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Abstract

Firms differ in size and productivity with important implications for trade policy and measuring gains

from trade. Distribution of firms’ productivities is then a central object in a model with heterogenous firms.

I introduce a new way to estimate the shape parameter of the Pareto distribution for firm productivity

using the data on firm-level imports to the US. I provide my estimates for about 600 US industries at

the HS-4 level under assumptions of both CES and translog utility functions and offer few alternative

specifications. I improve this estimator by allowing for the case of bounded Pareto distribution, making it

robust to misspecification. In order to check the validity of distributional assumptions I provide a new way

to test them. My first finding is that it is important to allow parameters of productivity distributions to

vary by industry. Then I show that for most industries the distribution is Pareto rather than log-normal and

bounded Pareto rather than unbounded. Finally I show that the left tail of firms’ productivities distribution

is unlikely to belong to Pareto distribution. I propose a new composite distribution consistent with the

data that allows productivities of small and large firms to follow different distributions. This flexible

distribution matches the facts on intensive and extensive margins of trade and is consistent with firm level

evidence.
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1 Introduction

Heterogeneity of firms is important for international trade. It is well documented that there is signifi-

cant amount of redistribution between firms in case of trade liberalization. To know the consequences of

this redistribution one has to know which firms gain and which lose. One of the most popular ways to

take into account firms’ heterogeneity is to assume their productivities follow some statistical distribution.

Non-parametric approach to distributions is getting more popular (e.g. Hottman et al. (2014)), still classic

parametric approach is relevant: distributional assumptions allow for analytical solution, require less com-

putational time and feasible when aggregated data on trade flows are used. There are still debates what

distribution accounts for firms’ heterogeneity better. In this paper I propose a novel way to choose between

distributions, introduce a new way to estimate parameters of the most popular Pareto distribution on fairly

disaggregated level and propose a new distribution that combines strengths of currently used ones and

hence can be a compromise in a current debate. My findings allow to accurately describe the impact of

trade shocks on both intensive and extensive margins of trade.

Melitz (2003) proposed a model where in the case of trade liberalization the least productive firms leave

the market and the most productive firms benefit. It shows how trade costs affect intensive and extensive

margins of trade. Chaney (2008) showed that Melitz (2003) has a simple analytical solution under assump-

tion of Pareto distribution. The reason it happens is it’s curious property: Pareto distribution trimmed

from below is also a Pareto distribution with the same shape parameter. In Chaney (2008) lower bound of

distribution is an endogenous object that depends on trade costs and other parameters of the model, this

property allows for a simple analytical expression. Chaney (2008) shows that elasticity of trade with re-

spect to trade costs is equal to the value of shape parameter. Besides Arkolakis et al. (2012) show that gains

from trade in this model has a simple expression are inversely related to the shape parameter. Due to its

simplicity and tractability unbounded Pareto is the most popular assumption in the class of Dixit-Stiglitz

heterogenous firms models. But elegance comes with a price. There are four main problems associated with

Pareto distribution in Chaney (2008) model:

1. As there is non-zero probability that a firm of arbitrary size exists, the model fails to generate zero

trade flows.

2. Trade elasticity between any two countries is constant and equal to the shape parameter. It is incon-

sistent with the data.

3. Under Pareto distribution firms’ average sales is constant hence the model is unable to generate

extensive margin.

4. Pro-competitive and variety sources of gains from trade are absent in the model. It does not allow to

analyze different sources of gains from trade.

In order to fix the first problem Helpman et al. (2008) use bounded Pareto distribution combined with

CES utility. Their theoretical model provides justification to two stage gravity equation, where probability
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that trade happens is estimated on the first step.

Head et al. (2014), Bas et al. (2015) address the second problem and suggest to use log-normal distribu-

tion. They find that ratio of average to minimum sales is a sufficient statistics for log-normal distribution

and show that trade elasticities generated on the basis of log-normal distribution approximate data better.

Fernandes et al. (2015) show that assumption of log-normal distribution solves the third problem. In or-

der to decompose the gains from trade by three different sources, Feenstra (2014) uses translog utility and

bounded Pareto distribution.

Dealing with distributions I propose to use more rigorous and structured approach. First of all whenever

it is possible all distributional assumptions should be justified by empirical distribution. Distributional

assumption that matches some moments well, but is inconsistent with the data will generate results with

the limited interpretation. For example Head et al. (2014), Bas et al. (2015) and Fernandes et al. (2015) use

log-normal distribution, without trying bounded Pareto, even though it could also fix the problems the

authors were solving1. My approach is closer to Mrazova et al. (2015). They compare the performance of

heterogenous firms model (in the sense of Kullback-Leibler divergence of sales or mark-up distributions

observed in the data) under a variety of assumptions on utility function and under log-normal and Pareto

distributions. I propose two statistical tests that allow to distinguish between most popular distributions:

test of Pareto against log-normal and test of bounded against unbounded Pareto.

Another finding I make is that it is important to deal with distributions on disaggregated level. Most

of the papers above assume that productivities of all the firms in the economy follow the same distribution

Di Giovanni et al. (2011) do it for 24 industries and Bas et al. (2015) do it for 21 industries. Their results

indicate that there is significant variation in shape parameter estimation from industry to industry. I show

that this variation in the parameter estimates is even larger on the more disaggregated level. Then I per-

form the test of Pareto against log-normal distributions. For 87% of HS-4 industries the hypothesis it is

Pareto is accepted. On the other hand under the assumption that all firms have the same shape param-

eter, Pareto hypothesis is rejected. Mixture of Pareto distributions with different shape parameters is not

Pareto distribution and can look more like log-normal on aggregated level. Industry specific distributions

resolve a problem with constant trade elasticity between the countries: it is still constant on industry level,

but given that country pairs have different composition of industries in their trade flows, aggregate trade

elasticity will also be varying. This approach is not a panacea: there might be some within industry vari-

ation in trade elasticities, but at least it takes care of the between industry component. Finally Levchenko

and Zhang (2014) show that gains from trade estimates made on disaggregated level are different from

aggregated ones even though they use the same distribution for the whole economy. As usage of Broda

and Weinstein (2006) estimates of demand parameter on disaggregated level became common practice, I

propose to adopt this practice to the supply side parameter. In this paper I estimate parameters of Pareto

distribution on HS-4 level for more than 600 US industries under assumptions of CES and translog utility.
1Another utility function combined with Pareto distribution might also be an answer
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Besides testing distributional assumptions for the whole sample it makes sense to see whether different

subsamples within an industry belong to the same distribution. Fernandes et al. (2015) show that Chaney

(2008) model is unable to generate share of intensive margin consistent with the data, while the model with

log-normal distribution generates better results. Di Giovanni and Levchenko (2013) on the other hand show

that under Pareto assumption fixed costs do not play much role for welfare gains, while in the case of log-

normal distribution they do and variable costs don’t. All the papers mentioned above made an assumption

that large and very productive firms draw their productivities from the same distribution as small and not

very productive ones. The ratio of imports of the most and the least efficient firms can be as large as 1010. It

is common problem in natural sciences: Pareto distribution is well known for approximating right tails very

well, while it works worse than log-normal distribution for the left tail. As a result trimming Pareto from

below became a common practice. Bas et al. (2015) trim 50% of all firms and get the results different from

the whole sample. Di Giovanni and Levchenko (2013) trim 90% of firms 2 that represent only 7% of trade

volume. Different estimates based on trimmed and not trimmed samples indicate that the left tail is not

Pareto distributed. Consequently the shape parameter estimated on a trimmed sample is not informative

about majority of firms. It is not a big problem if trade volumes are considered - dropped firms represent a

small share of total trade. If the question of interest is extensive margin of trade, trimming is not innocuous

anymore: entry and exit of firms mostly happens in the left tail we know nothing about.

Here is the dilemma: statistical test indicates that the productivities are Pareto distributed, but to get

proper Pareto estimates the sample should be trimmed. This is common problem in natural sciences: Love

et al. (2015) and Perline (2005) provide numerous examples. Malevergne et al. (2011) propose a solution:

rather than choosing between better approximation of left or right tails they propose to use a composite

distribution that is trimmed log-normal below some threshold and Pareto above it. Value of the threshold

is chosen to maximize the likelihood function of this composite distribution.

2 Distinguishing Distributions

2.1 Log-Normal against Pareto

2.2 Test

Log-normal and Pareto distributions are the most popular choice to approximate right tails of distribu-

tions. It is well known that right tails of these distributions are hard to distinguish. Log-normal density can

be rewritten in the following way:

f (x) =
1p
2ps

1
x

e�
(ln x�µ)2

2s2 =
1p
2ps

e�
µ2

2s2 x�1+ µ

s2 �
ln x
2s2 ,

2they follow Gabaix (1999) and choose trimming based on visual inspection. I propose more rigorous approach I called density
trimming: if kernel density distribution has a hump, I drop all the observations to the left from the hump, hence allowing Pareto
distribution to approximate empirical distribution with decreasing pdf
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with location parameter µ and scale parameter s > 0. Then it can be interpreted as density of Pareto

distribution with varying shape parameter a:

a (x) =
1

2s2 ln
⇣ x

e2µ

⌘

Then in case if s is large, a (x) decreases slow and it might look like a constant. This link between log-

normal and Pareto distribution leads to the debates what distribution should be used. For example Eeck-

hout (2004), Levy (2009) and Eeckhout (2009) disagree on what the better approximation of US city sizes

is. Malevergne et al. (2011) states that the reason these authors failed to find consensus is that they tested

different hypotheses and used tests that were not powerful enough. Malevergne et al. (2011) propose a the

uniformly most powerful unbiased test to distinguish between log-normal and Pareto distributions. They

show that after taking logarithm of variable of interest, the problem can be formulated as testing exponen-

tial against truncated normal distribution. Del Castillo and Puig (1999) show that likelihood ratio (LR) test

is uniformly most powerful unbiased (UMPU) test and clipped sample coefficient of variation computed as

ĉ = min
n

1,
s
x̄

o

is a sufficient statistic for this test, where s is sample standard deviation computed with Bessel correction.

Under hypothesis H0 that x1, x2, ..., xn are drawn from exponential distribution. This test is possible because

exponential distribution is a limiting case of truncated normal distribution: truncated normal belongs to

the family of increasing failure rate (IFR) distributions. Exponential distribution corresponds to the case

of constant failure rate. Now the question is how to compute critical region for ĉ. Del Castillo and Puig

(1999) claim that ĉ can be approximated by 50% mixture of constant 0 and 50% of c2
1 distributions, but there

could problems in small samples. Malevergne et al. (2011) propose to use saddle point approximation as in

Gatto and Jammalamadaka (2002) or just perform Monte-Carlo simulations of ĉ. I apply the latter. Notice

that for exponentially distributed variable x E [x] =
p

Var (x) = 1
l and hence coefficient of variation does

not depend on the rate parameter. As suggested by Malevergne et al. (2011) I use n is equal to sample

size draws from exponential distribution with l = 1 and number of simulations M = 10000 in order

to compute p-value, counting share of draws when simulated values do not exceed sample coefficient of

variation pvalue =
ÂM

j

⇣

I
h

ĉ<cML
j

i⌘

M .

2.3 Implementation

I do not observe productivities, but they can be backed up from sales and import shares if demand

parameters are known:
zi
z
=

✓

xi
x (z)

◆

1
s�1
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in CES case3, where z is a lower bound of Pareto distribution, and x (z) can be replaced by its maximum

likelihood estimate xmin. In translog case the expression is:

zi
z
=

✓

si
g
+ 1

◆

e
si
g

where g is a translog taste parameter. Then the data needed to construct ĉ and perform the test described

above can be found as log z
z .

2.3.1 Data

I use PIERS data on imports. It is a dataset with imports of 50,000 largest firms to the US. Sales of each

firm are provided on HS-4 level. The coverage is 1992 and 2005. In this paper I present the results for

2005 only, the results for 1992 are qualitatively similar. For demand side parameters in CES case I use the

estimates of Broda and Weinstein (2006) and for translog the estimates from Feenstra and Weinstein (2010)

In CES case in order to back up productivities I need to know values of elasticity of substitution. I use

Broda and Weinstein (2006) estimates of s. The problem that they do not provide the estimates on HS-4

level, instead their estimates are on HS-10 level or in SITC Rev.3 industry classification. I find that 4-digit

SITC classification is the level of disaggregation closest to HS-4 classification. I build the concordance4, and

find elasticities Broda and Weinstein (2006) corresponding to HS-4 industries. In case when there is more

than one corresponding 4-digit SITC industry, I used the median value of elasticity.

2.4 First Results

My estimates show that for CES case hypothesis H0 that firms’ distribution of productivities is Pareto

distributed can be rejected for 50 HS-4 industries out of 670 (7%). For translog hypothesis H0 can be rejected

for 481 HS-4 industries out of 758 (63%). Notice that these estimates are for unbounded Pareto, while

this hypothesis is rejected in the next section. Moreover, these results might be different under different

trimming as suggested by Malevergne et al. (2011).

2.4.1 Pooled Test

In both CES and Translog cases under assumption that q is the same among all industries and lower

bounds can be different, the hypothesis that productivity distribution is Pareto is rejected. In other words,

on a higher level of aggregation, firms’ distribution of productivities look more like log-normal even though
3An interesting property: coefficient of variation does not depend on s, it means that this test is robust to the errors in computing

elasticity of substitution
4I use http://unstats.un.org/unsd/trade/conversions/HS%20Correlation%20and%20Conversion%20tables.htm
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Figure 1: Distribution of Log-Linearized, Normalized Average Sales on HS-4 Level

most of these industries look more like Pareto separately. The reason is that the industries are fairly het-

erogenous. Figure 1 shows the distribution of log-linearized and normalized average sales by industries.

One might think about it as a special case of the central limit theorem: a mixture of different Pareto

distributions looks more like log-normal, rather than Pareto distribution.

2.5 Bounded or Unbounded Pareto

If there is unbounded Pareto distribution Z with shape parameter q and lower bound z, Del Castillo and

Puig (1999) offer an expression for the maximum order statistics Zmax. They show that

Zmax

n
!d Y as n ! •,

where

P (Y  t) = e�Ct�q

and C = zq . Remember that if Z ⇠ Pareto (z, q), then Z/z ⇠ Pareto (1, q) and in this case expression from

(1) simplifies:
Zmax

zn
!d Y as n ! •,

where

P (Y  t) = e�t�q
.
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With known distribution of maximum order statistics, it is easy to write down p-value for the test on

existence of the upper bound. This p-value will simply be a probability to observe zmax under hypothesis

H0 that Pareto distribution is not truncated if there were n draws.

pvalue = e�nZ�q
max

They suggest to replace q with q̂ from:

q̂ML =
n

Â [ln zi � ln z]
=

n
Â ln zi

z
,

z are not observed, but by definition of convergence in distribution, productivity can be expressed as inverse

function of x sales or market shares.

Zmax

zn
!d Y ) Pr

✓

Zmax

zn
< z

◆

= P (Y  x) = e�nx�q

As n ! •.

2.6 CES Case

In CES case normalized sales are a function of normalized productivities5:

x (z)
x (z)

=

✓

z
z

◆s�1

This increasing function can be inverted as well:

z
z
=

✓

x (z)
x (z)

◆

1
s�1

And now

Pr
✓

x
✓

Zmax

z

◆

<
z
z

◆

= Pr
✓

1
n

Zmax

z
<

1
n

✓

xmax

x (z)

◆◆

= Pr

 

Y <

✓

xmax

x (z)

◆

1
s�1

!

And then p-value will be:

pvalue = e�n
⇣

xmax
x(z)

⌘� q
(s�1)

Where q and x (z) are replaced with their ML-estimates:

q̂ =
n

Ân
i ln xi

xmin

(s � 1)

x (z) = mini {xi}
5I provide more detailed derivations of sales and market shares in CES and translog cases in part 3 and appendix of this paper

8



2.7 Translog Case

Good news is that market shares as a function of normalized productivities are observed:

si =



W
✓

zi
z

e
◆

� 1
�

g

This function is increasing so it can be inverted:

zi
z
=

✓

si
g
+ 1

◆

e
si
g

And now

Pr
✓

s
✓

Zmax

z

◆

<
z
z

◆

= Pr
✓

1
n

Zmax

z
<

1
n

✓

smax

g
+ 1

◆

e
smax

g

◆

= Pr
✓

Y <

✓

smax

g
+ 1

◆

e
smax

g

◆

And then p-value will be:

pvalue = e
�n

✓

⇣

smax
g +1

⌘

e
smax

g

◆�q

Where q is replaced with q̂ from:

q̂ =
n

Âi log
⇣

si
g + 1

⌘

+ Âi si
g

2.8 Estimation Results

2.8.1 CES Case

Under an assumption of the same q within HS-4 industry, but different lower bounds for different im-

porting countries I find that out of 633 HS-4 industries for 89 industries (14%) the hypothesis that the

distribution is unbounded Pareto cannot be rejected on 1% significance level. For the rest 544 industries p-

value is smaller than 1% and the hypothesis that there is no upper bound is not supported by the data. As I

showed in my estimation part, baseline estimates of q are fairly small. Small q imply very fat tails and hence

for given data it becomes easier to reject the hypothesis that there is no upper bound. I compute p-values

again for the robustness check with higher estimates of q. For now I am using 50% quantile trimming and

s > 2 specification. In this case for 16 industries out of 393 H0 is rejected, and for 376 (95%) it is not.

2.8.2 Translog Case

Only for 88 HS-4 industries out of 758 hypothesis that H0 is unbounded Pareto cannot be rejected.
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3 Estimating Pareto

In this part of the paper I estimate the shape parameter of Pareto distribution in a model with hetero-

geneous firms using firm level data on imports. Here I consider the case of CES utility for bounded and

unbounded Pareto distribution of firms’ productivities. The derivations and preliminary results on translog

are provided in the appendix.

3.1 Baseline Case

Cdf of unbounded Pareto distribution with parameters (q, z) is:

1 � FZ(z) = P(Z > z) =
⇣ z

z

⌘q
(1)

Distribution of z
z will then be: Pareto(q, 1). The problem is that productivities z are not observed. From

Melitz (2003)
x (z1)
x (z2)

=

✓

z1
z2

◆s�1
(2)

where x (z1) and x (z2) are sales of firms with productivities z1 and z2 and s is elasticity of substitution from

CES utility function. Notice that in Melitz model due to presence of fixed costs sales of the least productive

firm on the market is larger than zero x (z⇤) > 0. Then assuming z⇤ = z, x(z)
x(z) =

⇣

z
z

⌘s�1
. Inverting this

expression obtain:

z = z
✓

x (z)
x (z)

◆

1
s�1

(3)

and we treat x (z) as a constant6. Notice that z is a parameter of distribution to be estimated.

Pr (x (Z) > z) = Pr

 

Z > z
✓

x
x (z)

◆

1
s�1

!

So cdf of x is then FX (x) = 1 � x
x(z)

� q
s�1 and pdf is q

s�1 x�
q+(s�1)

s�1 x (z)
q

s�1

Log-likelihood function is then l (q) = n ln q � ln (s � 1) + n q
s�1 ln x (z)� q+(s�1)

s�1 Ân
i=1 ln xi. In order

to compute normalized shares we need to estimate x (z). Log-likelihood function increases in x (z) for 8q

and then it’s ML-estimate is

x (z)ML = xmin ⌘ min {xi}
6There is one to one mapping between normalized productivity and normalized sales, hence productivity of each firm can be

backed up from it’s sales. From now on I will treat productivities as if they are observed.
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Notice that now when we know ML-estimate of x (z), we can compute normalized sales and work with

them:

∂l (q)
∂q

=
n
q
�

Ân
i=1 ln xi

xmin

s � 1
= 0

Let’s introduce normalized sales: yi ⌘ xi
xmin

q̂ML =
n

Ân
i=1 ln yi

(s � 1) (4)

3.2 Endogenous Lower Bound

The derivations above were performed for Pareto(q, z). The problem is that in Melitz (2003) cutoff

productivity of exporting firm will be:

z⇤x = z⇤t

✓

fx

f

◆

1
s�1

and hence will depend on fixed costs of production and exporting and on trade costs. I do not observe

firms’ home sales, but observe their imports. Notice that distribution of exporters’ productivities is also

Pareto, but with lower bound z⇤x. From here and further I will estimate parameters of the distribution of

exporters’ productivities rather than distribution of domestic firms’ productivities. In other words in (1) I

will imply that z = z⇤x.

3.3 Case of Several Subsamples

Now let’s consider the case of J subsamples with different values of sj and zj, but same q. In this

case derivation of density will be similar and ML-estimates of lower bound of distribution of sales will be

xj

⇣

zj

⌘

ML
= mini

�

xij
 

. Log-likelihood function for normalized sales will then be:

l (q) = N ln q �
J

Â
j=1

nj ln
�

sj � 1
�

�
J

Â
j=1

 

q

sj � 1

nj

Â
i

ln yij

!

∂l (q)
∂q

=
N
q
�

J

Â
j=1

 

1
sj � 1

nj

Â
i

ln yij

!

= 0

And generalized estimator (4) is:
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q̂ML =
N

ÂJ
j=1

⇣

1
sj�1 Â

nj
i ln yij

⌘ (5)

3.4 Bounded Pareto

Helpman et al. (2008) and Feenstra (2016) use bounded Pareto distribution that allows for zero trade

flows and decomposition of gains from trade from different sources. Bounded Pareto might be a good alter-

native to lognormal distribution: trade elasticity is not constant anymore and extensive margin is different

from zero. Upper bounds of Pareto distribution can vary by country of origin thus reflecting technological

differences between countries. In bounded case ML estimates of upper and lower bounds:

z̃j ⌘ ˆz/z̄ML =

 

1
ymaxj

!

1
s�1

And q̂ is a solution to the following equation:

N
q̂
+

J

Â
j=1

nj
�

z̃j
�q̂ ln

�

z̃j
�

1 �
�

z̃j
�q̂

=
J

Â
j=1

nj

Â
i=1

 

1
s � 1

nj

Â
i

ln yij

!

This expression does not have closed form solution, but using the results of Aban et al. (2006) I show that

the probability that this equation has a solution converges to 1 as number of observations converges to •,

that if the solution exists, then it is unique and finally that q̂ is a consistent estimator of q.

3.4.1 Properties of Bounded Pareto Estimator

Notice that the only difference between bounded and unbounded estimators is the second term on the

left hand side that corrects for different domain of bounded Pareto cdf. As z̃j < 0 this term is smaller than 0

and then bounded Pareto estimate of q is always smaller. Notice also that the correction term converges to

0 as upper bound converges to •, z̃j ! 0. Intuitively it means that estimating true unbounded distribution

by bounded estimator on a large enough sample should not be problematic: the estimate of upper bound

will be large and will push the correction term towards 0. On Figure 2 I present the results of Monte Carlo

simulations. I had sample size of 1,000 and performed 10,000 simulations. Lower bound was equal to 1,

true value of the shape parameter varied from 0.1 to 10. Horizontal axis and 45 degrees gray line represent

the true value of the shape parameter. Yellow line is the average of 10000 estimates; red and blue line

represent 95% confidence interval. The left panel corresponds to the unbounded estimator and the right

panel corresponds to the bounded one.
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Figure 2: Unbounded and Bounded Estimates of Unbounded Pareto Distribution

Both estimators consistently estimate true parameters, moreover there is no efficiency gains for un-

bounded estimator: average ratio of confidence intervals is smaller than 1%. The situation is very different

when true distribution is bounded Pareto. I present the results of similar Monte Carlo procedure with up-

per bound equal to 2 on Figure 3: Just as in the previous case bounded Pareto estimator does a good job

estimating true parameter, while unbounded estimator generates significant bias that varies from 1% to

3000%. The reason why two estimators converge as true value of q increases is that lower q represent fatter

right tail and hence increases relative importance of upper bound. As q ! • for given upper bound the

bounded distribution will converge to unbounded one. For fixed q increase in the upper bound of true dis-

tribution will lead to the same outcome: bias will decrease. In other words, size of the bias depends on how

large shape parameter is relative to the upper bound. My results in section 2 indicate that the upper bound

is not negligible. Under assumption of Pareto distribution I recommend to use bounded Pareto estimator

as it is robust to misspecification.

3.5 Application

Expression (5) can be applied to the case of import from several countries. Here we assume that s and

q are the same for all firms i and all countries of origin j. What can be different is zj. Given that zj depends

on fixed costs and trade costs, I allow them to vary from country to country. In particular estimates of zj

absorb trade costs.
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Figure 3: Unbounded and Bounded Estimates of Bounded Pareto Distribution

3.5.1 Low Values of Elasticities

From expression (3) one can see that if s < 2, difference in sales of the firms magnifies the productivity

difference. For example if s = 1.1, and x(z1)
x(z2)

= 2, z1
z2

= 210. This will generate productivity distribution with

very heavy tails and lead to very low estimates of q. This is an artifact of CES utility that behaves oddly at

low values of s. As an alternative specification I report the results of the estimation for s ⇥ 2

3.6 Estimation

3.6.1 Baseline Results

In this section I present the baseline results. Here I concentrate on the results for CES utility as the esti-

mates can be compared with earlier work. All the derivations for the translog utility are in the appendix7.

For convenience I report median value of q for each of 9 large sectors8. sk are from Broda and Weinstein

(2006) on HS-4 level. I drop all industries with less than 20 firms and all industry-country pairs with less

than 6 firms.

7Estimates of q on a disaggregated level for translog case, and for both bounded and unbounded Pareto are available upon request
8Results for all 633 HS-4 sectors are available upon request
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Figure 4: Baseline Estimates of Pareto Shape Parameter on HS-4 Level. q > 8 are Omitted.

Table 1. Estimates of Shape Parameter Under CES Utility

Description Baseline

Agriculture and Fishing 0.453

Food & Beverages 0.582

Textiles and Wearing Apparel 0.537

Wood and Paper 0.340

Petroleum, Chemical and Mineral Products 0.320

Metal Products 0.375

Electrical and Machinery 0.213

Transport Equipment 0.708

Other Manufacturing and Recycling 0.099

The distribution of all the estimates is presented on Figure 4.

Notice that one of the assumptions of Chaney (2008) is q > s � 1. For estimates above this assumption

holds for just few of HS-4 industries. To get these estimates I did not rely on q > s � 1, so one possible

explanation is that this assumption is not supported by the data. Three other potential explanations of

these low estimates of q: low values of s, multi-product firms and absence of trimming. Finally assumption

q > s � 1 is needed so that firms’ average sales are finite. In case of bounded Pareto it is not a problem and
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thus the bounded Pareto estimates of q can be larger or smaller than s � 1.

3.6.2 Low Values of Elasticities

From expression (3) one can see that if s < 2, difference in sales of the firms magnifies the productivity

difference. For example if s = 1.1, and x(z1)
x(z2)

= 2, z1
z2

= 210. This will generate productivity distribution with

very heavy tails and lead to very low estimates of q. This is an artifact of CES utility that behaves oddly at

low values of s. As an alternative specification I report the results of estimation for s ⇥ 2

3.6.3 Multi-Product Firms

Bernard et al. (2006) show that more productive firms have larger product scope. In the baseline result

we do not allow for multi-product firms and hence I miss extensive margin dimension. The data we have is

on HS-4 level and hence if a firm had more than one product it will be aggregated. Given that these data are

missing, I can make some additional assumptions on how productivity of a firm and it’s scope are linked

and then take this into account. Here I use approach of Ma (2008) and assume that a consumer has CES

preferences over different varieties of the same firm have elasticity of substitution h and are nested into

CES preferences with the elasticity of substitution s:

U =

0

@

N
Z

q (i)(s�1)/s di

1

A

s/(s�1)

, s > 1.

Each firm i produces a continuum ni varieties aggregated in q (i):

q (i) =
✓

Z ni
qi (j)(h�1)/h dj

◆h/(h�1)

The ratio of sales then will be9:

x (z)
x (z⇤)

=
⇣ z

z⇤
⌘

(h�1)(s�1)
h�s

As a result ML-estimate (5) becomes:
9In a single product model it is:

r (z)
r (z⇤)

=
⇣ z

z⇤
⌘(s�1)
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q̂ML =
N

ÂJ
j=1

✓

hj�sj

(sj�1)(hj�1) Â
nj
i ln yij

◆

The problem with this approach is that it requires some knowledge on within-firm elasticity of substi-

tution h. It is impossible to identify h using maximum likelihood approach and PIERS data.

Hottman et al. (2014) find that within-firm elasticities are about 50% smaller than between-firm elastici-

ties, so h = 2s and this ratio is very robust and does not depend on the quantile of s in consideration10.

Under assumption that h = 2s the estimate becomes:

q̂ML =
N

ÂJ
j=1

✓

sj

(sj�1)(2sj�1) Â
nj
i ln yij

◆

Given that s
(s�1)(2s�1) <

1
s�1 , final estimates of q will be larger:

3.7 Trimming

Trimming smallest 50% of firms (less than 5% of total sales) significantly increases the estimates of q.

Trimming more than 50% of firms does not affect the estimates much. It supports the hypothesis that right

tail of firms’ productivity distribution follows Pareto distribution, while the whole distribution does not.

This finding does not contradict to what I found in section 2: the test indicated, that the distribution is Pareto

rather than log-normal, but it did not test Pareto against other alternatives. Trimming Pareto from below is

common practice in estimating shape parameter, however there is no standard procedure of how to choose a

threshold level. Most authors just rely on visual inspection. As I showed in section 2, it is important to deal

with disaggregated data. With more than 600 sectors relying on visual inspection becomes problematic,

so there is need in some standardized procedure. I performed a set of standard procedures: dropping n

smallest firms, dropping firms below quantile q, dropping firms that represent share of total imports less

than s. Finally I propose and perform two new procedures in this paper. The first one I called density

trimming and it is described in the next section. The second one is described in part 4 of this paper.

3.7.1 Density Trimming

Estimation results are sensitive to trimming, besides some industries might require more trimming. I

propose a new procedure I called density trimming. If distribution has a hump, it is not necessarily a
10Their results, however, are based on Nielsen data (very disaggregated), besides they consider mostly food products. So usage of

their findings might be questionable for broader set of industries.
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Figure 5: Density Trimming Procedure. HS-5407 Industry

problem: small left tail represents small share of trade, but can bias estimates of the shape parameter a lot. I

propose to first perform kernel density estimation of firms’ productivity distribution. I will keep then only

the right tail (e.g. drop all observations with values on an increasing part of kernel density curve). The

graph represents distribution of Chinese firms’ sales in HS-5407 (Woven fabrics of synthetic filament yarn).

I drop observations to the left from the red line.

3.8 Discussion

These are the results with the alternative specifications. Here I provide them separately, but the assump-

tions can be combined in any order.
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Figure 6: Main Estimates of Pareto Shape Parameter on HS-4 Level. s > 2, 50% of Firms are Trimmed.
q > 8 are Omitted.

Table 2.Shape Parameter Under CES Utility. Alternative Specifications

Description Baseline s � 2, 50% Drop s � 2 Multi-product 50% Drop

Agriculture and Fishing 0.453 6.530 0.970 1.338 2.951

Food & Beverages 0.582 3.40 0.775 1.351 2.524

Textiles and Wearing Apparel 0.537 3.656 0.629 1.215 3.160

Wood and Paper 0.340 1.872 0.443 0.684 1.568

Petroleum, Chemical and Mineral Products 0.320 2.684 0.553 0.694 1.613

Metal Products 0.375 3.905 0.799 0.858 1.801

Electrical and Machinery 0.213 1.781 0.392 0.389 0.985

Transport Equipment 0.708 5.574 1.093 2.170 3.479

Other Manufacturing and Recycling 0.099 2.359 0.466 0.148 0.408
I use the case with s � 2 and 50% trimming as the main specification. In this case for 67% of HS-4

industries q > s � 1. This is the histogram of the estimates with q > 8 dropped for convenience:

These estimates are comparable with the results other researchers obtained when they were estimating

shape parameter of Pareto distribution on micro-level data:
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Paper q̂

EKK (2011) 1.75

Fernandez et al. (2015) 2.3

Head et al. (2014) Baseline 1.3

Trim 50% 2.16

3.9 Extensions

My method estimates lower bound of exporters’ productivities for each sector and each country. Re-

member that these lower bounds are endogenous and depend on trade and fixed costs: z⇤x = z⇤t
⇣

fx
f

⌘

1
s�1 .

Then the ratio of these lower bounds for different countries i and j, but for the same industry k will be:

z⇤xik
z⇤xjk

=
z⇤ik
z⇤jk

tik
tjk

 

fxik fjk

fxjk fik

!

1
s�1

(7)

Left hand side is estimated above.

Under the assumption of the same technology at home: z⇤xik = z⇤xjk expression (7) becomes:

z⇤xik
z⇤xjk

=
tik
tjk

 

fxik fjk

fxjk fik

!

1
s�1

where left-hand side is known and right-hand side represents relative access to the foreign market.

Under stronger assumption
fxik fjk
fxjk fik

= 1, that can be interpreted as that costs of exporting relative to the costs

of home production are similar across countries, expression (7) allows to identify relative trade costs.

4 Composite Distribution

Statistical test by Malevergne et al. (2011) rejects the hypothesis that the data is log-normally distributed.

On the other hand, trimming smallest firms affects estimates of shape parameter of Pareto distribution, that

is impossible under assumption of true Pareto distribution. After dropping 50% of firms, that represents

less than 3% of total sales estimates of shape parameter do not depend on trimming anymore. This ev-

idence suggests that the left side of firms’ distribution can be described as log-normal distribution while

the right tail as a Pareto distribution. In the context of Melitz (2003) it will mean that the impact of trade

liberalization on intensive and extensive margins will follow different rules: inefficient firms that will leave

the market will be lognormally distributed while the most productive firms that will enjoy the reallocated

resources will have fat-tailed Pareto distribution. Malevergne et al. (2011) suggests to use this approach to
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approximate the distribution of US cities and Ioannides and Skouras (2013) implement it. They accept the

hypothesis that top 1000 US cities are distributed according to Pareto distribution. Then they claim that

small US cities follow log-normal distribution. The trick is to determine the trimming level. Malevergne

et al. (2011) suggest to choose threshold parameter u separating the log-normal from Pareto distribution by

maximizing likelihood function11. Below I follow the derivations of Ioannides and Skouras (2013)

f (x; µ, s) =
1

xs
p

2p
exp

 

� (ln x � µ)2

2s2

!

, u > x > 0,

where (µ, s) are the mean and standard deviation of ln x and u is the threshold parameter. The kernel of

Pareto density is:

g (x; q, u) =
1

xq+1 , x � u, q > 0,

where q is the shape parameter. The density function of composite distribution is then:

h (x; µ, s, u, q) =

8

>

<

>

:

b (u, µ, s, q) f (x; µ, s) , u > x > 0

a (u, µ, s, q) b (u, µ, s, q) g (x; q, u) , x � u

9

>

=

>

;

,

where a (u, µ, s, q) is a normalizing constant that scales g (x; q, u) so that h (x; µ, s, u, q) is continuous at

the switching point u:

a (u, µ, s, q) =
f (u; µ, s)
g (u; q, u)

= f (u; µ, s, u) u1+q

and b (u, µ, s, q) is a normalizing constant that ensures that density h (x; µ, s, u, q) integrates to 1. It can be

expressed as:

b (u, µ, s, q) ⌘ 1
F (u; µ, s) + f (u; µ, s, u) u

q

;

where F (u; µ, s) is cdf of log-normal distribution with parameters (µ, s).

h (x; µ, s, u, q) satisfies the regularity conditions that are necessary for maximum likelihood estimation

and inference. Notice that h (x; µ, s, u, q) nests both log-normal (u  1) and Pareto distribution (u � xmax).

It means that the composite distribution approximates the data at least as well as Pareto and log-normal

Maximizing of h (x; µ, s, u, q) is a two step procedure: first for given u find (µ, s, q). Then choose u such

that maximizes value of the likelihood function. The first step is tricky here: normalizing constants are

functions of the parameters of the distributions and should be taken into account.
11This is another procedure that allows to trim data. I, however, do not recommend to use this approach without making assump-

tions on the distribution of left tail: in this case the procedure will keep just few observations that perfectly fit data
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4.1 Composite Distribution with Bounded Pareto

The derivations above can be easily adapted for the case of bounded Pareto. The new kernel of density

is:

g (x; q, u, v) =
1

xq+1 , v � x � u, q > 0,

where v is the upper bound of bounded Pareto distribution. a (u, µ, s, q) remains the same, while normal-

izing constant b (u, µ, s, q, v) is now equal to:

b (u, µ, s, q, v) ⌘ 1

F (u; µ, s) + f (u; µ, s, u) u
q

⇣

1 �
� u

v
�q
⌘ .

5 Conclusion

In their famous methodological dispute Milton Friedman and Paul Samuelson had opposite views on

how assumptions in theoretical models should be made. Friedman insisted that the main criterion of qual-

ity of theory should be its predictive power, not how realistic assumptions are. Samuelson criticized this

approach (he called it the F-twist) and claimed that theory should describe real world and rely on assump-

tions that make sense.

Both instrumentalism and descriptivism have caveats. Changing assumptions to improve performance

of the model, there is a risk to fix what is not broken and change correct assumption for the wrong one; in

this case mistakes can cancel out and lead to better predictive power of the model. The problem is that the

model with two wrong assumptions is even less reliable than a model with just one.

I believe it is important to know how realistic the assumptions researchers use are. I provide a set of

tools that allow to choose between different distributional assumptions, that is quite debatable question in

international trade. Moreover I propose a new alternative: a distribution that combines strengths of two

most popular distributions. Finally I follow extensive literature that proves that welfare and policy analysis

in international trade should be performed on disaggregated level. Up to now there was no estimates of

supply side parameters on highly disaggregated level. I propose a new way to estimate shape parameters

of Pareto distribution that does not depend on measurement error of trade costs and provide the estimates

under a number of alternative specifications and trimming procedures. Finally I introduce a composite

distribution that combines strengths of two most popular distributions in the literature: Pareto and log-

normal.
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Appendix

Nested Translog Utility

In this part I show that a consumer that has translog preferences for each of K groups of goods and

spends constant share of his income on each group can be represented as translog preferences over all

available goods.

Here I use a translog expenditure function over N goods from Feenstra and Weinstein (2015). In case of

K groups of goods his expenditure function will be:

ln e =
K

Â
k=1

bk

 

a0 +
nk

Â
i=1

aik ln pik +
1
2

nk

Â
i=1

nk

Â
j=1

gijk ln pik ln pjk

!

Where pi is a price of good i, and gij are taste parameters. I consider symmetric case: giik = �g
⇣

1 � 1
nk

⌘

N
nk

<

0, and and gijk =
g
N > 0 for i 6= j.

Where bk is the expenditure share on group of goods k and ÂK
k=1 bk = 1. Then (2) can be re-expressed

as:

ln e = a0 +
K

Â
k=1

nk

Â
i=1

bkaik ln pik +
1
2

K

Â
k=1
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Â
i=1
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Â
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bkgijk ln pik ln pjk

Using symmetry:

ln e = a0 +
K

Â
k=1
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Â
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bkaik ln pik �
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Now assume that number of goods from each group is proportional to its share of consumption, or

gk =
nk
N for 8k. Then we obtain:

ln e = a0 +
K

Â
k=1

nk

Â
i=1

bkaik ln pik �
1
2

K

Â
k=1

nk

Â
i=1

g ln pik ln pik +
1
2

K

Â
k=1

nk

Â
i=1

nk

Â
j=1

g

N
ln pik ln pjk

Then it is translog expenditure function on aggregated level with parameters ai = bkaik, giik = � g(N�1)
N

gijk =
g
N > 0 for i 6= j and i and j from the same group and gijk = 0 for i and j from different groups.
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Bounded and Unbounded Pareto Distributions

I derive shape parameter for both unbounded and bound Pareto distribution cases. In order to save

space, I provide derivations for the bounded case only and then analyze the results for finite and infinitely

large upper bound of the distribution.

Cdf of bounded Pareto with parameters (q, z, z̄) is:

1 � FZ(z) = P(Z > z) =
zq(z�q � z̄�q)

1 � (z/z̄)q
(1)

That can be rewritten as 1 � z�q�(z̄/z)�q

1�(z/z̄)q . The point of this paper is to estimate (q, z, z̄).

Translog Utility Function

Here I estimate shape parameter for translog utility function. This function is often used in international

trade literature. Arkolakis et al. (2010) show the following link between firms’ sales and their productivities:

xij(z) =

"

W

 

z
zij

e

!

� 1

#

gY

Where b is a parameter of translog expenditure function, Âi xij = Yj and W(y) is the Lambert function

defined as the unique solution to xex = y. From the definition of the Lambert function, the inverse Lambert

function W�1(x) is then just W�1(x) = xex. I define market shares of the firms’ as:

sij =
xij(z)

Âi xij
=

xij(z)
Yj

=

"

W

 

z
zij

e

!

� 1

#

g (3)

Starting from here I stop using country of origin and destination subscripts i and j.

Now given that z
z ⇠ Pareto(q, 1, z̄/z) we have to derive the distribution of market shares s. First, re-

express productivity through market shares:

z
z
=

1
e

W�1(
s
g
+ 1) = (

s
g
+ 1)e

s
g (4)

Now combine (1) and (3):

1 � FZ(z) = P(s(
z
z
) >

z
z
)
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and together with (4) it becomes:

1 � FS(s) = P(s(
Z
Z
) >

z
z
) = P(

Z
Z

> (
s
g
+ 1)e

s
g =

⇣

( s
g + 1)e

s
g

⌘�q
� (z̄/z)�q

1 � (z/z̄)q

Rearranging the terms obtain:

FS(s) = 1 �

2

4

( s
g + 1)�qe

�sq
g

1 � (z/z̄)q
� (z̄/z)�q

1 � (z/z̄)q

3

5 (5)

Taking derivative of (5) obtain the expression of pdf of market shares:

fS(s) =
q( s

g + 1)�qe
�sq

g

h

( s
g + 1)�1 + 1

i

1 � (z/z̄)q

1
g

(6)

Log-likelihood function is then:

l(q, z, z̄) = A + n ln q � q Â
i

ln(
si
g
+ 1)� Â

i
(

siq

g
)� n ln

⇣

1 � (z/z̄)q
⌘

(7)

Where A = ln

 

n

h

( s
g +1)�1+1

i

g

!

.

Upper and lower bounds enter only the last term of (7) and for any given value of q the value of log-

likelihood function is decreasing in z/z̄ and, hence, ML-estimates of these parameters should be such that

z/z̄ is as small as possible. Notice that here z/z̄ is the value of upper bound of Pareto distribution with

parameters (q, 1, z/z̄). The smallest possible value of this upper bound should be largest observed draw

from this productivity. As we observe shares rather than productivities, smallest possible value of the

upper bound is determined by the largest observed market share. So, using (4) obtain12:

ˆz/z̄ML =

✓

max
i

⇢

(
si
g
+ 1)e

si
g

�◆�1

and given that the inverse Lambert function is increasing

z̃ ⌘ ˆz/z̄ML =

✓

(
smax

g
+ 1)e

smax
g

◆�1
(8)

where smax is the largest market share observed.

Put (8) in (7) and take the derivative of log-likelihood function with respect to q:
12Here I have assumed that lower bound of the distribution is exogenous parameter of the distribution or is observed. In the model

this lower bound is a complex endogenous object that depends on the shape parameter of the distribution.
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∂l(q, z, z̄)
∂q

=
n
q
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n (z̃)q ln (z̃)

1 � (z̃)q
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And then q̂ML is the solution to the following equation:

n
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◆

+
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(10)

Now let’s show that this solution exists and has asymptotic normal distribution.

Substitute (3) into (10) to get the expression of the estimate through productivities:

n
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And now use the property of the Lambert function that ln W(x) = ln(x)� W(x) and definition of z̃ to

obtain:
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Aban et al. (2006) shows that the estimate of q similar to one in (12) has an asymptotic normal distribu-

tion with asymptotic mean q. Moreover they show that the probability that a solution to the equation (12)

exists converges to 1 as n ! •, and if it exists, then it is unique.

ML-Estimation of few bounded Pareto distributions

Here we assume there is more than one sample from bounded Pareto distribution with the same shape

parameter, but with potentially different upper and lower bounds13. Likelihood function will be then a

product of likelihood functions for each separate sample. From (7) log-likelihood function is equal to:
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Where j = {1, 2, ..., J} denotes country. Rearranging terms obtain:

l(q, z, z̄) = AJ + N ln q � q Â
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(13)

13Lower bound of exporters’ productivities distribution is endogenous in this model , hence this assumption allows to take into
account differences in wages and trade costs between the countries
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Where N is a total number of firms. Notice that for any given values of q and zj/z̄j, j 6= v, minimum

value of zv/z̄v will maximize likelihood function. Thus similarly to (8) ˆzv/ ¯ vzML = (max(sv)
g + 1)e

max(sv)
g . This

is true for any v and hence:
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Taking derivative of (13) with respect to q and combining this expression with (14) we can obtain the

expression similar to (9):
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Where N = Âj nj. q̂ is then a solution to the following equation:
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(15)

Expression (15) is different from expression (10) in two different ways. First, second term is weighed by

a number of firms. Second, second term includes different z̃j for different subsamples. Notice that if nj = ni

and z̃j = z̃i for 8i, j, then expressions (10) and (15) are similar and give the same solution for q̂. The same

would happen if z̃j = z̃i: it is similar to the case when a sample from one distribution is divided by few

unequal subsamples, but all the observations are used to estimate q. Let’s consider the case when nj = ni

and z̃j 6= z̃i for 8i, j. In this case the only term that differs between different subsamples is a second term

on the left hand side: N Âj
(z̃j)

q̂ ln(z̃j)

1�(z̃j)
q̂

. This term appears in the equation as a derivative of a denominator

in expression (6): a term that scales density for given support of the distribution z̃. In other words, this

term takes into account that different subsamples have different support and hence their contribution to

likelihood function is different.

ML-Estimation unbounded Pareto distribution

ML-estimate of unbounded Pareto will be solution to the following equation:
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This expression is similar to expression (10), but without second term on the left hand side that becomes

0 as z̄ ! •. This expression has analytical solution:
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Expression for multiple sub-samples similar to (15) will be then:

N
q̂

= Â
j

Â
i

ln
✓ sij

g
+ 1

◆

+
J
g

(16)

And

q̂ =
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The only difference between expressions (15) and (16) is the second term on the left hand side of (15).

As z̃j<1 for 8j, this term is negative and increases in q̂. It means that estimates of the shape parameter in the

bounded case will be smaller than in the unbounded case. The intuition here is the following: we do not

observe extremely large firms in the data. In case of unbounded Pareto it can be explained by thin tails of

the distribution (high values of the shape parameter), while in bounded case there could be another reason

why extremely large firms are not observed: productivity distribution can be bounded from above14.

14This assumption can be explained by technological limitations, a firm with infinitely large productivity cannot exist in real world
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