of labor across active manufacturing producers.
In the model, producer ω’s marginal before-tax revenue product of labor is

MRPLi(ω) ≡ ∂xi(ω)

∂li(ω)
=
mwiω

γi

bi
(14)

It is straightforward to show that TFPRi(ω) ≡ xi(ω)
li(ω) = MRPLi(ω), which just states

that in the model average and marginal products of labor are equivalent. When γi = 0
the monopoly distortion implies that the marginal product of labor is greater than the
marginal cost of labor, but all firms in the same industry still present a common marginal
product and revenue productivity. When γi 6= 0 marginal products are no longer equal-
ized across firms. In the empirically relevant case of γi > 0, more efficient firms present
higher revenue productivity and, therefore, are operating below their optimal size. More-
over, if 0 < 2γi < θi one can show that the coefficient of variation of MRPL for active
producers is

CVi(MRPL) =
γi√

θi(θi − 2γi)
(15)

In this case, a greater γi leads to more dispersion of marginal products across producers
and, therefore, to larger losses in aggregate productivity. Finally, correlated distortions
affect aggregates through the selection of firms into production. The endogenous thresh-
old below which firms leave the domestic market is

ω∗ii =

(
wσi σm

σ−1

bσi ZiP
σ−1
i

) 1
εi

(16)

The threshold productivity depends on the equilibrium wage rate, prices and aggregate
spending, which are simultaneously determined in equilibrium. Intuitively, higher wages,
lower prices and small market size contribute to the exit of the least productive firms by
reducing their variable profits. Correlated distortions affect selection in equilibrium by
maintaining in the market producers who would not survive otherwise, or by pushing
out of production firms that would be profitable in the first-best equilibrium.
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Now we are in a position to study how these three channels combine to determine
aggregate output. Without loss of generality, one can normalize Li = 1 and Ai = 1,20

and assume that labor is the numeraire good to express aggregate output as

Ci = K̄

(
κi

(θi + γi)
σ−1

χiθ
σ−2
i

ω̄∗ii

) 1−α
σ−1

(17)

where K̄ ≡ αα(1 − α)1−αmα−1 and ω̄∗ii ≡ (ω∗ii)
χi . Keeping the selection term constant,

correlated distortions affect output through the entry and allocation channels. The lat-

ter channel is captured by the term (θi+γi)
σ−1

χi
. When γi > 0, assumptions (10) and (12)

imply that this term is decreasing in γi.
21 In this case, a higher γi unambiguously leads

to lower aggregate productivity. The analysis is not so straightforward when we allow for
selection effects. In this scenario, the final impact of correlated distortions will depend

on the sign of
∂ω̄∗

ii
∂γi

. If
∂ω̄∗

ii
∂γi

< 0 - the case in which heavier distortions on large firms end
up in equilibrium coddling the least efficient producers in the economy - the selection
effect reinforces the negative impact from the entry and misallocation channels. In the

more extreme case with
∂ω̄∗

ii
∂γi

> 0, a steeper distortion schedule could even lead to higher
aggregate productivity if the positive selection effect is greater than the misallocation
and entry effects combined.22

Correlated Distortions and Aggregate Productivity in an Open Economy

Does international trade amplify or alleviate the aggregate productivity losses from cor-
related distortions? The answer to this question lies on the interplay between gains from
trade and domestic misallocation. On the one hand, trade liberalization could help allevi-
ate these losses by allowing consumers to adjust their spending towards cheaper/superior
imported goods. On the other hand, distortions could reduce the economy’s potential
to reap the reallocation gains from trade and adversely affect the selection of firms into
export markets, in which case the losses could be even larger in an economy open to
trade. My goal in this section is to use the model above to shed light on these poten-
tial outcomes. The threshold productivity above which firms from country i export to
destination j is

ω∗ji =

(
wσi σfjid

σ−1
ji

bσi ZjP
σ−1
j m1−σ

) 1
εi

(18)

20Given that bi = (θi+γi)
θi

Aγii , γi could affect bi through Ai when Ai 6= 1. By redefining the micro-level

production function as yi(ω) = Aiωli, with ω being distributed Pareto on the domain [1,∞), we would

have bi = (θi+γi)
θi

and we would arrive at the same result as in the case with Ai = 1.

21
∂

(
(θi+γi)

σ−1

χi

)
∂γi

= (σ−1)(γi−1)−γi
χi(θi+γi)

< 0.
22Although theoretically possible, this last outcome is quite infrequent in the numerical experiments

based on the calibrated model.
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Using equation (11), I express aggregate exports from country i to country j as

Xji = sjiZj =

(
T̄id

1−σ
ji (ω∗ji)

−χi∑N
k=1 T̄kd

1−σ
jk (ω∗jk)

−χk

)
Zj (19)

where sji is the share of j’s spending on manufactures that is devoted to goods from i.
The term T̄i is country i’s intensive-margin competitiveness and is given by

T̄i = κi(mwi)
1−σ (θi + γi)

σ−1

χi

A
θi+(σ−1)γi
i

θσ−2
i

(20)

Keeping the selection term constant ((ω∗ji)
−χi), γi only affects aggregate exports through

its effect on T̄i. According to equation (20), any change in T̄i caused by variation in γi
can be replicated by a correspondent change in Ai. In other words, in the absence of
endogenous firm selection into production and exporting, micro distortions and aggregate
technology are isomorphic. Therefore, the same way international trade reduces the
local gains from domestic technological progress through depreciation of terms of trade,
it will also moderate the gains from a superior micro allocation. In order for trade
to interact more meaningfully with misallocation we must take the extensive margin
seriously. Substituting expression (18) into equation (19) we have

Xji =

 Ti(ZjP
σ−1
j )

(
βi
σ−1
−1

)
d−βiji f

(
1− βi

σ−1

)
ji∑N

k=1 Tk(ZjP
σ−1
j )

(
βk
σ−1
−1

)
d−βkjk f

(
1− βk

σ−1

)
jk

Zj (21)

where Ti captures country i’s competitiveness at the extensive and intensive margins,23

and βi controls the sensitivity of country i’s aggregate exports to trade barriers and to
importer’s demand shifters according to the following equation:

βi ≡ (σ − 1)

(
1 +

χi
εi

)
= (σ − 1)

(
1 +

θi + (σ − 1)(γi − 1)

σ − 1− σγi

)
> σ − 1 (22)

The gravity equation (21) differs from the standard formulation featuring Pareto dis-
tributions of firm-level productivity in a number of aspects. First, the effect of trade
costs on trade flows varies across origin countries. According to expression (22) trade
elasticities are lower for exporters with more dispersed technologies (lower θi) and less
steep correlated distortions (lower γi). Given an increase in trade costs, more distorted
economies experiment a larger drop in exports because (i) the proportion of exporting

firms that exit the market is higher
(
∂(1/εi)
∂γi

> 0
)

, and (ii) the sales from these marginal

firms represent a larger share of aggregate exports
(
∂χi
∂γi

> 0
)

. To this extent, a reduc-

tion in γi will work just like a reduction in export costs.

23Ti ≡ T̄i
(
bσi m

1−σ

wσi σ

)χi
εi .
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Second, the trade elasticity with respect to variable trade costs reflects both extensive
and intensive margin effects. Although trade models with heterogeneous firms gener-
ically exhibit this characteristic, the assumption of Pareto (or Frechet) heterogeneity
usually entails trade elasticities that are independent from intensive-margin parameters
- see Arkolakis et al. [2012] for examples with CES preferences, and Arkolakis et al.
[2015] for models featuring more general demand systems. Under these distributional
assumptions, the trade elasticity based on gravity estimators identifies the dispersion of
TFPQ - a result that has been intensely exploited by the recent quantitative literature in
international trade and economic geography. This is no longer the case in the presence
of correlated distortions. Finally, the variation in firm size distribution across exporters
implies that trade shares depend on importer’s spending level, yielding nonhomothetic
aggregate demands.

Without loss of generality, we can assume wi = 1 and use expression (21) to write
country i’s equilibrium output per worker as24

ci ≡
Ci
Li

= K̄ s
−(1−α)
βi

ii︸ ︷︷ ︸
Gains from Trade

M(γi, θi, f
e
i )A1−α

i︸ ︷︷ ︸
Closed-Economy TFP

L
1−α
σ−1

i (23)

where K̄ is a constant that does not influence international productivity differences.25

Equation (23) offers a rich description of the aggregate TFP in an open economy. As in
Arkolakis et al. [2012], the contribution of trade depends on only three sufficient statis-
tics: (i) the size of the tradable sector (1 − α), (ii) the trade elasticity with respect
to variable trade costs (βi), and (iii) the share of expenditure on domestic goods (sii),
which is an inverse measure of trade openness. The closed-economy component of TFP
comprises the state of technology (Ai) and the function M(γi, θi, f

e
i ), which encapsu-

lates the closed-economy effects of the entry, selection and allocation channels discussed
earlier.26 Using the equation above I decompose the total effect of correlated distortions
on output per worker as follows:

∂log(ci)

∂γi︸ ︷︷ ︸
Total Effect

=

(
log(sii)

(1− α)

β2
i

∂βi
∂γi
− (1− α)

βi

∂log(sii)

∂γi

)
︸ ︷︷ ︸

Trade Channel

+
∂log(M(γi, θi, f

e
i ))

∂γi︸ ︷︷ ︸
Closed-Economy Effect

(24)

According to equation (24), correlated distortions affect the gains from trade through
two components. The first term captures the fact that a less distorted economy is better
at reaping the reallocation gains from trade or, equivalently, at converting trade into

welfare
(
∂βi
∂γi

> 0
)

. Therefore, the gains from trade increase after a reduction in domes-

tic distortions even if trade openness is unchanged.

24The mathematical appendix contains a detailed derivation of this result.

25K ≡ αα(1− α)(1−α)(1− α)
1−α
σ−1

(
1

σm(σ−1)

) (1−α)
σ−1

26M(γi, θi, f
e
i ) ≡

(
εi
χif

e
i

) 1−α
βi

(
θi+γi
θi

) (1−α)(σ(θi−1)+1)
(σ−1)(θi−γi) .
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The second component represents the effect of distortions on trade openness itself. Dif-
ferently from the first term, its sign is not determined analytically. On the one hand, the
reduction in distortions is to some extent equivalent to a positive technological shock,
which reduces the economy’s terms of trade and increases the demand for the domestic

product, thereby reducing trade openness
(
∂log(sii)
∂γi

< 0
)

. On the other hand, a lower γi

also eases the access to export markets by increasing firm size relative to export costs,

which in equilibrium tends to increase trade openness
(
∂log(sii)
∂γi

> 0
)

. Therefore, the

contribution of the trade channel to the aggregate losses from correlated distortions will
ultimately depend on the equilibrium reaction of trade openness to changes in distortions.

To gain intuition about the interplay between distortions to firm size, selection, and
trade costs, it is instructive to analyze the trade channel in a model without fixed costs.
In this model the trade elasticity is constant across exporters (βi = σ− 1) and the gains
from trade no longer stem from factor reallocations across domestic firms. Since all firms
sell to all markets, steeper correlated distortions does not play a role at reducing access
to exporting. In this scenario, a superior micro allocation is isomorphic to a better ag-
gregate technology, whose gains in an open economy are moderated by the depreciation
of terms of trade.

4 Taking the Model to the Data

I divide the calibration of the model into three sequential steps. In the first part,
I estimate distortions schedules ({γi}Ni=1) for a large cross-section of countries using
establishment-level data for the manufacturing sector. The next step recovers the dis-
persion of TFPQ ({θi}Ni=1) from estimates of exporter-specific trade elasticities ({βi}Ni=1)
according to equation (22). The third part combines data on labor force, entry costs
and geography with the structure of the model to recover the structural trade costs
({dji, fji}Ni,j=1) and technology levels ({Ai}Ni=1). The model perfectly matches the world

matrix of manufacturing trade ({sji}Ni,j=1) and successfully predicts a number of non-
targeted moments as: (i) the world distribution of output per worker; (ii) the relationship
between aggregate productivity, average firm size and firm participation in exporting;
and (iii) cross-country variation in within-industry dispersion of firm-level productiv-
ity.

4.1 Distortion Schedule

The establishment-level data come from the World Bank’s Enterprise Survey (WBES)
version 2016. The WBES is an ongoing research project to collect establishment-level

25



data from a broad cross-section of countries. The information is collected through face-
to-face surveys in the most important economic areas of each country. The sample used
in this paper was collected during the period 2005-2016 and contains 42,996 observations
from 118 countries in 52 ISIC 2-digit sectors, with a larger coverage of manufacturing
industries. The dataset spans the whole spectrum of the world income distribution,
including OECD countries (Spain, Israel, Sweden and Ireland), big emerging economies
(Brazil, Russia, India, China and Indonesia) and developing countries (Nigeria, Cam-
bodia and Bolivia). A well-known feature of this dataset is that it tends to oversample
large firms. Despite being a disadvantage in other contexts, this characteristic is actually
a strength for the purposes of this study, which focus on the constraints faced by large
producers.

The dataset contains standardized establishment-level information on: total sales, spend-
ing on raw materials and intermediate goods, net book value of assets (machinery, vehi-
cles, land and buildings) and total cost of labor (including wages, salaries, bonuses and
social security payments).27 To focus on domestic distortions, the benchmark estimation
only includes firms whose domestic sales comprise at least 95% of total sales. Appendix
(A) describes in detail the data and the construction of the final sample.

To estimate distortion schedules I first need to calculate establishment-level measures
of physical and marginal productivity as in Hsieh and Klenow [2009]. I define physical
productivity of firm i in sector s as

TFPQsi ≡ ωsi =
Ysi

Kαs
si L

1−αs
si

(25)

where the country index has been suppressed for notational simplicity. Although labor
is the sole factor of production in the theoretical model, I include physical capital in
the empirical analysis in order to get more precise estimates of establishment produc-
tivity. Combining the production function above with the optimality condition of a
non-exporting firm we have

(PsiYsi)
σ
σ−1

Kαs
si L

1−αs
si

= P
σ
σ−1
s Y

1
σ−1
s ωsi (26)

where Ps and Ys are the price and output CES aggregators of industry s. Therefore, with
establishment-level data and values for σ and αs, we can identify establishment i’s TFPQ
up to a sectoral constant.28 PsiYsi is measured as value added (sales minus spending
with intermediate inputs and raw materials); Lsi is total wage bill - using wages instead
of number of workers provides an implicit control for cross-establishment differences in

27Recent papers have used WBES to infer measures of productivity dispersion and distortions. See
Asker et al. [2014] and Bento and Restuccia [2016].

28The advantage of this procedure is that it allows me to recover establishment physical productivity
without data on establishment prices. However, since it relies on strong assumptions on demand and
market structure, it is less robust to model misspecification.

26



human capital; and Ksi is the net book value of assets. I assume σ = 3 and use the
U.S labor shares {1− αs}Ss=1 from the NBER Productivity Database complemented by
estimates from Gollin [2002].29 30

In a similar fashion, one can use establishment i’s revenue productivity to recover its
idiosyncratic distortion (τsi) as follows:

TFPRsi ≡
PsiYsi

Kαs
si L

1−αs
si

=
λs
τsi

(27)

where λs ≡ m
(
r
αs

)αs (
w

(1−αs)

)1−αs
. Armed with the two measures of productivity, I

estimate a stochastic version of equation (8) by running for each country j the following
regression:31

log

(
TFPRjsi

TFPR
j
s

)
= βj0 + γjlog

(
TFPQjsi

TFPQ
j
s

)
+ εji (28)

Given my focus on correlated distortions, I attribute no structural role to the error term
of the regression above. Therefore, I interpret the share of the within-industry variation
of TFPR not explained by variation in TFPQ simply as statistical noise. This approach
differs from Hsieh and Klenow [2009] to the extent that they consider all the observed
within-industry variation of TFPR as structural wedges that misallocate resources across
firms.

Figure (6) illustrates the cross-country variation in the estimated distortion schedules.
There is a clear negative relationship between distortions and aggregate labor productiv-
ity. Rich countries present the smallest coefficients. For instance, the US slope is .09 and
the slopes of other OECD economies vary from .17 (Spain) to .25 (Sweden). The sched-
ules in middle income countries concentrate in a range from .3 (Brazil) to .5 (Turkey).
Finally, the least productive countries in the sample tend to present slopes above .5.
This is the case for many economies in Sub-Saharan African and Southeast Asia. A sim-
ilar negative relationship holds when aggregate TFP is used as a measure of productivity.

My estimates are close to estimates based on more comprehensive, administrative datasets.
For example, Chen and Irarrazabal [2015] find a slope of .29 for Chile in 1995. My es-
timate based on data for the 2000’s is .26. Hsieh and Klenow [2009] find a slope of .53
for China in 2005; my estimate is .44. Hsieh and Klenow [2014] find a slope of .5 for
India. My estimate is .44. This is reassuring that the WBES dataset is indeed providing

29The value of the elasticity of substitutions is the same used in Hsieh and Klenow [2009] and it is
close to the 2.98 estimated in Eaton et al. [2011].

30Output-labor elasticities are equal to labor shares in an imperfectly competitive environment only
under the assumption that monopoly rents are distributed to capital and labor accordingly to their
output elasticities.

31Where I have defined TFPQs ≡
(∑

i TFPQ
(σ−1)
si

) 1
σ−1

and TFPRs is the weighted average of

TFPRsi with weights given by firm i’s share of industry’s value added.
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a good approximation of firm and industry performance across countries. In Appendix
(A), I show that the estimates above are robust to different sample definitions.

Figure 6: Distortion Schedule and Output per Worker

Note Estimates are the within-sector elasticity between firms’ TFPR and TFPQ. I only include coun-
tries with sample size above 90 observations after trimming outliers. The median number of observations
per country is 249 and the average is 426. All regressions include time fixed effects. Observations are
weighed according to establishment revenue. The estimate for the US economy comes from Hsieh and
Klenow [2014].

4.2 Dispersion of TFPQ and Trade Elasticities

The second step of my calibration procedure consists of recovering the parameters that
control the dispersion of TFPQ ({θi})Ni=1. I do that by first estimating the structural
gravity equation (21), which yields estimates of the trade elasticity with respect to trade
costs ({βi}Ni=1). I then combine these estimates with the distortion schedules from the
first step to arrive at the measures of TFPQ dispersion. I use data on bilateral man-
ufacturing trade flows in 2006 from COMTRADE. Manufactures correspond to digits
151 through 372 of ISIC Rev. 3. There are 21,942 observations, featuring 160 origin
countries and 138 destination countries. Import tariff data is from UNCTAD’s Trade
Analysis Information System (TRAINS). For every pair of importer a and exporter b,
TRAINS computes the Effectively Applied Tariff (AHS) charged by country a on coun-
try b’s exports in each manufacturing sector c. The aggregate import tariff is them
calculated as the weighted average of sectoral tariffs, with weights given by the share of
sector c in total sales from b to a. If AHS tariffs are not available, I use Most-Favored
Nation (MFN) tariffs. Finally, I employ Mayer and Zignago [2006] data on bilateral
geographic variables - geographic distance, shared borders and common official language
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- as controls.

Using the price equation (11), we can rewrite the gravity equation (21) in a more con-
venient form:

Xji = Ti(Z
1

σ−1

j Pjf
−1
σ−1

ji )βid−βiji fji (29)

In order to estimate the equation above, I need to assume functional forms for dji and
fji. Following Caliendo and Parro [2014], I model iceberg trade costs as a loglinear
function of tariffs and transportation costs:

dji = (1 + tji)exp(x
d
i +md

j + z′jiδ
d) (30)

where tji is the ad-valorem import tariff, xdi is the exporter’s fixed effect, md
j is the

importer’s fixed effect, and zji is a vector of observed geographic trade barriers. Note
that tariffs enter the model only as cost shifters on imported goods and do not generate
tariff revenue.32 In a similar vein, I model fixed trade cost as a function of exporter and
importer fixed effects, geography and unobserved trade barriers as follows:

fji = exp(xfj +mf
i + z′jiδ

f + ε̄ji) (31)

These two specifications are very flexible. In particular, the presence of both importer
and exporter fixed effects allows for a rich pattern of asymmetric bilateral trade costs.
Plugging these equations into the structural gravity and taking logs we get the following
estimating gravity equation

X̃ji = Πi + ξj + βiζj − βilog(1 + tji) + z′jiδi + εji (32)

where {Πi, βi, δi}Ni=1 and {ξj , ζj}Nj=1 are parameters, {X̃ji, zji, tji}Ni,j=1 are data, and εji
is the error term reflecting unobserved trade barriers - which I assume is mean inde-
pendent from the systematic component. The novel feature of the equation above is
the nonlinear term βiζj . It reflects the fact that the structural terms contained in the
importer fixed effect ζj , like market size, price, and importer-specific trade costs, affect
aggregate imports according to the firm size distribution of the origin country. This
term, combined with variation in tariffs, will help to identify {βi}Ni=1. I estimate this
gravity equation by Nonlinear Least Squares using the iterative fixed-point algorithm
proposed by De la Roca and Puga [2017].

To grasp the intuition behind the identification of {βi}Ni=1, it is useful to go through
the iterative structure of the estimator. The algorithm consists of two iterative steps.
The first step estimates a vector β given a vector ζ through an OLS regression - in this
step ζ is treated as data. The second step combines the results from the first part and
the structure of the model to update the value of ζ. Starting with a first guess ζ(0) = 0,

the bilateral variation in tariffs identifies β(1). This step also produces residuals ε̂
(1)
j,i .

32When tariffs generate revenues, the gravity equation assumes a different form. For more on this
topic, see Caliendo et al. [2015].
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The second step calculates ζ(1) based on importer-specific covariances between ε̂
(1)
j,i and

|β(1)|. If this covariance is large (small), then the algorithm increases (decreases) ζ(2)

relatively to ζ(1). Intuitively, if country j imports relatively more from high elastic ex-
porters (or, equivalently, if j imports relatively more despite the exporters’ high trade
elasticities) then j must have a combination of larger market size, higher prices or lower
import costs. The algorithm then returns to the first step, which combines variation in
the updated ζ(2) with variation in tariffs to identify β(2) and so on and so forth. The
estimator stops when a fixed point is achieved. I show in Appendix (A) that the algo-
rithm recovers with precision the vector of trade elasticities in Monte Carlo experiments.

Table (2) displays the estimates of the heterogeneous model and compares them with
those from the traditional model, which constrains trade elasticities to be constant across
exporters. The heterogeneous estimator fits the data better than the standard model,
as evidenced by the F-Test. The gain in goodness-of-fit is approximately 4%. This is
a nontrivial improvement if we take into account that the constrained model is already
saturated with importer and exporter fixed effects. More importantly, the new model de-
livers large cross-country differences in trade elasticities, which range from 2 to 14. The
average elasticity is 7.4, which is close to Eaton and Kortum [2002] preferred estimate -
8.28 - but way above the ballpark of estimates for manufacturing trade among developed
countries found by recent research. For example, Eaton et al. [2011] and Caliendo and
Parro [2014] find numbers between 4 and 5.

Table 2: Estimates of Trade Elasticities

Homogeneous Heterogeneous

Min 8.85 2.03
Max 8.85 14.1
Mean 8.85 7.38

Adj R2 0.738 0.771
N.obs 21,942 21,942

Improved Fit (%) 4.36
F-stat 8

Note The column on the left-hand side presents the estimate of the constrained model, which assumes
that trade elasticities are constant across exporters. On the right-hand side are the estimates of the
unconstrained model. Standard errors are robust to heteroskedaticity. The F-test rejects the hypothesis
of equivalence between the two models at 1% significance level. 23% of the country pairs report zero
trade flows. I apply the transformation log(1 +Xji) in those cases. Results remain the same if zeros are
replaced with inputed trade flows from a traditional gravity equation instead.

Figure (7) starts to unveil the cause of that apparent discrepancy. The distribution of
trade elasticities is bi-modal with one peak around 4 and another peak around 10. Ac-
cording to these results, the export side of manufacturing trade is basically characterized
by two sets of countries: (i) low-elastic exporters; (ii) high-elastic exporters. This bi-
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modality resembles the results in Fieler [2011] and Lashkaripour [2015]. However, there
are two central differences between my methodology and theirs. First, these papers as-
sume that aggregate trade flows are composed by two broad categories of goods whose
trade elasticities differ because of technology or markup differences. In their framework,
cross-country variation in elasticities emerge because countries select into production of
different types of goods, e.g, raw materials vs manufactures. Second, the identification of
differences in elasticities in their gravity models depends fundamentally on the assump-
tion of symmetric trade costs. Under symmetry, a low volume of exports is automatically
attributed to higher trade elasticity instead of higher export costs.

Figure 7: Distribution of Trade Elasticities

Note Blue bars represent the density on unit intervals of elasticities. The red line is the kernel density
estimate. Sample size=160 countries

Figure (8) shows that elasticities covary systematically with output per worker. Low
elastic exporters tend to be advanced countries, whereas high elastic exporters tend to be
developing economies. In particular, OECD countries are overrepresented in the cluster
of points with elasticities between 4 and 6. This result reconciles my numbers with the
recent estimates in the gravity literature. One natural concern is that the relationship
between aggregate productivity and trade elasticity is being driven by cross-country
differences in industry composition within the manufacturing sector. I address this issue
in Appendix (A) and I find little evidence supporting this alternative explanation. With
values of {γi, βi}Ni=1 in hand, I use equation (22) to calculate the dispersion of TFPQ
{θi}Ni=1. In other words, I choose the dispersion of TFPQ such that the elasticities in
the model match the empirical elasticities.
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Figure 8: Trade Elasticity and Aggregate Productivity

Note Output per worker is measure in PPP exchange rates from PWT 8.0. Sample size=142 countries.

Trade Elasticities, Exporter Size Distribution, and Correlated Distortions

Before continuing with the calibration I investigate more closely the determinants of
the cross-country variation in trade elasticities. According to the theoretical model, the
elasticities estimated with aggregate data should reflect characteristics of the underlying
firm size distribution. In particular, the model predicts that: (i) countries with low trade
elasticities should have a distribution of exports more dispersed and more skewed toward
large firms; (ii) countries with higher correlated distortions tend to present higher trade
elasticities.

I test the first prediction by regressing moments of the empirical distribution of firm-
level exports from World Bank’s EDD on trade elasticities. The sales distributions
are available at three different levels of aggregation: origin, origin-destination, and
origin-destination-sector. Consistent with the theory, low-elastic origin countries tend
to present sales distributions that are both both more dispersed and more skewed to-
wards the largest exporting firms. Table (3) shows that a two-fold increase in the trade
elasticity is associated with a 53% lower dispersion in export sales and a 6.4 percentage
points smaller participation of top 1% exporters in total exports. Table (4) reveals that
these correlations persist at the origin-destination level. For instance, given a two-fold
increase in trade elasticity, the sales share of the top 1% firms in every destination is
expected to decrease by 6 percentage points. Finally, Table (5) presents regressions with
sector fixed effects. Even within sectors, lower trade elasticities are associated with more
dispersed and more skewed distributions of export sales.
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The results for other moments are less clear-cut. Higher elasticities are associated with
lower number of exporting firms in tables (3) and (4) but not in table (5). The coeffi-
cient for average sales also changes sign according to the level of aggregation. Finally,
although trade elasticities correlate negatively with the share of top 5% largest exporting
firms, the coefficient is not statistically significant.

Table 3: Trade Elasticity and Exporter Size Distribution: Origin Level

(1) (2) (3) (4) (5)
VARIABLES Number of Exporters Mean Sales Sales Dispersion Share of Top 1% Share of Top 5%

Trade Elasticity -2.352*** -0.582*** -0.566*** -0.0635*** -0.0129
(0.151) (0.0857) (0.0547) (0.0170) (0.00969)

Observations 472 472 472 472 472
R-squared 0.369 0.152 0.176 0.036 0.012

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note Coefficients from regressions of moments of export-sales distribution on the log of trade elasticities.
Moments are computed with data at the origin-year level. The sample includes only observations from
distributions calculated with at least 100 firms. Year fixed effects are included. Number of exporters is
log of exporting firms minus log of population. Mean sales is also in logs. Sales dispersion is calculated as
the log of the coefficient of variation of sales. Share of top x% is the share of total export sales controlled
by the x% largest exporting firms.

Table 4: Trade Elasticity and Exporter Size Distribution: Origin-Destination Level

(1) (2) (3) (4) (5)
VARIABLES Number of Exporters Mean Sales Sales Dispersion Share of Top 1% Share of Top 5%

Trade Elasticity -0.108** 0.384*** -0.243*** -0.0615*** -0.00280
(0.0550) (0.0380) (0.0204) (0.00733) (0.00596)

Observations 10,201 10,201 10,201 10,201 10,201
R-squared 0.376 0.510 0.174 0.134 0.162

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note Coefficients from regressions of moments of export-sales distribution on the log of trade elastic-
ities. Moments are computed with data at the origin-destination-year level. The sample includes only
observations from distributions with at least 100 firms. Year and importer fixed effects are included.
Additional controls include: log of geographic distance, indicator of shared border and indicator of com-
mon official language. Number of exporters is log of exporting firms minus log of population. Mean sales
is also in logs. Sales dispersion is calculated as the log of the coefficient of variation of sales. Share of
top x% is the share of total export sales controlled by the x% largest exporting firms.
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Table 5: Trade Elasticity and Exporter Size Distribution: Origin-Destination-Sector
Level

(1) (2) (3) (4) (5)
VARIABLES Number of Exporters Mean Sales Sales Dispersion Share of Top 1% Share of Top 5%

Trade Elasticity 0.937*** -0.394*** -0.117*** -0.0201*** -0.00328
(0.0342) (0.0488) (0.0156) (0.00663) (0.00558)

Observations 26,779 26,779 26,779 26,779 26,779
R-squared 0.583 0.609 0.359 0.269 0.412

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note Coefficients from regressions of moments of export-sales distribution on the log of trade elasticities.
Moments are computed with data at the origin-destination-sector-year level. The sample includes only
observations from distributions with at least 100 firms. Year, importer and sector fixed effects are
included. Additional controls include: log of geographic distance, indicator of shared border and indicator
of common official language. Number of exporters is log of exporting firms minus log of population. Mean
sales is also in logs. Sales dispersion is calculated as the log of the coefficient of variation of sales. Share
of top x% is the share of total export sales controlled by the x% largest exporting firms. Sectors are
defined as 97 2-digit sections of the Harmonized System (HS) 2002.

Figure (9) shows that the data are consistent with the model’s prediction about the
connection between correlated distortions and trade elasticity. Countries with steeper
distortion schedules, as revealed by the firm-level data, tend to present aggregate exports
that are more sensitive to trade costs. An increment of one standard deviation in the
distortion schedule increases the average trade elasticity by .44 standard deviation. Con-
trolling for variation in the dispersion of TFPQ observed in the establishment-level data
practically does not affect this relationship - the coefficient drops from .44 to .41.
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Figure 9: Trade Elasticity and Correlated Distortions

Note Horizontal axis measures correlated distortions from establishment-level data. Vertical axis mea-
sures trade elasticities from the nonlinear gravity equation. Sample size=70 countries.

4.3 Technology and Trade Costs

In this subsection I complete the calibration of the model. I add to the dataset de-
scribed above data on gross manufacturing production from UNIDO Industrial Statistics
Database, and data on entry costs and labor force from the World Bank’s Doing Business
Survey (WBDB) and from the World Bank’s Development Indicators (WBDI). The final
sample contains 77 countries that correspond to more than 90% of the world output and
trade.33 The basic idea of this part is to find a sequence {Ai, dji, fji}Ni=1 such that the
model’s trade shares ({sji})Ni=1) match the empirical ones.34

The first step is finding nominal wages ({wi}Ni=1) such that the empirical trade ma-
trix is a world balanced trade equilibrium. With nominal wages in hand, I only need a
value of α to calculate total spending of the tradable sector ({(1−α)Yi}Ni=1) and model-
consistent trade flows ({Xji}Ni,j=1). The parameter α is the share of the labor force
employed in the nontradable sector and a common choice in the literature is α = .7. I
then rewrite the gravity equation in the following form

Xji = Ti(Vj)
βiDji (33)

33The distortion schedule is not available for 20 countries, all developed economies and members of the
OECD. To calibrate the model I input their γi using the average distortion across the OECD countries
for which I have estimates. The fact that the trade elasticities among this group are very similar reassures
that this procedure is a good approximation.

34See the appendix for details about the construction of the empirical trade shares.
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where I have defined Vj ≡ Z
1

σ−1

j Pj and Dji ≡ d−βiji f

(
1− βi

σ−1

)
ji . Using the balanced trade

condition and normalizing Dii = 1 ∀i, one can find {Ti}Ni=1 and {Dji}Ni,j=1 that solve the

system of equations above.35 At this point, Ti is a just a convolution of known variables
and the unknown parameter Ai, which can then be found by a simple inversion. The
term Dji, however, depends on the trade elasticity and on two unknown parameters: dji
and fji.

I solve this indeterminacy by following the strategy in Di Giovanni and Levchenko [2012].
First, I assume that bilateral variable costs depend on tariffs, distance and an indica-
tor of shared border through an known function, which is parameterized such that the
elasticities of costs with respect to observed trade barriers match the intensive-margin
estimates in Helpman et al. [2008]. Finally, I scale this function such that the average
cost matches the estimate of variable trade costs in Anderson and Van Wincoop [2004].
Once dji is known, one can recover fji by inverting the Dji equation.

4.4 Model’s Fit

Having calibrated the model to match perfectly the empirical bilateral trade shares, trade
elasticities, and distortion schedules, I next study the model’s ability to predict untar-
geted moments. The model successfully replicates the distribution of PPP aggregate
output per worker, with a correlation in logs of 0.84. This goodness of fit is achieved
despite the assumption of no international differences of technologies in the nontrad-
able sector. Therefore, productivity differences in the tradable sector go a long way in
explaining international differences in aggregate output per worker. Figure (10) gives
a visual representation of the model’s performance along this dimension. In general,
the dots cluster around the 45-degree line. However, the model tends to overpredict
aggregate productivity in some developing countries (for example, China). Since the
parameters were chosen to match trade performance in manufactures, this discrepancy
might be due to the fact that in those countries a considerable share of employment is
in primary sectors with low labor productivity, like mining and agriculture.36 This force
contributes for the model to underpredict the international dispersion of productivity,
as evidenced in Table (6).

35See the appendix for a detailed derivation of this result.
36See Lagakos and Waugh [2013].
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Figure 10: Output per Worker: Model and Data

Note Output per worker is measure in PPP exchange rates from PWT 8.0. Both measures are relative
to the US. Year 2006. Sample size=77 countries.

Table 6: Output per Worker: Model and Data

Data Model

Mean 0.358 0.409
Coef.of Variation 0.852 0.822

Var(log) 1.42 1.04
p90/p10 21.1 12.9

Note Output per worker is measured relative to US. Sample size=77 countries

At the disaggregate level, the model correctly predicts the positive association between
average firm size in manufacturing and output per worker. Figure (11) displays this
relationship in the data and in the model. Firm size is measured as the average number
of persons engaged per establishment. The elasticity is .25 in the data and .15 in the
model. Moreover, variation in productivity predicts 25% of the variation in firm size in
the data and 20% in the model. For a sample of 39 countries, I have information on the
number of firms with positive exports sales in the period 2006-2009. In the data there
is a strong positive correlation between aggregate productivity and number of exporting
firms (net of population size), with a 10% rise in the former leading to a 10% increase
in the latter. The model delivers a very similar elasticity (.98).
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Figure 11: Output per Worker and Firm Size: Model and Data

Note Output per worker is measure in PPP exchange rates from PWT 8.0. Firm size is measured as
number of persons engaged from Bento and Restuccia [2016]. Sample size=61 countries.

Figure 12: Output per Worker and Export Participation: Model and Data

Note Output per worker is measure in PPP exchange rates from PWT 8.0. Export participation is
number of exporting firms net out of population size. Number of exporters is from World Bank’s EDD.
Sample size=39 countries.

Finally, I test the model’s ability to predict cross-country variation in the dispersion of
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establishment-level productivity. In the model, the parameter θi controls the dispersion
of TFPQ in country i. Since this parameter was chosen to match i’s trade elasticity βi,
we can use the correlation between dispersion of TFPQ in the model and in the data as
an out-of-sample test. Figure (13) shows that the model’s has a fair predictive power
on this dimension. An increase of one standard deviation of dispersion of TFPQ in the
model is associated with a change of .41 standard deviation in the data. Moreover, the
variation produced by the model captures 21% of the empirical variation. The model’s
performance is even stronger for the dispersion of TFPR. The theoretical variation ex-
plains 37% of the empirical one, and the slope of a regression of the standardized measure
of empirical dispersion on model’s dispersion is .57.

Figure 13: Dispersion of TFPQ and TFPR: Model and Data

Note Dispersion of TFPQ (TFPR) is the z-score of the standard deviation of the logarithm of TFPQ
(TFPR) net of the sectoral average. Sample size=58 countries.

5 Counterfactuals

Correlated Distortion, International Trade, and Aggregate Productivity

The first goal of this section is to quantify the trade channel of domestic distortions,
i.e, to evaluate by how much international trade influences the aggregate TFP losses
stemming from correlated distortions. I perform this measurement by endowing coun-
tries with the “US efficiency” (γUS = .09) and computing the new general equilibrium
in two scenarios: closed economy and costly international trade. The US benchmark is
a useful one because because part of the observed positive correlation between TFPQ
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and TFPR might be due to overhead or adjustment costs and not to policy or market
failures.37 Moreover, a positive correlation might be due to the fact that more produc-
tive firms charge higher markups as emphasized by Peters [2013]. Markup dispersion is
also a distortion, of course, but in this case a positive correlation does not mean that
more productive firms are facing larger constraints to growth, but that they are opti-
mally restricting their production instead. Therefore, my experiment assumes that the
difference γi − γUS exclusively reflects distortions to firm growth and not cross-country
differences in the domestic competitive environment.

I only include in this exercise countries that respect the following conditions: (i) have
observed - as opposed to inferred - distortion schedules, and (ii) satisfy the stability
condition (12) at γi = γUS . 46 out of 77 countries satisfy the two requirements.38 Each
counterfactual equilibrium is separately calculated for each of the 46 countries in order
to avoid that institutional improvements in one economy affect, through trade, welfare
elsewhere. Figure (14) presents the results.

Figure 14: Gain in Output per Worker: Closed vs Open Economy

Note Gain in aggregate output per worker from converging to the US distortion schedule. The horizontal
axis measures the gain in a closed economy. The vertical axis represents the gain when we allow for
trade. Sample size=46 countries.

37Bartelsman et al. [2013] and Asker et al. [2014] emphasize this point.
3820 OECD economies fail to satisfy the first condition. Given my focus on developing countries

and the fact that there is no considerable variation in distortion schedules within the group of OECD
countries with available micro data, this exclusion is not an important drawback. Countries that do
not attend the second condition are Bulgaria, Czech Republic, Indonesia, Malaysia, Namibia, Pakistan,
Thailand, Turkey, Uganda, Ukraine and Vietnam.
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In all countries considered, the trade channel significantly multiplies the aggregate gains
from converging to the US distortion schedule. The cross-country average gain is 27%
in the trade equilibrium but only 14% in the closed-economy case, corresponding to an
approximately two-fold amplification. A similar conclusion holds for the median impact
of distortions - 18% with trade and 7% without it. The average trade channel - defined
as the cross-country mean ratio between a country’s gains from reducing distortions with
and without trade - is 70%. The full effect of distortions on aggregate TFP is highly
heterogeneous across countries. At the high end of the gain spectrum are big emerging
countries like Brazil (30%), China (62%), Russia (83%) and India (114%), and transi-
tion economies like Slovenia (67%) and Croatia (50%), whereas relatively low-distorted
economies like Israel (4%), Chile (5%) and Spain (6%) comprise the low end of the spec-
trum - see Table (18).

It is informative to compare my estimates with some quantitative results from the litera-
ture. In the closed-economy case, I find productivity gains of 53% for China and 90% for
India. Hsieh and Klenow [2009] calculate gains between 30% and 50% in China and 40%
and 60% in India. While my numbers are greater than theirs, a priori it is not evident
that that must be the case. On the one hand, they consider the TFP effects from elim-
inating all idiosyncratic wedges, including both correlated and uncorrelated distortions,
while my analysis is restricted to the correlated case. On the other hand, my model
includes entry and selection mechanisms, while theirs only examines reallocation effects.

Closer to my closed-economy model is Bartelsman et al. [2013], who also quantify the
entry, selection and reallocation effects of correlated distortions. They calculate welfare
gains from converging to the “US efficiency” of 7% for the United Kingdom, 3% for
Germany, 4% for France, and 3% for Netherlands. In my framework the counterparts of
those estimates are: 8%, 5%, 7%, and 3%.39

Table (7) decomposes the full effect of correlated distortions into two channels: entry
(firm creation) and selection/reallocation. The rise in the creation of firms explains 25%
of the average effect in the closed-economy case, and only 13% in the trade equilibrium.
In addition to its relatively minor quantitative importance, the entry channel virtually
does not interact with international trade. The panel on the left-hand side of figure (15)
illustrates this point. In fact, trade slightly lessens the productivity gains from a larger
mass of domestic firms. Intuitively, in a open economy part of these gains is transferred
to foreigners through depreciation of terms of trade.

Superior firm selection and improved labor allocation among surviving firms explain
the bulk of the total gains. Moreover, as indicated in the right-hand-side panel of figure
(15), these two mechanisms totally account for the amplification effect due to trade - see
also Table (18).

39These countries are not included in my baseline exercise because their distortion schedules are based
on the average schedule of the OECD group with available micro data.
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Table 7: Average Gain in Output per Worker: Decomposition

Total Effect Entry Selection + Reallocation

Closed 14.4 3.57 10.9
Open 26.7 3.39 23.3

Note First column presents the cross-country average gain (%) from converging to the US distortion
schedule. Second and third columns decomposes this effect into the contributions of entry (firm creation)
and selection/reallocation channels.

Figure 15: Gain in Output per Worker: Decomposition

Note The left-hand side panel presents the gains in output per worker from the effect of correlated
distortions on the creation of firms. The right-hand side panel shows the gains from the selection and
reallocation channels from correlated distortions.

Figure (16) sheds lights on the micro-level impacts of converging to the US distortion
schedule. It analyzes the marginal firms that access domestic and export markets at
the distorted and at the undistorted equilibria. The blue diamonds represent the TFPQ
of marginal domestic firms, and the yellow circles are the cross-destination averages of
TFPQ of marginal exporting firms. The diamonds lie above the 45◦ degree line, which
represents an improvement in domestic selection. Intuitively, some low productive firms
exit the market at the new equilibrium, releasing labor to more productive producers.
At the same time, the circles locate below the 45◦ line, meaning that new firms start
exporting, thereby absorbing labor from less productive firms. Precisely for intensifying
theses processes of reallocation and selection, international trade amplifies the aggregate
gains from a reduction in correlated distortions.
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I close this subsection by using equation (24) to further decompose the trade chan-
nel into its two subcomponents: allocation effect and trade creation. While the former
reflects the growth in gains from trade caused by reducing distortions given the initial
level of trade openness, the latter represents the increase in gains from trade because the
economy starts trading more in proportion to its income. Table (19) presents the results.
On average, the allocation effect corresponds to 63% of the trade channel. Trade cre-
ation corresponds to the remaining 37%, but its importance strongly decreases in initial
trade openness.

Figure 16: US schedule equilibrium: Harder to Survive, Easier to Export

Note The horizontal axis represents the threshold productivity in the factual equilibrium. The vertical
axis is the threshold productivity in the counterfactual equilibrium with the US distortion schedule.
Export selection measures the simple average of threshold productivities across destinations.

Correlated Distortions, Trade and Cross-Country Income Differences

What is the contribution of correlated distortions to cross-country differences in output
per worker? How does it interact with international trade? To answer these questions
I compute the world equilibrium in which all countries have converged to the US dis-
tortion schedule. I perform this exercise both in the baseline scenario, where countries
are allowed to trade at the calibrated trade costs, and in the autarky case, in which the
world is formed by a set of isolated economies.40 The difference between this exercise
and the one carried out in the last section is that now any country can benefit from
institutional improvements elsewhere through international trade linkages.

Table (8) presents the results. First, a move from the observed trade equilibrium to

40I include in these computations all the 77 economies. I do not change the distortion schedules
of countries that do not satisfy the regularity condition at the US schedule - this set comprises Bul-
garia Czech Republic, Indonesia, Malaysia, Namibia, Pakistan, Thailand, Turkey, Uganda, Ukraine and
Vietnam.
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a world without trade would leave the international dispersion of productivity virtually
unchanged - the variance of log of output per worker goes from 1.04 to 1.02. Second, the
convergence in schedules does little to reduce the international productivity differences
when the economies are closed to international trade. In this case, the 90/10 percentile
ratio decreases by only 2% and the variance of log of output per worker actually in-
creases by almost 5%. On the other hand, once we allow for international trade, the
reduction in international productivity differences reaches approximately 50%. There-
fore, the convergence in schedules benefits poor countries relatively more mainly because
it helps them reap larger unrealized gains from trade.

Table 8: Distortions, Trade, and International Income Distribution

Mean Var(log) p90/p10

Baseline-Trade 4.3 1.04 12.9
Counterfactual-Trade 6.63 0.526 6.7

Change (%) 54.3 -49.3 -47.9
Baseline-Closed 4.09 1.02 12.7

Counterfactual-Closed 4.51 1.07 12.4
Change (%) 10.3 4.76 -2.27

Note First row presents the moments of the distribution of output per worker in the calibrated model.
Second row shows moments of the distribution when all countries have converged to the US distortion
schedule. The fourth row shows the moments of the productivity distribution in a world economy
without trade and with the baseline distortion schedules. Finally, the fifth row shows the moments of
this distribution when countries have converged to the US distortion schedule. The sample includes all
77 countries.

To put these magnitudes in perspective, I compute the effect of eliminating bilateral
trade frictions on the international productivity distribution. Following Waugh [2010],
I define bilateral trade friction as the difference between the calibrated bilateral cost
for a given pair of countries and the minimum calibrated trade cost of the pair. The
idea is that any cost above the minimum reflects trade barriers that are not geographic
and, therefore, can be eliminated by trade liberalization policies. According to table
(9), eliminating this asymmetry in bilateral trade costs reduces income dispersion by
34%. Therefore, my results suggest that the convergence in domestic institutions is
quantitatively more important to reduce the international gaps in labor productivity
than the convergence in trade policies.
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Table 9: Distortions, Bilateral Trade Barriers, and International Income Distribution

Mean Var(log) p90/p10

Baseline-Trade 4.3 1.04 12.9
Counterfactual-Trade 6.63 0.526 6.7

Change (%) 54.3 -49.3 -47.9
Symmetric Trade Costs 4.95 0.684 8.44

Change (%) 15.1 -34.1 -34.4

Note First row presents the moments of the distribution of output per worker in the calibrated model.
Second row shows moments of the distribution when all countries have converged to the US distortion
schedule. The fourth row shows the moments of the productivity distribution in a world economy with
symmetric bilateral trade costs. Symmetric trade costs: f̂ji = min{fji, fij} and ĉji = min{cji, cij}.
The sample includes all 77 countries.

6 Conclusion

Recent literature has highlighted that resource allocation across firms can have a sig-
nificant impact on aggregate productivity. In this paper, I have combined two strands
of this literature by analyzing the joint effect of domestic distortions to firm size and
international trade barriers on aggregate outcomes. I found that the impact of a partic-
ular type of misallocation - specifically misallocation that harms large establishments -
is greatly magnified when there is endogenous firm selection into production and export
markets. I also found that the cross-country variation in this kind of distortion can con-
tribute to explaining some stylized facts about the differences in export behavior across
economies. In particular, correlated distortions can rationalize the thin export flows from
developing economies to more distant and smaller markets, asymmetric trade patterns,
and the negative correlation between trade openness and development. Finally, I found
that the interaction between correlated distortions and international trade is potentially
important to explaining cross-country differences in output per worker.

On the methodological side, this paper has meaningfully introduced endogenous firm
selection into a quantitative multicountry general equilibrium model of international
trade. As highlighted by Arkolakis et al. [2012], gravity models with heterogeneous
firms and invariant Pareto distribution deliver the same aggregate predictions as models
without firm heterogeneity. I show that by assuming cross-country variation in the firm
size distribution, the macro predictions of models with firm heterogeneity are no longer
equivalent to those from aggregative models.

My results require many caveats. First, I have recovered establishment-level TFPQ
using the full structure of the model. The development of datasets that decompose
establishment revenues into quantity and prices can be useful for performing a more
robust estimation of physical productivity. Second, for tractability reasons, my analy-
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sis is restricted to a one-sector model. It would be interesting to study the connection
between domestic distortions and international trade in richer environments - i.e, multi-
sectoral models with multiple input-output linkages. Finally, I work with idiosyncratic
distortions that are abstract and not tightly related to any policy or market imperfec-
tion. A natural topic for future research is examining the joint consequences of specific
reforms (like liberalization of labor and financial markets, or reforms like privatization
and delicensing) to aggregate productivity and export performance.
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A Mathematical Appendix

A.1 Solving the Model

To compute the general equilibrium, I follow the strategy proposed by Allen et al. [2015]
and break up the system into three more manageable blocks. The first block consists
of solving for the mass of entry and the aggregate net revenues in each country given
vectors of prices and wages. The second block takes the vector of wages and the solution
from the first block as given and calculates prices. Due to the high non-linearity of the
price system, the usual iterative fixed-point procedure is unable to find the solution. I
overcome this problem by applying a bisection algorithm to this system. The third block
finds the set of wages that equalizes exports and imports in every country. The frame-
work developed here can be easily adapted to analyze other trade questions in which
cross-country heterogeneity is salient. A few examples are (i) the role of multinational
or superstar firms in shaping aggregate trade flows and (ii) the impact on trade flows of
non-neutral technological change.

Entry and Revenues
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Defining aggregate after-tax revenues as Si, one can show that:

Si =

N∑
j=1

κibiθiA
θi
i

(χi + γi)

(
mwidji
bi

)1−σ
ZjP

σ−1
j (ω∗ji)

−χi−γi (34)

Using equation (34), one can express the free-entry condition as:

Πi =
Si
σ
− Si(θi − εi)

σθi
− κiwifei = 0 (35)

Assuming balanced trade, one can show that the labor market condition is:

Si
m

+
Si(θi − εi)

σθi
= (1− α)Yi − κiwifei (36)

By combining equations (35) and (36) one can show that

Si = (1− α)Yi = (1− α)(wiLi +Ri) (37)

Using the balanced trade condition and equation (37) we get:

Ri = (1− α)Yi − (1− α)Yi = 0 (38)

Therefore, (1− α)Yi = (1− α)wiLi and the mass of entrant becomes

κi =
(σ − 1− σγi)

σθifei
(1− α)Li (39)

Price Index

Given the values of {κi, Ri}Ni=1 from the first step, the next step finds N prices that
solve the following system of N independent equations for any strictly positive vector of
nominal wages:

P 1−σ
j =

N∑
i=1

TiZ
χi
εi
j P

(σ−1)
χi
εi

j d
(1−σ)

(
1+

χi
εi

)
ji f

−χi
εi

ji (40)

Naturally, the price level in one country depends on the number of firms that enter the
market, which itself is a function of prices. However, this latter relationship is controlled
by the shape of the exporter’s firm size distribution. Since there are differences in the
distribution of firm size among exporters, the price equation becomes highly non-linear.
It turns out that the following proof of existence and uniqueness of the price vector
embeds a computational strategy to solve the problem.

Proposition 1. If conditions (10) and (12) hold, the price equation has a unique solution
for any strictly positive vector of nominal wages which can be computed by a bisection
algorithm.
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Proof. Define the function Φ(Pj) ≡ P 1−σ
j −

∑N
i=1 TiZ

χi
εi
j P

(σ−1)
χi
εi

j d
(1−σ)

(
χi
εi

+1
)

ji f
−χi
εi

ji . Φ(.)
is defined over the domain (0,∞). Since: (i) Φ′(Pj) < 0; (ii) lim

Pj→0
Φ(Pj) = ∞; (iii)

lim
Pj→∞

Φ(Pj) < 0, and the function Φ(.) is continuous, there exists a unique P ∗ such that

Φ(P ∗) = 0.

Balanced Trade and Wages

Finally, defining sji =
Xji
Zj

as the share of country j’s expenditures on tradable goods that

is devoted to i’s goods, the following balanced trade condition pins down wages:

wiLi =
N∑
j=1

sjiwjLj (41)

I find the equilibrium vector of wages {wi}Ni=1 by applying the algorithm of Alvarez and
Lucas [2007].

A.2 Existence and Uniqueness

In this subsection, I proof the existence and uniqueness of the general equilibrium defined
earlier. I start by defining the excess aggregate demand Zi(w) as

Zi(w) =
1

wi

 N∑
j=1

(sjiwjLj)− wiLi

 (42)

which is defined ∀ w ∈ RN
++. Defining Z(w) = (Z1(w), ..., ZN (w)), the next proposition

demonstrates the existence of an equilibrium.

Proposition 2. If conditions (10) and (12) hold, then there is a w ∈ RN
++ such that

Z(w) = 0.

Proof. I verify that Z(w) has the following properties:
(i) Z(w) is continuous
(ii) Z(w) is homogeneous of degree zero
(iii) wZ(w)=0 ∀ w ∈ RN

++ (Walras’ Law)
(iv) for k = maxjLj > 0, Zi(w) > −k for all i = 1, ..., n and ∀ w ∈ RN

++ (v) if wm → w0,
where w0 6= 0 and w0

i = 0 for some i, then

maxjZj(w
m)→∞ (43)
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Then the result will follow from Proposition 17.C.1 of Mas-Colell et al. [1995].
(i) Given prices, sji(w) is a continuous function of continuous function of w and, there-
fore, continuous. Defining ∀ j Pj(w) as the implicit function derived from the solution

of equation 40, it is straightforward to show that
∂Pj(w)
∂wi

exists ∀ i. Therefore, ∀ j Pj(w)
is also continuous is w. These two results imply that Z(w) is continuous is w.
(ii) I first show that Pj(w) is homogeneous of degree one in w. For notational convenience

define Dji ≡ d−βiji f

(
1− βi

σ−1

)
ji and T̃i(w) ≡ T̄i(w)wσ−1

i

(
bσi m

1−σ

σ
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by the implicit solution of:
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For any t > 0, Pj(tw) is given by the implicit solution of:

0 = 1−
N∑
i=1

T̃i(w)w
1−σ−σ χi

εi
i w

χi
εi
j L

χi
εi
j (t−1Pj(tw))βiDji (45)

Since Pj(w) and Pj(tw) are unique, we can combine the two equations above to get
Pj(tw) = tPj(w). Using this result, one can show that:

sji(tw) =
t1−σTi(w)(Zj(w)Pj(w)σ−1)

(
βi
σ−1
−1

)
Dji

t1−σ
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σ−1
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)
Djk

= sji(w) (46)

Thus, sji(w) and, consequentially, Z(w), are homogeneous of degree 0 in w.
(iii) For all w ∈ RN

++ one can write wZ(w) as

N∑
i=1

wiZi(w) =
∑
j

wjLj

N∑
i=1

sji −
N∑
i=1

wiLi (47)

Since ∀ j
∑N

i=1 sji − 1, we have: wZ(w) =
∑

j wjLj −
∑

iwiLi = 0.

(iv) For all w ∈ RN
++, Zi(w) = 1

wi

∑N
j=1 sjiwjLj − Li > −Li > −K.

(iv) Assume that w0
h = 0 and w0

k = c > 0. The sequence {smkh
wmk
wmh
} converges to ∞

because it is a product of a bounded sequence and a sequence that converges to ∞.

Therefore, {
∑N

j=1 s
m
jh

wmj
wmh
}} → ∞ and, consequentially, {maxk{

∑N
j=1 s

m
jk

wmj
wmk
}} → ∞.

Having proved the existence, the next step is to show that the solution is unique (up to
scale).
Proposition 3. If conditions (10) and (12) hold, then there is exactly one w ∈ RN

++

such that Z(w) = 0 and
∑N

i=1wi = 1.
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Proof. To establish this result it is sufficient to demonstrate that the function Z(w)
satisfies the gross substitution property, i.e, that ∀ i, k with i 6= k and ∀ w ∈ RN

++,
∂Zi(w)
∂wk

> 0. Then the result will follow from Proposition 17.F.3 of Mas-Colell et al.

[1995]. I start by determining
dPj(w)
dwh

for j 6= h. Differentiating equation 40 with respect
to Pj and wh we get:

dPj(w)

dwh
=

∂Th
∂wh

Z
χh
εh
j Pj(w)

(σ−1)
χh
εh Djh(

(1− σ)Pj(w)−σ −
∑N

i=1 TiZ
χi
εi
j Dji(σ − 1)χiεi Pj(w)

(σ−1)
χi
εi
−1
) (48)

Since ∂Th
∂wh

< 0,
dPj(w)
dwh

> 0 ∀j 6= h. For j = h, the derivative is

dPj(w)

dwj
=

(σ − 1)
(

1 +
χj
εj

)
w−1
j TjZ

χj
εj

j Pj(w)
(σ−1)

χj
εj Djj

(σ − 1)

(
Pj(w)−σ +

∑N
i=1 TiZ

χi
εi
j Pj(w)

(
(σ−1)

χi
εi
−1

)
Dji

χi
εi

) > 0 (49)

The next step is to sign the derivative
∂sji
∂wh

for all cases with h 6= i. Let’s first consider
the case where h 6= j. We have:

∂sji
∂wh

=

(
N∑
k=1

Tk(ZjPj(w)σ−1)

(
βk
σ−1
−1

)
Djk

)−1

(
Ti(Zj)

(
βi
σ−1
−1

)
(βi + 1− σ)Pj(w)βi−σ

dPj(w)

dwh
Dji

)

−
(
Ti(ZjPj(w)σ−1)

(
βi
σ−1
−1

)
Dji

)( N∑
k=1

Tk(ZjPj(w)σ−1)

(
βk
σ−1
−1

)
Djk

)−2

(
Z

(
βh
σ−1
−1

)
j DjhTh

)
(

(Pj(w)σ−1)

(
βh
σ−1
−1

)(
1− σ − σ

(
χh
εh

))
w−1
h + (βh + 1− σ)Pj(w)βh−σ

dPj(w)

dwh

)
Since βi + 1−σ > 0 ∀i, if the last line of the expression above is negative, then

∂sji
∂wh

> 0.

Call the term in the last line Qjih. Using the equation for
dPj(w)
dwh

, we can show that:

Qjh = Pj(w)βh−σ−1

(
1− σ − σχh

εh

)
w−1
n

1−
ThZ

χh
εh
j Pj(w)

(σ−1)
χh
εh Djh

P 1−σ
j +

∑N
k=1 TkZ

χk
εk
j Pj(w)

(σ−1)
χk
εk Djk


(50)
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Using the expression above it is straightforward to verify that Qjh < 0. Therefore,
∂sji
∂wh

> 0 for h 6= j. The next step is to sign the term
∂sji
∂wj

.

∂sji
∂wj

=

(
N∑
k=1

Tk(ZjPj(w)σ−1)

(
βk
σ−1
−1

)
Djk

)−1

(
TiDji

(
βi

σ − 1
− 1

)
(ZjPj(w)σ−1)

(
βi
σ−1
−2

)(
LjPj(w)σ−1 + Zj(σ − 1)Pj(w)σ−2dPj(w)

dwj

))

−
(
Ti(ZjPj(w)σ−1)

(
βi
σ−1
−1

)
Dji

)( N∑
k=1

Tk(ZjPj(w)σ−1)

(
βk
σ−1
−1

)
Djk

)−2

(
∂Tj
∂wj

(ZjPj(w)σ−1)

(
βj
σ−1
−1

)
Djj

+Tj

(
βj

σ − 1
− 1

)
(ZjPj(w)σ−2)

(
βj
σ−1
−1

)
Djj

(
LjPj(w)σ−1 + Zj(σ − 1)Pj(w)σ−2dPj(w)

dwj

)
)

As before, if the last term of the equation above is negative then,
∂sji
∂wj

> 0. Call this

term Vj . Using the expression for
dPj(w)
dwj

, one can show that:

Vj = Tj(ZjP
σ−1
j )

(
βj
σ−1
−1

)
Djjw

−1
j βj

 Tj(ZjPj(w)σ−1)
χj
εj
χj
εj
Djj

P 1−σ
j +

∑N
k=1 Tk(ZjPj(w)σ−1)

χk
εk

χk
εk
Djk

− 1


(51)

Since Vj < 0 we have
∂sji
∂wj

> 0. Finally, for i 6= k we have:

∂Zi(w)

∂wk
=
∑
j 6=i,k

(
∂sji
∂wk

wj
wi
Lj

)
+
∂ski
∂wk

wk
wi
Lk + ski

Lk
wi

(52)

Thus ∂Zi(w)
∂wk

> 0 ∀i 6= k and ∀w ∈ RN
++.

A.3 A useful representation of Output per Worker

Taking labor as the numeraire good, output per worker in economy i is:

Ci = Pα−1
i αα(1− α)(1−α) (53)

Using the expression of the domestic trade share, this expression becomes:

Ci = αα(1− α)(1−α)(sii)
− (1−α)

βi (Ti((1− α)Li)
βi+1−σ
σ−1 )

1−α
βi (54)

Manipulating the expression above one can arrive at equation (23).
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A.4 Details of Calibration

Rewrite the gravity equation as

Xji = Ti(Vj)
βiDji (55)

where I have defined Vj ≡ Z
1

σ−1

j Pj and Dji ≡ d−βiji f

(
1− βi

σ−1

)
ji . The balanced trade

condition implies that i’s total exports equals i’s imports:

Zi =
N∑
j=1

Xji = Ti

N∑
j=1

(Vj)
βiDji (56)

Solving the equation above for Ti and plugging the solution into the gravity equation we
have:

Xji =
Zi∑N

j=1(Vj)βiDji

(V βi
j Dji) (57)

Defining D̂ji = V βi
j Dji, I rewrite the equations above in the form of the following system

of equations to solve for D̂i ≡ (D̂11, ..., D̂N1):

D̂i = EiD̂i (58)

where I have defined the matrix Ei as:

Ei =


X1i
Zi

· · · X1i
Zi

X2i
Zi

· · · X2i
Zi

...
. . .

...
XNi
Zi

· · · XNi
Zi

 (59)

Note that we have all the elements to calculate {Ei}Ni=1. Thus, D̂i is just the eigenvector
associated with eigenvalue one of matrix Ei’s and Ti is calculated using equation (56).
Finally, given (Li, f

e
i , γi, θi), Ai is recovered by inverting the expression of Ti.

Assuming Djj = 1 one can show that:

Dji =

(
Xji

Ti

)(
Tj
Xjj

) βi
βj

(60)
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Note that all the elements on right-hand side are known, so we can compute Dji. How-
ever, Dji is a composite of the structural variable trade costs and fixed trade costs. With-
out additional data on firms’ average sales there is no theory-based way to separately
identify those two types of costs. I follow the strategy of Di Giovanni and Levchenko
[2012] and assume a functional form for variable trade costs. I then recover fixed trade
costs as residuals. Consider the following specification for variable trade costs:

dji = (1 + tji) + α1(distji)
α2exp(α3borderji) (61)

where tji is the ad-valorem import tariff, and distji is the geographic distance between
j and i, and borderji is an indicator of shared border. For α2 and α3 I use the estimates
estimates from the intensive-margin gravity equations in Helpman et al. [2008]. I then
calibrate α1 such that the average bilateral variable trade costs match the estimate in
Anderson and Van Wincoop [2004]. Finally I recover bilateral fixed trade costs from the
expression for Dji.

B Monte Carlo Experiment

In this section I analyze the performance of the nonlinear gravity estimator in a Monte
Carlo experiment. Spearot [2016] studies numerically the conditions under which this
gravity estimator is identified. My goal here is a bit different. Assuming that the identifi-
cation conditions hold - sufficient variation in bilateral variable trade costs - I investigate
whether my numerical algorithm is able to recover the original parameters with preci-
sion. My first step is to project the matrix of calibrated bilateral fixed costs {fji}Ni,j=1

onto bilateral geographic distance, exporter fixed effects and importer fixed effects. I
then feed these projection into the model and calculate the equilibrium trade flows.

My second step is to simulate a sequence of 500 observed trade matrices. Each ma-
trix is the sum of the equilibrium trade flow calculated above and a matrix of random
shocks, whose variance is calibrated such that the average ratio between the variation
in residuals and variation in observed flows matches the empirical one. The final step is
to estimate the following nonlinear gravity equation with the simulated data

X̃ji = Πi + ξj + βiζj − βilog(cji) + z′jiδi + εji (62)

where {cji}Ni,j=1 represents the calibrated variable trade costs. I compare the performance
of the nonlinear estimator with two alternative estimators: the standard log-linear grav-
ity estimator advocated by of Arkolakis et al. [2012], and the naive linear estimator,
which interacts cost shifters with exporter fixed effects but does not taken into account
the nonlinear term. Figure 17 displays the results for trade elasticities. The nonlinear
gravity estimator presents great performance, with the average elasticity across simula-
tion very close to the original parameter value. On the other hand, the naive estimator
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performs poorly, delivering negative average elasticities for a considerable amount of ex-
porters. Finally, the log-linear gravity estimator delivers a trade elasticity of 4.75, which
is pretty close to median structural trade elasticity (see table 10).

Figure 17: Nonlinear Gravity Estimator: Monte Carlo Experiment

Note Vertical axis measures the average trade elasticity across 500 simulations. Naive gravity refers to
the gravity estimators in which cost-shifters interact with exporter fixed effects but the nonlinear term
is not taken into account. Log-linear gravity represents the standard gravity estimator advocated by
Arkolakis et al. [2012].

Table 10: Nonlinear Gravity Estimator: Monte Carlo Experiment

Min Max Mean Median S.e Corr.

Original Beta 2.46 13.3 6.13 4.77 2.77 1
Nonlinear Gravity 1.08 16 6.15 4.3 3.81 1

Naive Gravity -10.1 54.1 4.7 1.17 11.4 0.701
Log-Linear Gravity 4.75 4.75 4.75 4.75 7.15e-15 0

Note Estimates are the average across 500 simulations. Last column displays the correlation between
the row variable and the original structural trade elasticities.

C Data Construction

TBD
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D Additional Results

Distortion Schedules Under Different Sample Definitions

In the benchmark analysis, I estimated the distortion schedules using establishment-level
data comprised by firms in the manufacturing and service sectors that directly export
less than 5% of their total sales, with manufactures composing the bulk of the sample.
Since fixed export costs are included in establishment expenditure, one potential concern
is that the inclusion of exporters in the sample might introduce an upward bias into the
estimation of schedules. In other words, larger firms would present higher TFPR in part
because they are able to dilute the export fixed costs in larger sales volumes. I show
whether this is the case by studying the correlation between the benchmark distortion
schedules and the schedules estimated with alternative samples.

In sample 1, I eliminate all firms that report positive export sales. In sample 2, I
eliminate all firms from the service sector. Finally, sample 3 comprises only purely do-
mestic establishments in the manufacturing sector. Table (11) presents the results. The
coefficients are all above .92, revealing that the schedules barely change when we work
with alternative samples.

Table 11: Distortion Schedules Under Different Sample Definitions

Variables Full-sample Gamma Sample-1 Gamma Sample-2 Gamma Sample-3 Gamma

Full-sample Gamma 1.000
Sample-1 Gamma 0.922 1.000
Sample-2 Gamma 0.997 0.921 1.000
Sample-3 Gamma 0.923 0.990 0.921 1.000

Note Correlation table between distortion schedules estimated under different sample definitions.

Benchmark Trade Elasticity and “Comparative Advantage” Trade Elasticity

One potential explanation for the negative correlation between trade elasticity and
development is that rich countries have comparative advantage in low-elastic sector,
whereas developing economies specialize in high-elastic industries Aggregative models of
interindustry trade naturally generate this pattern of specialization because high wages
in rich countries is a relatively more important cost disadvantage in sectors in which
trade flows are very sensitive to trade costs - see Fieler [2011] and Lashkaripour [2015].

To test this hypothesis, I first compute for each country i its ”comparative advantage
trade elasticity” (CATE). This index is a weighted average of sectoral trade elasticities,
with weights given by the sector’s participation in total exports. Therefore, countries
specialized in high-elastic sectors would present higher aggregate trade elasticities. I use
the sectoral trade elasticities from Caliendo and Parro [2014] and calculate the weights
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with sectoral trade data for the year 2006. I consider 18 manufacturing sectors and 160
countries.

I then compute the correlation between CATE and the nonlinear trade elasticity from
this paper. Table (12) presents the results. CATE’s 1, 2 and 3 are weighted averages,
whereas CATE’s 4, 5 and 6 are geometric averages. The three different CATE’s within
each of these two categories are based on trade elasticities that were calculated according
to different sample definitions in Caliendo and Parro [2014]. The correlation between
the nonlinear elasticity and CATE is very low, suggesting that sectoral composition is
unlikely to be the main driver of the relationship between aggregate trade elasticities and
development. These results are consistent with evidence in Spearot [2016], according to
which within-sector variation is the main driver of the cross-country differences in trade
elasticities.

Table 12: Benchmark Trade Elasticity and ”Comparative Advantage” Trade Elasticity

Variables Nonlinear Beta CATE 1 CATE 2 CATE 3 CATE 4 CATE 5 CATE 6

Nonlinear Beta 1.000
CATE 1 0.070 1.000
CATE 2 0.088 0.998 1.000
CATE 3 0.101 0.997 0.995 1.000
CATE 4 0.084 0.954 0.953 0.944 1.000
CATE 5 0.116 0.937 0.942 0.928 0.994 1.000
CATE 6 0.141 0.937 0.936 0.937 0.988 0.986 1.000

Note Correlation table between the benchmark trade elasticity and the elasticities based on the sectoral
composition of the origin country. Sample size = 160 countries.

Trade Elasticities and Asymmetric Trade Costs

The goal of this section is to illustrate the relationship between correlated distortions
and asymmetric trade costs. I basically show that the export fixed effect proposed in
Waugh [2010] strongly correlated to trade elasticities and correlated distortions. In this
sense, cross-country differences in distortions to firm size offer a plausible microfounda-
tion for the trade asymmetries identified by the recent gravity literature. One can write
aggregative trade models as:

log

(
sij
sii

)
= Sj − Si − θlog(cij) (63)

where θ is the trade elasticity and cij represents bilateral trade costs between j and i.
The structural interpretation of the term S varies across models. The asymmetry in
trade costs is modeled as follows:

log(cij) = exj + β′dij + εij (64)

where dij is a vector of (symmetric) geographic variables and exj represents the exporter
fixed effect. By combining equations (63) and (64) one can estimate êxj . Through the
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lens of the model, a higher êxj implies that country j faces higher costs to export its
good that its geography would predict. Table (13) presents the coefficients of regressions
of êxj on trade elasticities and its components. Variation in trade elasticities captures
41% of the variation in export costs, and a one standard deviation increase in the former
lead to a .64 standard deviation rise in the latter. Importantly, this correlation is mainly
driven by the positive association between distortion schedules and exports costs. A
one standard deviation increase in the distortion schedule increases export costs by .42
standard deviation. Finally, I do not find a significant correlation between export costs
and dispersion of TFPQ, as measured by the shape parameter of the Pareto distribution
of micro technologies.

Table 13: Correlation with Waugh’s Trade Costs

(1) (2) (3)
VARIABLES Export Cost Export Cost Export Cost

Trade Elasticity (Beta) 0.644***
(0.116)

Distortion Schedule (Gamma) 0.422***
(0.117)

Pareto Shape (Theta) 0.138
(0.0971)

Observations 77 77 77
R-squared 0.415 0.178 0.019

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note All variables are in z-scores. Export cost refers to the exporter fixed effect of Waugh [2010] gravity
estimator.

An Alternative Model: the Theta Model

The goal of this section is to investigate the following question: is a model without
micro distortions consistent with the data? In many dimensions, the empirical content
of the model developed above is similar to a framework in which θi = 0 ∀i and all the
cross-country variation in βi is due to differences in θi. However, this last model, which
I refer to as theta model, is unable to reconcile two salient features of the data: (i)
systematic negative relationship between dispersion of TFPR and development, and (ii)
negative correlation between development and trade elasticity.

Figure (18) presents the first relationship. The within-sector dispersion of TFPR signif-
icantly decreases with development. Since the dispersion of TFPR in the theta model is
inversely proportional to the trade elasticity (βi = θi), that negative correlation would
imply that trade elasticities should be lower, and not higher, in developing economies.
Therefore, the theta model is not flexible enough to deliver simultaneously high disper-
sion of TFPQ and TFPR at the micro level and high trade elasticities at the macro level.

62



As a result, the theta model performs poorly at predicting the cross-country variation
in TFPQ, as evidenced in figure (19).

Figure 18: Dispersion of TFPR and Output per Worker

Note Dispersion of TFPR is measured as the standard deviation of the log of establishment revenue
productivity net of the sectoral average. Sample size = 58 countries.

Figure 19: Dispersion of TFPQ in the Theta Model

Note Dispersion of TFPQ in the model is calculated by assuming that βi = θi ∀i. Sample size = 58
countries.
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E Additional Tables

Table 14: Calibration Table

Parameter Value Source/Target

σ 3 EKK (2011), HK (2014)
α .7 Labor in Services
cji [1, 3.4] Tariffs, Geography
fji [.17, 1.1e+ 33] Trade Shares, World Equilibrium
Ai [1.9e− 05, 29.8] Trade Shares, World Equilibrium
γi [.09, .65] TFPR,TFPQ elasticity
θi [.84, 6.2] Structural Gravity
fei [.002, 4.8] WB Doing Business Survey
Li [1.7e+ 5, 7.6e+ 8] WBDI

Note I use the OECD average γi for the following countries: Austria, Australia, Belgium, Canada,
Switzerland, Germany, Denmark, Finland, France, Great Britain, Greece, Hungary, Iceland, Italy, Japan,
South Korea, Netherlands, Norway, New Zealand and Portugal. US γi comes from Hsieh and Klenow
[2014].
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Table 15: List of Parameters - Structural Model

Country Labor Force (mil) Beta Theta Gamma Entry Cost (% GDP/capita) Technology Level

ARG 14.53892 3.9909 2.499315 .2991337 .124 .6835
AUS 10.38522 3.5309 2.674972 .1992222 .02 1.7066
AUT 3.955203 3.5547 2.691659 .1992222 .061 4.9699
AZE 4.17627 10.292 4.959983 .3693044 .168 .016121
BDI 3.672112 9.6659 2.475569 .5326625 2.402 .000019
BEL 4.350843 4.4156 3.295294 .1992222 .111 14.324
BGD 46.27633 5.8238 2.641756 .4113453 .639 .025197
BGR 3.760754 3.9724 1.501323 .4983417 .104 .15041
BIH .7244086 7.0157 3.88847 .3283681 .473 .41456
BLR 4.407566 7.783 3.084666 .4401456 .186 .12333
BOL 3.467567 10.648 3.143014 .5012681 1.844 .015162
BRA 91.50082 3.5624 2.220664 .3088995 .131 .56718
BWA .9468527 13.3 2.281056 .5814746 .104 .030445
CAN 16.45672 4.7685 3.542735 .1992222 .006 1.4496
CHE 4.326287 4.5036 3.356997 .1992222 .086 11.265
CHL 6.91862 6.4896 4.190605 .2632116 .121 3.6068
CHN 761.125 4.4832 1.962923 .4402384 .178 .94263
COL 16.71268 5.5845 3.2264 .3196665 .28 .060186
CZE 4.992159 2.4619 1.142288 .4900428 .1 .91286
DEU 39.15673 4.6424 3.454318 .1992222 .059 13.641
DNK 2.820845 4.1569 3.113902 .1992222 .002 1.4958
ECU 5.235617 5.9557 3.393898 .3229074 .516 .046127
ESP 19.91743 3.8413 2.994701 .1777841 .168 3.458
ETH 35.04184 10.399 2.588883 .5349945 4.839 .0000555
FIN 2.449276 3.5976 2.72174 .1992222 .011 7.1289
FRA 26.58251 4.6302 3.445764 .1992222 .013 4.9101
GBR 28.8867 4.2789 3.199444 .1992222 .01 1.7488
GHA 9.572909 7.7954 3.274362 .4227995 .805 .0023117
GRC 4.974128 4.1852 3.133745 .1992222 .327 .43708
HRV 1.542493 3.9639 2.162359 .3642532 .163 .60923
HUN 4.199713 4.6091 3.430969 .1992222 .404 4.1347
IDN 95.85796 3.6596 .9301664 .6079729 1.367 .13422
IND 449.9748 4.0936 1.841719 .438075 .534 .051341
ISL .1705188 7.063 5.151563 .1992222 .03 4.4134
ISR 2.786293 9.6432 6.206225 .2552563 .055 2.8556
ITA 24.78156 4.2483 3.177989 .1992222 .221 11.086
JOR 1.375569 4.476 2.242308 .3909156 1.041 .24971
JPN 63.5633 4.8412 3.59371 .1992222 .107 29.805
KAZ 7.118496 12.905 2.255122 .5801377 .111 .13108
KEN 13.74189 5.8858 2.562143 .4245477 .546 .0021388
KGZ 2.091112 11.413 3.402539 .4969423 .125 .0055557
KOR 22.73909 3.3626 2.556965 .1992222 .184 22.567
LBN 1.349003 3.4138 2.13076 .3113646 1.297 .022196
LKA 6.814769 4.7328 1.998691 .4482734 .593 .24005
MDG 8.765504 8.4418 2.215494 .5338649 2.473 .0016206
MEX 42.34926 4.6339 2.972521 .2791834 .295 .39954
MKD .4833345 8.3418 3.877673 .3877568 .121 .57077
MLI 4.128529 8.8743 5.488623 .2750023 2.043 .0018999
MNG 1.0099 9.888 5.067188 .348526 .161 .016645
MUS .5560644 7.6275 2.706517 .4713021 .095 .24552
MYS 10.55665 4.6585 1.390972 .5457022 .331 2.6075
NAM .8121411 11.009 .848148 .6549684 .222 .12246
NGA 44.33492 9.0601 3.712754 .4247245 .836 .0026228
NLD 8.429365 4.9208 3.649523 .1992222 .133 7.4618
NOR 2.462583 4.9634 3.679393 .1992222 .035 5.3157
NZL 2.19356 3.6794 2.779095 .1992222 .002 .68656
PAK 46.0427 3.2829 1.272804 .5122113 .4 .017768
PER 9.724187 8.3642 4.516284 .3332597 .394 .56824
PRT 5.112451 4.9308 3.656535 .1992222 .12 .67188
PRY 2.5537 7.4025 3.224766 .4134835 2.099 .034105
RUS 67.53835 3.334 1.908529 .3562787 .109 .44736
SEN 4.402943 9.0069 4.855768 .3318158 1.224 .0038575
SLV 2.337091 9.5624 4.070957 .4115413 1.293 .083872
SVN .9435807 3.0156 1.953425 .301463 .148 2.1134
SWE 4.458648 4.4504 3.017819 .2524104 .007 5.2091
THA 37.11946 3.4315 1.233804 .5299165 .08 .27809
TUN 3.485478 4.751 2.375727 .3877046 .119 .35663
TUR 19.59979 3.404 1.294643 .5137255 .368 .63004
UGA 11.82118 9.639 1.161928 .6298676 1.232 .0003305
UKR 21.89569 2.4929 1.071276 .5189639 .256 .066442
URY 1.426255 5.8117 3.331902 .3213193 .513 .53347
USA 146.2552 4.1924 3.716426 .09 .007 2.1705
VNM 43.24669 4.3682 1.589713 .500421 .319 .063265
YEM 5.550821 9.2288 1.986509 .5639008 2.57 .0045258
ZAF 17.7428 5.3984 3.343565 .2895113 .094 1.2068
ZMB 4.852482 12.042 2.946907 .5330302 .332 .073485
ZWE 7.058781 10.385 4.84088 .3803204 3.713 .0099007

Note Sample Size = 77 countries
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Table 16: List of Distortion Schedules

Country Distortion Schedule (Gamma) Number of Firms Country Distortion Schedule (Gamma) Number of Firms

AGO .6722254 256 LKA .4482734 209
ARG .2991337 819 MDG .5338649 238
AZE .3693044 97 MEX .2791834 1543
BDI .5326625 110 MKD .3877568 153
BGD .4113453 2196 MLI .2750023 236
BGR .4983417 445 MMR .3868122 116
BIH .3283681 114 MNG .348526 149
BLR .4401456 92 MOZ .5429615 239
BOL .5012681 216 MUS .4713021 96
BRA .3088995 855 MYS .5457022 300
BWA .5814746 135 NAM .6549684 103
CHL .2632116 857 NGA .4247245 829
CHN .4402384 1210 NIC .5317814 254
COD .2657888 310 NPL .5789122 229
COL .3196665 954 PAK .5122113 216
CRI .3753149 173 PAN .5701004 94
CZE .4900428 93 PER .3332597 628
ECU .3229074 285 PHL .3485467 955
EGY .4844434 1244 PRY .4134835 165
ESP .1777841 386 ROU .4382129 168
EST .5332062 119 RUS .3562787 651
ETH .5349945 279 SEN .3318158 266
GAB .8600481 104 SLE .5029429 122
GEO .3925214 105 SLV .4115413 272
GHA .4227995 335 SRB .3748484 161
GTM .3642746 411 SVN .301463 120
HND .4692012 235 SWE .2524104 225
HRV .3642532 283 THA .5299165 524
IDN .6079729 1267 TJK .5423123 97
IND .438075 4092 TUN .3877046 249
IRL .1865237 387 TUR .5137255 691
IRQ .419706 409 UGA .6298676 297
ISR .2552563 103 UKR .5189639 395
JOR .3909156 224 URY .3213193 293
KAZ .5801377 145 USA .09
KEN .4245477 528 UZB .5236863 187
KGZ .4969423 102 VNM .500421 968
KHM .4391999 109 YEM .5639008 142
LAO .5862464 402 ZAF .2895113 554
LBN .3113646 116 ZMB .5330302 365
LBR .8004216 116 ZWE .3803204 304

Note Sample Size = 103 countries. US γi comes from Hsieh and Klenow [2014].
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Table 17: List of Trade Elasticities

Country Trade Elasticity (Beta) Country Trade Elasticity (Beta)

AGO 10.236 KWT 6.4475
ALB 9.5268 LAO 11.034
ARE 3.0489 LBN 3.4138
ARG 3.9909 LBY 8.2837
ARM 10.43 LCA 9.48
ATG 10.553 LKA 4.7328
AUS 3.5309 LSO 7.9502
AUT 3.5547 LTU 3.2353
AZE 10.292 LUX 5.7834
BDI 9.6659 LVA 5.0598
BEL 4.4156 MAC 9.5619
BEN 9.7114 MAR 4.999
BFA 9.5 MDG 8.4418
BGD 5.8238 MDV 9.7823
BGR 3.9724 MEX 4.6339
BHR 7.334 MKD 8.3418
BHS 8.1801 MLI 8.8743
BIH 7.0157 MLT 4.9926
BLR 7.783 MNG 9.888
BLZ 10.722 MOZ 13.827
BOL 10.648 MUS 7.6275
BRA 3.5624 MWI 12.945
BRB 10.508 MYS 4.6585
BTN 9.6059 NAM 11.009
BWA 13.3 NCL 11.305
CAF 10.674 NER 9.8341
CAN 4.7685 NGA 9.0601
CHE 4.5036 NIC 8.6894
CHL 6.4896 NLD 4.9208
CHN 4.4832 NOR 4.9634
CIV 9.7705 NPL 9.1774
CMR 9.2635 NZL 3.6794
COG 11.603 OMN 5.2177
COL 5.5845 PAK 3.2829
CPV 10.414 PER 8.3642
CRI 7.0882 PHL 4.7934
CYP 5.1586 PNG 11.948
CZE 2.4619 POL 3.5122
DEU 4.6424 PRT 4.9308
DMA 8.392 PRY 7.4025
DNK 4.1569 PYF 12.118
DOM 9.3966 QAT 5.6732
DZA 6.1716 ROM 3.4935
ECU 5.9557 RUS 3.334
EGY 4.5457 RWA 9.2707
ERI 9.3941 SAU 4.9353
ESP 3.8413 SDN 8.6262
EST 4.3631 SEN 9.0069
ETH 10.399 SGP 3.6275
FIN 3.5976 SLB 10.172
FJI 11.324 SLV 9.5624
FRA 4.6302 SUR 11.138
GBR 4.2789 SVK 3.7734
GHA 7.7954 SVN 3.0156
GIN 9.9702 SWE 4.4504
GMB 9.5613 SWZ 10.414
GNQ 11.526 SYC 9.9284
GRC 4.1852 SYR 5.0572
GRD 8.5436 TCD 10.754
GUY 12.141 TGO 8.5476
HKG 5.3973 THA 3.4315
HRV 3.9639 TJK 14.146
HTI 10.663 TKM 12.71
HUN 4.6091 TON 8.5295
IDN 3.6596 TTO 10.042
IND 4.0936 TUN 4.751
IRL 3.9436 TUR 3.404
IRN 4.2633 TZA 7.5297
ISL 7.063 UGA 9.639
ISR 9.6432 UKR 2.0268
ITA 4.2483 URY 5.8117
JAM 9.5609 USA 4.1924
JOR 4.476 UZB 13.712
JPN 4.8412 VEN 7.9536
KAZ 12.905 VNM 4.3682
KEN 5.8858 YEM 9.2288
KGZ 11.413 ZAF 5.3984
KHM 7.2397 ZAR 10.492
KNA 9.5903 ZMB 12.042
KOR 3.3626 ZWE 10.385

Note Sample Size = 160 countries.
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Table 18: Effects of Correlated Distortions - Country by Country Analysis

Open Economy Closed Economy
Country Total Gain (%) Reallocation Gain (%) Entry Gain (%) Total Gain (%) Reallocation Gain (%) Entry Gain (%)

ARG 21.974 18.6341 3.3399 15.045 11.6036 3.4414
AZE 6.4103 4.5357 1.8746 3.0394 1.0902 1.9492
BDI 23.9 19.5178 4.3822 1.8124 -2.8211 4.6335
BGD 20.063 15.9257 4.1373 9.2606 4.9746 4.286
BIH 7.9073 5.8311 2.0762 2.3497 .0439999 2.3057
BLR 24.01 20.6559 3.3541 11.456 7.7899 3.6661
BOL 10.053 6.5716 3.4814 -2.055 -5.6363 3.5813
BRA 30.076 26.0257 4.0503 22.337 18.239 4.098
BWA 75.355 71.21111 4.1439 40.436 36.0281 4.4079
CHL 5.5936 3.9728 1.6208 3.7989 2.1342 1.6647
CHN 61.659 55.2895 6.3695 53.173 46.7214 6.4516
COL 10.732 8.044701 2.6873 6.0506 3.2846 2.766
ECU 9.0382 6.5203 2.5179 3.5281 .8882999 2.6398
ESP 5.9071 4.6578 1.2493 3.8656 2.5683 1.2973
ETH 15.731 11.6355 4.0955 -5.0035 -9.3563 4.3528
GHA 12.325 9.13 3.195 2.6533 -.7140999 3.3674
HRV 49.638 44.9575 4.6805 29.247 24.2461 5.0009
IND 114.69 107.7836 6.9064 90.516 83.5003 7.0157
ISR 4.3491 3.37038 .97872 2.4466 1.3907 1.0559
JOR 33.506 28.7158 4.7902 15.266 10.1995 5.0665
KAZ 73.121 68.9235 4.1975 41.357 36.8491 4.5079
KEN 26.359 22.0149 4.3441 11.665 7.1427 4.5223
KGZ 23.418 20.323 3.095 11.609 8.3419 3.2671
LBN 33.714 29.7144 3.9996 16.512 12.1721 4.3399
LKA 61.825 55.619 6.206 36.729 30.3817 6.3473
MDG 36.908 32.2701 4.6379 9.7503 4.395101 5.3552
MEX 10.836 8.4685 2.3675 6.5283 3.9227 2.6056
MKD 13.585 11.0811 2.5039 7.0939 4.4476 2.6463
MLI -.439 -1.7135 1.2745 -1.814 -3.1303 1.3163
MNG 5.9134 4.2237 1.6897 2.8443 1.0235 1.8208
MUS 38.217 34.2337 3.9833 21.959 17.6104 4.3486
NGA 6.5477 3.7075 2.8402 .67757 -2.24013 2.9177
PER 3.8019 1.8517 1.9502 1.5194 -.465 1.9844
PRY 8.2924 5.129601 3.1628 -1.0826 -4.4745 3.3919
RUS 82.676 77.0962 5.5798 59.921 54.1948 5.7262
SEN 2.1171 .3890001 1.7281 -1.3071 -3.1341 1.827
SLV 3.115 .6222 2.4928 -1.544 -4.1354 2.5914
SVN 66.527 62.2776 4.2494 41.58 36.9435 4.6365
SWE 19.303 17.2081 2.0949 14.215 11.962 2.253
TUN 39.213 34.804 4.409 24.141 19.4511 4.6899
URY 9.2743 6.738299 2.536 3.8107 1.1294 2.6813
YEM 57.691 52.1682 5.5228 21.608 15.8411 5.7669
ZAF 10.826 8.4973 2.3287 7.7187 5.3326 2.3861
ZMB 24.98 21.365 3.615 9.8762 6.1665 3.7097
ZWE .46939 -1.45621 1.9256 -4.6028 -6.6457 2.0429

Note Sample Size = 45 countries.
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Table 19: Decomposition of Trade Channel

Country Initial Home Share (%) Trade Channel (%) Better Allocation (%) Trade Creation (%)

ARG 70.718 46.05517 30.87411 69.12589
AZE 49.197 110.9067 71.33706 28.66294
BDI 33.293 1218.693 83.55954 16.44046
BGD 61.341 116.649 51.59498 48.40502
BIH 20.179 236.5238 85.27909 14.72091
BLR 26.654 109.5845 81.69333 18.30667
BOL 56.152 -589.1971 67.90639 32.09361
BRA 86.957 34.64655 15.40536 84.59464
BWA 23.678 86.35622 93.46619 6.533813
CHL 67.329 47.24262 49.71376 50.28624
CHN 85.397 15.95923 41.12095 58.87905
COL 66.63 77.37084 42.4095 57.5905
ECU 49.477 156.1776 55.31249 44.68751
ESP 64.17001 52.81199 29.87135 70.12865
ETH 31.902 -414.3999 84.04252 15.95748
GHA 42.377 364.5159 68.62092 31.37908
HRV 44.312 69.71997 50.35425 49.64575
IND 83.063 26.70688 30.18971 69.81029
ISR 26.6 77.76098 86.09075 13.90925
JOR 48.711 119.4812 51.83671 48.16329
KAZ 24.973 76.80442 93.74895 6.251045
KEN 55.92 125.9666 54.22988 45.77012
KGZ 33.353 101.7228 84.93574 15.06426
LBN 35.629 104.1788 47.42102 52.57898
LKA 75.304 68.32748 36.71642 63.28358
MDG 3.4351 278.5319 104.4358 -4.435776
MEX 27.147 65.98503 85.80857 14.19143
MKD 40.413 91.50256 71.37622 28.62378
MLI 53.558 -75.79934 73.08598 26.91402
MNG 26.964 107.9035 97.79809 2.201912
MUS 23.37 74.03798 87.99184 12.00816
NGA 61.609 866.3503 59.82635 40.17365
PER 73.362 150.2238 47.48398 52.51602
PRY 33.464 -865.9708 74.75057 25.24943
RUS 75.33 37.975 24.49725 75.50275
SEN 38.444 -261.9692 73.63801 26.36199
SLV 49.461 -301.7487 73.59429 26.40571
SVN 34.549 59.99759 43.1936 56.8064
SWE 39.143 35.79317 55.88321 44.11679
TUN 44.548 62.4332 59.51457 40.48543
URY 46.799 143.3752 58.4532 41.5468
YEM 46.06 166.9891 81.14674 18.85326
ZAF 71.353 40.25678 40.57581 59.42419
ZMB 54.878 152.9313 74.75105 25.24895
ZWE 27.874 -110.1979 80.36774 19.63226

Note Sample Size = 45 countries. Trade channel refers to the percentage difference between the gains
from eliminating correlated distortions in an open economy and in a closed economy.
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Table 20: Effects of Distortions and Symmetric Costs - Global Analysis

Country Gain, US distortion (%) - Open Gain, Symmetric Trade Costs (%) Gain, US distortion (%) - Closed

ARG 51.283 4.6467 15.045
AUS 37.564 5.3172 9.9096
AUT 39.333 9.3929 8.0636
AZE 162.81 67.057 3.0394
BDI 370.43 133.77 1.8124
BEL 27.541 8.2395 4.3996
BGD 90.165 24.542 9.2606
BGR 71.578 28.898 0
BIH 137.16 57.547 2.3497
BLR 127.3 52.79 11.456
BOL 148.02 71.576 -2.055
BRA 36.733 .89264 22.337
BWA 255.01 73.575 40.436
CAN 29.518 11.515 7.4829
CHE 34.827 12.527 4.5242
CHL 41.888 16.438 3.7989
CHN 63.689 .71287 53.173
COL 78.456 26.874 6.0506
CZE 26.886 10.653 0
DEU 12.244 1.7005 4.7305
DNK 54.105 17.292 10.924
ECU 106.44 46.399 3.5281
ESP 18.982 .92811 3.8656
ETH 215.08 95.662 -5.0035
FIN 47.623 4.6393 10.61
FRA 18.5 1.9228 6.755
GBR 23.426 2.8801 8.0373
GHA 164.32 70.096 2.6533
GRC 67.719 18.755 3.3227
HRV 137.87 24.503 29.247
HUN 44.551 16.414 2.3184
IDN 28.424 5.2999 0
IND 131.28 1.2773 90.516
ISL 123.13 56.386 2.8694
ISR 73.35 37.704 2.4466
ITA 13.921 1.1702 3.7144
JOR 156.4 46.475 15.266
JPN 8.4156 .60601 3.6032
KAZ 180.59 54.169 41.357
KEN 171.09 56.736 11.665
KGZ 261.88 98.231 11.609
KOR 20.155 2.3647 7.0559
LBN 204 39.995 16.512
LKA 144.24 18.364 36.729
MDG 181.11 63.697 9.7503
MEX 32.145 12.431 6.5283
MKD 143.82 58.979 7.0939
MLI 179.2 80.346 -1.814
MNG 245.97 97.611 2.8443
MUS 183.39 60.992 21.959
MYS 39.704 18.198 0
NAM 149.23 71.013 0
NGA 113.16 53.227 .67757
NLD 23.562 6.847 3.3253
NOR 54.446 17.868 4.8405
NZL 71.088 19.516 13.006
PAK 66.595 9.2697 0
PER 60.214 27.336 1.5194
PRT 55.289 24.185 3.4243
PRY 139.74 68.249 -1.0826
RUS 96.992 2.3119 59.921
SEN 168.72 77.384 -1.3071
SLV 118.48 64.21 -1.544
SVN 128.97 17.163 41.58
SWE 46.646 9.8662 14.215
THA 33.263 9.9567 0
TUN 109.98 26.43 24.141
TUR 23.171 2.0277 0
UGA 199.44 80.528 0
UKR 37.804 7.2316 0
URY 102.18 46.642 3.8107
USA 3.2551 1.0581 0
VNM 55.727 18.036 0
YEM 235.92 79.162 21.608
ZAF 38.405 8.9105 7.7187
ZMB 127.42 56.656 9.8762
ZWE 137.4 67.528 -4.6028

Note Sample Size = 77 countries.
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