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Abstract

This paper examines whether importing has contributed to skill upgrading among Indonesian

plants. Our data records the distribution of years of employee schooling in each plant.

We examine how importing affects the demand for highly educated workers within both

production and non-production occupation categories at the plant level. We estimate a

model of importing and skill-biased technological change in which selection into importing

arises due to unobservable heterogenous returns from importing. We find that importing has

substantially increased the relative demand for educated production workers, but has had

little impact on the demand for educated non-production workers.
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1 Introduction

Workhorse models of international trade almost universally suggest that increased integration

into international markets will encourage resources to be reallocated towards workers, firms,

or industries in which the country has a comparative advantage. In developing countries, for

example, trade liberalization is often supported by the argument that trade will expand in labor-

intensive industries which, in turn, are predicted to increase the relative demand and wages for

unskilled labor. Surprisingly, in many contexts, exactly the opposite has been found. Numerous

studies confirm that among developing countries, trade liberalization has increased the relative

firm-level demand for skilled labour (Sanchez-Paramo and Schady, 2003; Goldberg and Pavcnik,

2007) and, likewise, has caused the skill premium to rise (Harrison and Hanson (1999), Gindling

and Robbins (2001), Attanasio et al. (2004)).1 Despite these stark trends, the underlying cause

of the increased demand for skilled workers, the contribution from trade, and the implications

for income inequality remain key, unresolved issues (Goldberg and Pavcnik, 2005).2

This paper contributes to this literature by examining the impact that importing foreign

materials has on the demand for highly educated workers among Indonesian manufacturing

plants. The idea that importing may affect firm organization or productivity is neither new or

controversial. Rather, it is widely reported that using foreign intermediate goods in production

often requires the plant-level adoption of more sophisticated technology.3 The adoption of foreign

technology, and thus importing in a developing country, is likely to induce further structural

changes within individual manufacturing plants. In fact, there is a rich literature indicating that

the reallocation of workers is strongly related to changes in the demand for skilled labour within

firms, rather than across industries (Berman, Bound, and Griliches, 1994; Bernard and Jensen,

1997; and Biscourp and Kramarz, 2007). We extend this line of research by relating changes in

the relative use of educated workers to observable decisions to import intermediate materials at

the plant-level.

Our data are exceptionally well suited to this objective. Typically, researchers have used

1In contrast, Amiti and Cameron (2012) find that falling input tariffs has caused the wage skill premium within
firms that import their intermediate inputs to fall.

2Our work is likewise related to studies of trade, employment and wages (Trefler, 2004; Gonsaga et al., 2006;
Bernard et al, 2007; Egger and Kreikemeier, 2009; Davis and Harrigan, 2011; Felbermayr et al., 2011; Amiti
and Davis, 2012), and trade, wages and the demand for skilled workers (Bernard and Jensen, 1997; Yeaple, 2005;
Verhoogen, 2008; Fŕıas et al., 2009; Chor, 2010; Helpman et al., 2010; Bustos, 2011; Cosar, 2011; Vannoorenberghe,
2011), and trade, wages and skill-biased technological change (Feenstra and Hanson, 1999; Matsuyama, 2007;
Costinot and Vogel, 2010; Bloom et al., 2011; Burstein and Vogel, 2012; Burstein et al., 2013)

3This is particularly true when it is imported from industrialized nations for which there is substantial evidence
of skill-biased technological change. Doms, Dunne, and Troske (1997) provide evidence that the adoption of new
factory automation technologies lead to skill upgrading. Further, recent literature on trade and heterogeneous
firms suggests that importing foreign intermediate goods increases productivity. See Muendler (2004), Amiti and
Konings (2007), Kasahara and Rodrigue (2008), Halpern, Koren, and Szeidl (2009), and Kugler and Verhoogen
(2009) among others. There is also significant evidence that skill-biased technological change can increase the
skill-premium even in developing countries (e.g., Kijima, 2006). Burstein et al. (2013) provide an alternative
model whereby importing directly induces skill-biased technological change.
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variation in occupation categories, such as non-production or white-collar workers, to construct

a proxy for skilled labor (Bernard and Jensen, 1997; Harrison and Hanson, 1999; Pavcnik,

2003; Biscourp and Kramarz, 2007).4 A major advantage of this study is that it is able to

capture a much more precise measure skill at the plant-level. Specifically, the panel data record

the education-level of every worker in every Indonesian manufacturing plant with at least 20

employees. Moreover, we are able to distinguish the distribution of worker education across non-

production and production workers within each plant. This allows us to disentangle the impact

of importing across broad occupation categories and more precisely characterize the effect of

importing on firms in a developing country. We also evaluate the extent to which our results

would have changed should we have used “conventional” measures of plant-level skill-intensity,

the ratio of non-production workers to production workers, which ignores plant-level differences

in skill and education within each occupation.

Quantifying the impact of importing on the demand for skilled labour requires overcoming

a number of key empirical challenges. First, we are particularly concerned that the demand for

skill and the decision to import are endogenously determined. We exploit detailed information

capturing plant-level shipping costs to major Indonesian ports along with product-level tariff

changes to identify the causal impact of importing on the demand for skilled labour. Using a

variety of instrument sets we are able to capture robust IV estimates of the impact of importing

on the demand for skilled labor.

Second, we are also concerned that the impact of trade on the demand for educated workers

within plants will vary substantially across heterogeneous plants. For instance, importing foreign

intermediate goods may provide plants with an incentive to hire more educated workers, but the

degree of skill-upgrading may depend crucially on the plant’s existing, potentially unobserved,

heterogeneous ability to implement foreign technology. When the effect of importing on the

demand for skill varies across plants, there is no single “effect” of importing on skill demand.

Furthermore, we expect plants with greater ability to adopt technology will self-select into

importing, leading to a difficult selection problem. In such cases, the instrumental variable

(IV) estimator identifies the average effect of importing among plants induced to change their

import status by the instrument (Imbens and Angrist, 1994). We also estimate the model

by applying the treatment effect framework developed by Heckman and Vytlacil (2005, 2007a,

2007b) to identify various summary measures of the impact of importing on the relative demand

4Three important exceptions are Bustos (2011), Koren and Csillag (2011) and Frazer (2013). Using a panel
of Argentinean manufacturing firms with the detailed information on worker’s education level Bustos (2011)
finds that exporting increases the demand for skilled labor, while our results suggest that importing, rather than
exporting, is more important for skill upgrading. Using Hungarian linked employer-employee data, Koren and
Csillag (2011) find that the wage gap between workers with a high school diploma and those with primary schooling
is larger among workers operating imported machines than among workers operating domestic machines. Similarly,
using linked firm and employee data from Rwanda, Frazer (2013) studies the impact of importing intermediate
inputs from low and high income countries on the average wages paid to Rwandan employees. While these
studies focus on the effect of importing on the workers’ wages, we examine the effect of importing on the relative
employment of educated workers to less educated workers at plant-level.
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for skilled labour in the Indonesian manufacturing sector, such as the average effect among all

plants (the average treatment effect; the ATE, hereafter), the average effect among importers

(the treatment effect on the treated; the TT, hereafter), and the average effect among non-

importers (the treatment effect on the untreated; the TUT, hereafter).

Third, while we are able to identify the ATE, the TT and the TUT, it is unclear whether

these objects are of particular interest to the policymaker. For instance, while the TT suggests

that importing had an important impact on the demand for skilled labour among plants that

were induced to import in our sample, it is unclear that further policy change will greatly

affect the demand for skilled labour among new importers. We use the estimation framework

of Carneiro, Heckman, and Vytlacil (2010) to study the impact of further policy changes on the

demand for skilled labor among the set of plants induced to import by the change in policy.

On one hand, we find that importing has had a large impact on the demand for educated

production workers among Indonesian manufacturing plants; across different specifications, our

IV estimates suggest that starting to import strongly increases the demand for skilled labour

among production workers. On the other hand, our IV estimates do not provide robust evidence

for any impact of importing on skill upgrading among non-production workers. Our MTE

estimates not only confirm that starting to import has strongly increased the demand for skilled

production workers but also indicate that not all plants benefit equally from importing. We find

that the ATE, the TT, and the TUT for production workers are significantly positive while the

TT is estimated to be substantially larger than the ATE, which, in turn, is estimated to be larger

than the TUT. Moreover, we find that further policy changes that promote importing would

have substantially increased the demand for skilled production workers among the plants that

would have been induced to start importing. In contrast, we rarely find any significant effect

of importing on the skill composition of non-production workers in our estimates of various

treatment effects. Finally, repeating our experiment ignoring the variation in worker education

across plants, both our IV and MTE results suggest that the effect of importing on the ratio of

non-production to production workers are insignificantly different from zero.

The next section describes our data set and documents the relationship between import-

ing and plant-level skill-intensity. Section 3 describes our empirical model and the nature of

selection. Section 4 describes the empirical results. The last section concludes.

2 Data

2.1 Data Sources

Our primary source of data is the Indonesian manufacturing survey between 1995 and 2007,

where we mainly use the data recorded in the census years 1996 and 2006 because, in these two

years, the Indonesian manufacturing survey records the distribution of academic achievement in
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two distinct occupation categories (non-production vs. production) in each plant. Specifically,

in each plant we observe the number of workers with primary, secondary and post-secondary

education. We use this information to construct the relative skill measures for each occupation

category, which are directly based on the workers’ education levels.

The manufacturing survey covers all manufacturing plants with at least 20 employees. In the

2006 data set, 93 percent of plants are also single-plant firms. The data set captures a wide set

of plant-level characteristics which we use to study the nature of plant-level heterogeneity. In

particular, the survey records all expenditures on imported intermediate materials which we use

to identify the effect of importing on the demand for skilled labor. It also includes key plant-level

input and output variables, such as total revenues, capital stock, domestic materials, necessary

for computing plant-level productivity. Likewise, the survey records plant-level information

including the percentage of sales from exports, the percentage of ownership held by foreign

investors, total plant-level expenses on research and development (R&D), and total plant-level

expenditures on worker training. Appendix A provides a detailed description of our variable

construction.

Naturally, the extent to which a plant is willing to hire skilled workers depends heavily on the

premium it must pay for that worker in its local labor market. Unfortunately, the manufacturing

survey data do not provide a measure of wages by education level. To capture regional (city-

level) variation in the skill premium we augment manufacturing survey with the Indonesian

household survey. The Indonesian household survey covers a nationally representative sample of

households. Each survey documents key labor force information including gender, age, location,

educational attainment and labor force experience among a wide set of additional characteristics.

We use the household survey to develop a measure of the skill premium in each location and

year.

2.2 Importing and Worker Education

Panel A of Table 1 documents plant-level differences in employment across six education-based

(highest attainment) categories: less than primary school, primary school, junior high school,

high school, college graduates and post-graduate educated workers. The top panel compares the

percentage of plant-level employment across importing and non-importing plants in 2006. We

find that importing plants, on average, hire fewer workers in each educational category below

high school and more workers with high-school diplomas, college degrees, or post-graduate train-

ing. For example, 61 percent of workers in importing plants have at least a high school degree,

while only 36 percent of workers in non-importing plants have a high school degree or better.

Columns (8)-(10) further compare associated measures of skill-intensity across importing and

importing plants. “Training/Worker” and “R&D/Worker” report the average per worker ex-

penditures on training and research and development (R&D), respectively, in thousands of 1983
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Indonesian rupiahs while “Non-Prod./All Workers” reports the percentage of non-production

workers in total employment in each plant. We find that the expenditures on training workers

or investing in R&D among importers is more than double what is spent by non-importers on

average. Likewise, importers tend to have a relatively large number of non-production workers in

their plants. Each of these measures strongly suggests that importers are relatively skill-intensive

manufacturing plants when compared to their non-importing counterparts.

Panel A of Table 1 also compiles similar statistics for exporting plants, non-exporting, do-

mestic plants, and foreign-owned plants.5 We observe a number of stark patterns: foreign plants

tend to employ more skilled workers than domestic plants while exporting plants appear skill-

intensive when compared to their non-exporting counterparts. Nonetheless, within each group

we continue to find that importing plants hire a greater percentage of skilled workers, invest more

heavily in R&D and worker training, and tend to use a greater percentage of non-production

workers. Importantly, in any subgroup we begin to see large differences in the hiring patterns

of importing plants at the high school level.

Panel B of Table 1 documents the percentage of total production or non-production em-

ployment in each educational category. Again, importing plants are found to systematically

hire more workers with high school degrees or more and fewer workers with less education than

high school within each of the two occupation categories. Although importers always appear to

be more skill-intensive on average within each occupation category, the mechanism that drives

the correlation between importing and skill-intensity may differ between production and non-

production workers. While the use of imported materials might induce the adoption of new

production processes which in turn requires hiring more skilled production workers, importing

might require substantial increases in the number of non-production workers for trade related

activities such as dealing with customs agents or arranging shipments from foreign countries.

Given the potential for differences in the impact of importing on the demand for skilled workers

across occupation categories, we attempt to disentangle the causal impact of importing on the

demand for skilled workers within each occupation.

While Table 1 demonstrates the rich detail with which our data allow us to characterize

the distribution of skill, they also point to a potentially important limitation. In particular,

many Indonesian plants do not hire any workers with college or post-graduate training in both

occupation categories. As a result, defining a skilled worker as a “college graduate” in this

context would lead to eliminating a significant number of plants which are wholly composed of

unskilled workers. For this reason, we choose to define a skilled worker as one with at least a

high school degree. This definition not only allows us to better exploit the observed variation

in our data, but is also the natural metric for skill given the context in which we conduct our

empirical study. Indonesian high school graduates are exposed to greater logical and quantitative

training (Hendayana et al, 2008). Further, the additional schooling allows high school students

5We classify a plant as foreign plant when at least 10 percent of its equity is held by foreign investors.
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to refine their language skills in standard Indonesian (Bahasa Indonesia) and, for many, the

opportunity to learn to communicate effectively in English (Kam, 2006). These communication

skills are particularly important in this environment since Indonesian dialects vary widely across

the country.

2.3 Instruments

We expect that the decision to import for any given plant is likely to be endogenously determined

with its decision to hire skilled labour. The identification strategy we outline below relies on the

presence of instruments. We consider three instruments: location-specific transport costs and

changes in industry-specific input and output tariffs.

Since we do not observe transport costs to the port directly, we construct the measure of

transport cost for each plant as follows. To incorporate geographical information, we first divide

Indonesia into cells of one kilometer squared and assign a value of 1-10 to each cell, where

“10” is the highest cost (Steepness of Slope, Sea vs. Land). Then, we use ArcGIS to find

the least accumulative-cost path between any plant and its nearest port. Finally, our measure

of transport cost is obtained from the least accumulative-cost after dividing it by the sample

standard deviation.

For the second and the third instruments, we match each plant in our manufacturing survey

to product-level (5-digit ISIC) output and input tariffs constructed by Amiti and Konings (2007).

Full details of the construction of the transportation cost variable as well as further discussion

on the tariff reduction can be found in Appendix A. We use the change in output and input

tariff rates between 1996 and 2001 as our instrument. During our sample period Indonesia was

broadly reducing tariffs across manufacturing industries.

We are concerned that the empirical estimates we find may be biased if the instruments we

use are not exogenous. For the transport cost variable, it is possible that plants with a high-

return from importing will choose to locate closer to ports. To deal with this potential concern

for endogenous location choice, we also consider a sample of plants which initially did not import

in 1996. In this fashion, we can consider the impact of transport costs (and tariffs) on plants

who made their location decision well before they began using imported materials. For tariff

changes, it is possible that tariff rate reductions are set to take advantage of industries where

greater importing will have larger impact on technological adoption and the relative demand

for skilled workers. As argued by Amiti and Konings (2007), however, an advantage of using

the tariff rates during this period is that the reductions are largely driven by the fact that

Indonesia is in the process of joining the WTO and, thus, are relatively likely to be exogenous

to the broader political or economic environment. Nonetheless, in our IV regression, we also

consider specifications which only use our transportation cost variable as the sole instrument to

investigate whether the tariff rates potentially lead to biased estimates.
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3 A Model of Importing and Skill-Biased Technology

Consider a constant elasticity of substitution (CES) production function as follows:

f(Ls, Lu, A, ϕ) = ϕ
{

[ALs]
(σ−1)/σ + L(σ−1)/σ

u

}σ/(σ−1)
, (1)

where Ls is the number of skilled workers, Lu is the number of unskilled workers, σ > 1 is

elasticity of substitution between skilled and unskilled workers, ϕ is a Hicks neutral productivity

term, and A is a skilled labor augmenting technology term. For expositional transparency, we

have purposefully kept the structure as simple as possible here. See Appendix C for our complete

specification of the production function to estimate Hicks-neutral productivity ϕ.

Denote the log of the demand for skilled workers relative to unskilled workers by S ≡
ln(Ls/Lu). Given market wages, the relative demand for skilled workers is determined by equat-

ing the ratio of the marginal product of skilled and unskilled workers to the ratio of their wages

as

S = (σ − 1) lnA− σ ln (Ws/Wu) , (2)

where Ws and Wu are the wages for skilled and unskilled workers, respectively.

To test whether importing increases the relative demand for skilled workers, we allow foreign

imported inputs to affect the level of skilled labor augmenting technology as

(σ − 1) lnA(X,D) = Dβ +Xγ′ + U, (3)

where D is a dummy variable for the use of imported inputs, β is a parameter that captures

the effect of importing on skill-biased technology A, X is a vector of observables, and U is a

skill-biased technology shock. We can then write the relative demand for skilled workers as

S = Dβ +Xγ′ + U, (4)

where, with abuse of notation, the second term on the right hand side of (2), ln (Ws/Wu), is

incorporated into one of the variables in X.

While it is intuitive that importing is an endogenous decision because the import decision D

and skill-biased technology shock U are likely to be correlated, it is also likely that the impact

of importing on skill-biased technology and, thus, the demand for skilled labor will vary across

heterogeneous plants. If we interpret the value of β as the ability for a plant to adopt skill-biased

technology upon importing, the impact of importing on the demand for skilled workers would

be heterogeneous whenever the plants’ ability to adopt foreign technology is heterogeneous.

This too has intuitive consequences for our simple specification: plants with a greater ability to

adopt skilled-biased technology will self-select into importing because they will achieve larger

productivity gains from importing. Because of this positive sorting on the unobserved gain from
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importing, we would expect that the value of β will be greater among plants that choose to

import relative to non-importers.

To examine the nature of the potential bias arising from heterogeneous returns to importing

we extend the benchmark model in (4) by assuming that the coefficient β varies across plants

and we write β = β̄+ε, where β̄ is the mean of β while ε is the plant-specific return to importing.

We assume that ε is unobservable to the researcher but is, at least partially, known to the plant’s

manager. Then, equation (4) is written as

S = [β̄ + ε]D +Xγ′ + U. (5)

Imbens and Angrist (1994) show that, under certain conditions, using a single dummy in-

strument, an IV estimator identifies the local average treatment effect (LATE), or the average

value of β among plants induced change their import choice by the instrument. When multiple

dummy instruments are used, an IV estimator identifies a weighted average of the instrument-

specific LATEs. Therefore, an IV estimator provides an estimate of an interpretable quantity

even when the effect of importing on the demand for skilled workers is heterogenous across

plants, although the LATE is generally different from the average value of β.

3.1 The Import Decision

To better understand how the plant-specific return to importing affects the plant’s import

decision, consider the following static import decision model. Each plant produces in mo-

nopolistically competitive markets with the demand function q = B(Z)p−η, where q is the

quantity demanded, p is the output price, B(Z) is a demand shifter, η is the elasticity of sub-

stitution, and Z is a vector of observed variables containing X and other observables that

serve as instruments. We assume constant returns to scale technology with the marginal

cost determined by c(A,ϕ) = min{Ls,Lu}wsLs + wuLu subject to f(Ls, Lu, A, ϕ) ≥ 1. The

skill biased technology term A depends on X and the import decision D as in (3) but we

assume that importing does not affect the Hicks neutral technology level ϕ.6 If the plant

chooses to import, it incurs a fixed import cost fm(Z). Then plant’s net profit function is

π(A,ϕ,Z,D) = r(A,ϕ,Z)−Dfm(Z), where r(A,ϕ,Z) = maxq pq−c(A,ϕ)q. A firm will import

whenever the net profit from importing is greater than the net profit achieved using domestic

materials alone, π(A(X, 1), ϕ, Z, 1)− π(A(X, 0), ϕ, Z, 0) ≥ 0.

To obtain an empirical specification for the import decision, define the latent variable, D∗, as

D∗ = π(A(X, 1), ϕ, Z, 1)−π(A(X, 0), ϕ, Z, 0) = µD(Z)−V , where µD(Z) = E[π(A(X, 1), ϕ, Z, 1)−
π(A(X, 0), ϕ, Z, 0)|Z] is a deterministic function of observable variables Z while V = [π(A(X, 1), ϕ, Z, 1)−

6The latter is an extreme assumption but a similar argument goes through when the impact of importing on
the skill-biased technology A term is sufficiently large relative to its impact on the Hicks neutral technology level
ϕ.
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π(A(X, 0), ϕ, Z, 0)]− µD(Z) is a mean-zero unobserved stochastic component. Then, we have a

latent variable model of importing:

D∗ = µD(Z)− V, D = 1 if D∗ ≥ 0, D = 0 otherwise. (6)

A plant imports, i.e., D = 1, if D∗ ≥ 0; it does not import otherwise.

The random variable V captures both the idiosyncratic productivity shock ϕ and the ran-

dom components in the skill-biased technology level, ε and U . Since π(A(X, 1), ϕ, Z, 1) −
π(A(X, 0), ϕ, Z, 0) is strictly increasing in the value of ε, the random variables V and ε are

negatively correlated when ε is independent of ϕ and U . This implies that a plant with high

value of ε—a plant which expects large productivity gains from importing—is more likely to

self-select into importing.

3.2 The Marginal Treatment Effect

To evaluate the heterogeneous impact of importing on the demand for skill, we also use the

framework developed by Heckman and Vytlacil (1999, 2005, 2007a, 2007b). Define S1 as the log

of potential demand for skilled labor relative to unskilled labor if the plant chooses to import

and, likewise, let S0 be the log of potential skill demand if the plant chooses not to import. The

relative demand for skilled labor can then be written as

S1 = µ1(X) + U1 and S0 = µ0(X) + U0, (7)

where, allowing for the average value of β to depend on X in (5), µ1(X) ≡ E[S1|X] = β̄(X)+Xγ′

and µ0(X) ≡ E[S1|X] = Xγ′ while U1 = ε + U and U0 = U . The impact of importing on the

demand for skilled workers depends on the plant-specific ability to adopt foreign technology

embedded in imports since S1 − S0 = β̄(X) + U1 − U0.

Now reconsider our simple latent variable model (6) for the decision to import. The dis-

tribution of V , denoted by FV , is assumed to be continuous and strictly increasing. Further,

we allow V to be dependent on U1 and U0; as discussed in section 3.1, we expect that a plant

with a larger value of U1 − U0 = ε will gain more from importing due to greater returns from

foreign technology, and hence the value of V is low. In other words, E[U1 − U0|V ] is decreas-

ing in V . Let P (Z) denote the probability of importing conditional on Z so that P (Z) =

Prob(µD(Z) > V ) = FV (µD(Z)). If we define a uniform random variable UD ≡ FV (V ), the

import decision (6) is alternatively written as D = 1 if P (Z) ≥ UD and D = 0 otherwise. Note

that since E[U1 −U0|V ] is strictly decreasing in V , so is E[U1 −U0|UD] in UD. Then, we define

the marginal treatment effect (MTE) as

∆MTE(x, p) = E[S1 − S0|X = x, UD = p] = E[β̄(X) + U1 − U0|X = x, UD = p]. (8)
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This is the mean treatment effect for plants with X = x and P (Z) = p when UD = p. That is,

it is the mean impact from importing on the demand for skilled labor among plants with X = x

and P (Z) = p when the realization of the unobserved random variable UD is such that the plant

is just indifferent between importing and not importing.

A key advantage of the MTE is that it allows us to compute all the conventional treat-

ment parameters, such as the ATE, the TT, and the TUT, as weighted averages of the MTE,

each computed with a different weighting function (see Heckman and Vytlacil (2005, 2007a,

2007b)). We estimate the MTE and treatment parameters following a procedure similar to

that of Carneiro, Heckman, and Vytlacil (2011). Because the support of P for each value

of X is small, as in Carneiro, Heckman, and Vytlacil (2011), we assume that (X,Z) is in-

dependent of (U1, U0, UD). Then, the MTE can be identified within the support of P (Z) as

∆MTE(x, p) = β̄(x) + E[U1 − U0|UD = p], where the term β̄(x) represents the average treat-

ment effect when X = x while E[U1 − U0|UD = p] represents the component of the MTE that

depends on UD. Because X is a high-dimensional vector, allowing the value of β̄ to depend on

all variables in X leads to imprecise estimates of β̄(X). We set β̄(X) = X̃ ′θ, where X̃ contains

the log of each skill ratio in 1996, log(Ljs/L
j
u)1996, and includes dummies for plants that did not

hire any skilled or unskilled workers, djs = 1(Ljs = 0) and dju = 1(Lju = 0) in 1996.7 Then,

E[S|X = x, P (Z) = p] = x′γ + px̃′δ +K(p), ∆MTE(x, p) = x̃′δ +K ′(p), (9)

where K(p) = E[U1 − U0|UD ≤ p]p and K ′(p) is the first derivative of K(p). We estimate γ,

δ, and K(p) by a partially linear regression of S on X and P (Z) (Robinson, 1988) with local

polynomial regressions as described in Appendix B.

4 Empirical Results

4.1 Definitions of Variables and Sample Selection

All outcome variables and most explanatory variables are measured in 2006. The lagged value of

outcome variables are also included in the set of explanatory variables so that our sample consist

of plants that are present in both the 1996 and 2006 data sets. The definitions of variables and

their descriptive statistics are reported in Appendix D.

We consider five different outcome variables for S. Our first two measures, ln (Lps/L
p
u)06 and

ln (Lns /L
n
u)06, directly capture the number of skilled workers within each occupation category

where Ljs and Lju are the number of skilled workers and unskilled workers, respectively, employed

in occupation j ∈ {p, n}, the subscripts “p” and “n” distinguish production and non-production

7When we estimated (9) by setting X̃ equal to all variables in X except for the local wage ratio, industry
dummies, and province dummies, we found that the interaction term between the propensity score and the lagged
value of the outcome variable in 1996 were estimated significantly across different samples while the interaction
terms with other variables in X were insignificant.
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workers, respectively, and the subscript “06” indicates that a variable is measured in 2006.

As before, we define a skilled worker as one with at least a high school degree. The next

two outcome variables, (WsL
p
s/(WsL

p
s +WuL

p
u))06 and (WsL

n
s /(WsL

n
s +WuL

n
u))06, measure the

ratio of skilled workers’ wages to the total wage bill in each occupation category, where Ws and

Wu represent local market wages for skilled workers and unskilled workers, respectively. A non-

trivial number of plants do not hire any skilled workers in each occupation. When the log of the

ratio of skilled workers to unskilled workers is used as an outcome variable, we simply ignore

these plants for which we cannot compute the outcome variable. However, this omission itself

may generate selection bias. Therefore, we consider the skilled worker’s wage share in the total

wage bill for occupation j, WsL
j
s/(WsL

j
s + WuL

j
u), as an alternative outcome variable, which

is related to changes in the skill-biased technology parameter, A/(1 + A), when we take the

limit of σ → 1 in production function (1). We also consider the ratio of non-production workers

to production workers, ln ((Lns + Lnu)/(Lps + Lpu))06, which is often used as a measure of skill

intensity in the existing literature.

To control for the initial level of skilled biased technology in 1996, X includes the lagged

value of the outcome variable in 1996, denoted by using the subscript “96” in place of “06,” and

dummy variables for plants that did not hire any skilled or unskilled workers in each occupation

in 1996, denoted by djs,96 and dju,96 for j = p, n. Here, we assume that the lagged outcome

variable, say, ln (Lps/L
p
u)96 takes a value equal to zero when either Lps = 0 or Lpu = 0. We also

include capital stock in X to control for possible capital-skill complementarity. In addition, X

contains the plant’s current export status, our estimate of Hicks-neutral productivity ϕ, the

local skilled-unskilled wage ratio,8 a large set of dummy variables to capture differences across

foreign ownership, R&D expenditures, worker training expenditures, industries and provinces.

Using an extended version of production function (1), we estimate a model consistent measure

of Hicks-neutral productivity ϕ based on the frameworks developed by Olley and Pakes (1996),

Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer (2006) and Gandhi, Navarro and

Rivers (2013) as described in Appendix C. For robustness, we also estimated a conventional

measure of TFP from a standard Cobb-Douglas production function and used this in place of

our Hicks-neutral productivity measure. Finally, Z\X includes our instruments.

4.2 IV Results

4.2.1 Production Workers and Non-Production Workers

Table 2 presents the results from estimating equation (4) by OLS and IV when we use the

log of the ratio of skilled production to unskilled production workers as its dependent variable.

Columns (1)-(4) report the results for the full sample while columns (5)-(8) report those for the

8The wage ratio is measured through a series of Mincer regressions described in Appendix A. We proceed in
this fashion so to isolate the local difference in wages due to education alone, rather than have differences reflect
differences in demographics, experience, etc across regions.

11



sample of initial non-importers. Using only the sample of plants that were not importing in 1996

allows us to consider the impact of transport costs on plants who made their location decision

before they began using imported materials.

As reported in columns (1) and (5), the OLS point estimate suggests that importing signifi-

cantly increases the relative demand for skilled workers within the production occupation by 25

log basis points. Columns (2)-(4) and (6)-(8) report the results from IV regressions using differ-

ent sets of IVs. For columns (2) and (6), we use a single dummy instrumental variable, denoted

by dTC , that takes a value equal to 1 if the transport cost is less than its median value; columns

(3) and (7) use our continuous measure of transport cost as an instrument while columns (4) and

(8) use transport cost, the change in output tariffs, the change in input tariffs, and interactions

between transport cost and tariff measures as instruments. The first stage regression indicates

that transportation costs are always a strong predictor of import behavior while output tariffs

are good predictors of export behavior. See Table D.3 in Appendix D.

Across different sets of IVs and different samples, our IV estimates are larger than the OLS

estimate by an order of magnitude; for the full sample, the point estimates on importing range

between 2.49-2.61 indicating that importing increases the relative demand for skilled workers

within the production occupation by over 200 percent. In a “standard” case where we assume

that there is no heterogeneity in β in (4), the finding that the IV estimate is much larger than

the OLS estimate could be viewed as puzzling since the OLS bias may likely be upward in this

case. When the coefficient β is random, however, the finding of the large IV estimate is less

puzzling because the IV estimator identifies the local average treatment effect.

In columns (2) and (6), we may interpret our IV estimate as the estimated average value

of β among plants induced change their import choice when we counterfactually change their

values of the discrete instrumental variable dTC . Our results suggest that, on average, only

those plants with very high values of β—interpreted as plants with a better ability to adopt skill

biased technology—choose to change their import status in response to the change in transport

cost. When we use continuous instrumental variables in columns (3)-(4) and (7)-(8), we find

similar IV estimates to those from using dTC as an instrument alone.

The control variables in Table 2 generally report consistent and intuitive coefficients. The

estimated coefficients on plant-level export status are often negative, which reflects the fact

that Indonesia has a comparative advantage in unskilled-labor intensive goods. The significant

positive capital and training coefficients indicate both capital and training are complementary

to hiring skilled labor. On the other hand, foreign ownership is often negatively associated with

the demand for skilled labor, suggesting that foreign ownership is a substitute for skill-intensive

production processes (e.g. by offshoring the skill-intensive portion of production abroad). The

estimated coefficient on Hicks-neutral productivity ϕ is negative, which suggests a trade-off

between the adoption of skill-biased technology and the adoption of technology that is unbiased

across skill differences. The estimated coefficient on the lagged value of the outcome variable is
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positive and significant, reflecting either the persistence of unobserved characteristics that affect

the plant’s demand for skills or the presence of adjustment costs associated with changing the

plant’s skill ratio. The coefficient on relative wages is negative, as expected, but insignificant.

Table 3 reports a number of robustness checks for the IV results using the sample of initial

non-importers. First, ignoring the endogeneity of the plant’s export decision may lead to the bias

in the estimated coefficient on import status given the evidence that importing and exporting are

closely related activities (see Kasahara and Lapham, 2013). To examine this issue, we estimate

the skill equation using the subsample of plants that do not export either in 1996 or 2006, as

well as by instrumenting both import and export status using the subsample of plants that did

not export in 1996; we find that the point estimates for importing remain significantly positive

in all cases as reported in columns (1)-(4) of Table 3. Second, across different sets of IVs, we

continue to find a significant and positive effect of importing when we use conventional TFP in

place of our estimated Hicks-neutral productivity as reported in columns (5) and (6).9 Third,

we use the skilled labor share of the production wage bill, WsL
p
s

WsL
p
s+WuL

p
u

, in place of the log skill

ratio as our outcome variable and find that importing is predicted to have a large, positive

and significant impact on the relative demand for skilled production workers in most cases as

reported in columns (7)-(13) of Table 3.

To examine the effect of importing on the relative skill demand among non-production work-

ers, we have repeated the same set of exercises as in Tables 2-3 using the variables defined

in terms of non-production workers in place of those defined in terms of production workers.

Table 4 reports the summary of results. In columns (3)-(4) of Panel A in Table 4, importing

appears to have a large significant impact on demand for skilled non-production workers when

we study the sample which includes both 1996 importing and non-importing plants. However,

when we examine the sample of initial non-importers the result is sensitive to the choice of IVs

and outcome variables as well as conditioning on export status; in Panel B of Table 4, where we

examine the robustness of the results, we find no evidence for the positive effect of importing on

the relative skill demand among non-production workers. Table 5 reports the results when we

use the log of the ratio of non-production to production workers in place of the log of the ratio of

skilled workers to unskilled workers within each occupation category. In this case the dependent

variable no longer accounts for any (within-occupation) education differences. Across different

samples and instrument sets, no significant relationship between importing and the demand

for skilled labor is ever found. We highlight this feature of our results because it is strongly

indicative of the importance of using an education-based measure of skill when considering the

9Hicks-neutral productivity is estimated to take a negative coefficient in Table 2, while our naively estimated
TFP takes the opposite sign in column (1) of Table 3. While these results may seem contradictory, they are in
fact exactly what we should expect in this instance. By ignoring the skill-biased component of productivity, the
conventional TFP measure confuses both the skill-biased and Hicks-neutral components and, as a result, is likely
to be positively correlated with the demand for skilled labour. In contrast, the Hicks-neutral productivity term we
estimate disentangles these two components of productivity. Plants with larger values of skill-biased productivity
will naturally be more likely to have smaller measured Hicks-neutral productivity, ceteris paribus.
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impact of trade on the demand for skilled labor.

4.2.2 Discussion

Although we have presented evidence that importing leads to an increase in the demand for skill

among production workers, the mechanism behind this result has been largely uninvestigated

thus far. As we discussed, one plausible mechanism is that importing induces the adoption of

skill-biased technology. While there is no direct data on foreign technology adoption, our data set

includes a variable which captures whether a plant adopts a standardized production process,

such as those recognized by the International Organization for Standardization (ISO) or the

International Electrotechnical Commission (IEC).10 The use of standards may allow Indonesian

plants to have better communication with foreign suppliers, facilitating the adoption of foreign

skill-biased technology.

In columns (1)-(4) of Table 6, we estimate the effect of standards on the skill ratio among

production workers with the sub-sample of initial non-importers using the same specifications as

in columns (1)-(4) of Table 3, respectively, but replacing the import dummy with a dummy for

standardization, where we control for the history of export status since standardization is likely

to be closely associated with exporting activities.11 The results in columns (1)-(4) indicate that

the adoption of standards significantly increases the demand for skilled production workers. We

also estimate a linear probability model for standardization while instrumenting import (and

export) decisions using IVs in columns (5)-(7) of Table 6 and find that importing significantly

increases the probability of the adoption of standards. These findings reflect that importing is

likely associated with the adoption of technology and that the adoption of technology in turn

leads to an increase in the demand for skilled labor.

Feenstra and Hanson (1996, 1997) present a model with a continuum of goods that high-

lights another mechanism through which trade liberalization possibly increases the demand for

skilled labor in developing countries. In the model, the most skill-intensive goods in developing

countries correspond to the least skill-intensive goods in developed countries, and trade liberal-

ization induces the most skill-intensive goods in developing countries to be exported to developed

countries, leading to an increase in the demand for skilled labor in developing countries.

We examine the following two hypotheses that are broadly consistent with the implications

of Feenstra and Hanson’s model. The first hypothesis is that a plant that starts exporting after

10Specifically, the survey question asks “Does this establishment use standard of production process?” with the
following list of standards: ISO (International Organisation for Standardization), IEC (International Electrotech-
nical Commission), ITU (International Telecommunication Union), CAC (Codex Alimentarius Commission),
AFNOR (Association Francaise de Normalisation), ANSI (American National Standard Institute), BIS (Bureau of
India Standard), BSI (British Standards Insitution), DIN (Deutshes Institute for Nonnung ev), JISC (Japanese In-
dustrial Standartds Commitee), SAL (Standards Australia), SNI (Standar Nasional Indonesia), ASTM (American
Society for Testing and Material), ASME (American Standard of Mechanical Engineering), and NFPA (National
Fire Protection Association). Unfortunately, no further information on which standards are used is available.

11The transport cost is a strong predictor of the use of standards. See Table D.3 in Appendix D.
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trade liberalization must produce skill-intensive goods so that their demand for skilled labor is

higher than other plants. The second hypothesis is that the higher the initial level of skills, the

more likely it is that the plant starts exporting after trade liberalization. Table 7 shows that

neither of these hypotheses appear to hold in our Indonesian plant-level data. Columns (1)-(2)

of Table 7 report the estimated effect of exporting on the skill ratio among production workers

using the sample of initial non-exporters that do not import in 1996 or 2006 when we instrument

exporting, while column (3) reports the same estimate when we instrument both importing and

exporting using the sample of plants that do not export or import in 1996, but possibly do so in

2006. We find no evidence that plants that start exporting between 1996 and 2006 increase the

demand for skilled production workers conditional on the history of import status. Further, by

regressing an export dummy in 2006 on the log of skill ratio among production workers in 1996,

columns (4)-(6) of Table 7 show that the initial level of skill intensity among production workers

does not have any predictive power for export status in 2006. These results indicate that the

mechanisms suggested by Feenstra and Hanson model do not appear relevant for explaining the

observed skill upgrading in Indonesia.

4.3 The Demand for Skill: Marginal Treatment Effects

4.3.1 Propensity Scores and the Skill Demand Equation (9)

For brevity, we focus on the estimates of import decisions and the skill demand equation (9)

for the sample of production workers. We estimate the import probabilities for each plant using

a logit specification where we include the interaction terms between the lagged value of the

outcome variable in 1996 and instruments as additional explanatory variables. Table 8 reports

the estimate of the coefficient and marginal derivative for each variable with bootstrapped

standard errors for the full sample and the sample of initial non-importers.12 We find that

transport costs are always a strong predictor of importing. Furthermore, we find that productive

and capital-intensive plants, foreign-owned plants, research-active plants, exporters and plants

that are training employees in the current period are more likely to import.

Figure 1 plots the distribution of estimated propensity scores for importing and non-importing

plants in both the full sample and the subsample of initial non-importers. It is evident that the

common support of the propensity scores across importing and non-importing plants does not

span the full unit interval. For this reason, we restrict our computation of treatment effects to

the region where there is significant overlap between the propensity scores of non-importing and

importing plants as reported in the second to the last row of Table 10; specifically, treatment

effects are computed over the region with the minimum and maximum values given by the 1st

12The sample excludes plants that belong to a 3-digit ISIC industry or province within which there is no variation
in import status because, in such cases, the estimated coefficient of the corresponding industry or province dummy
in the logit model would be either infinity or minus infinity.
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percentile and the 99th percentile values of estimated propensity scores for which we have com-

mon support, respectively. Because there are very few non-importing plants with propensity

scores beyond the upper bound of this range, it is difficult to apply nonparametric methods and

confidently estimate the MTE outside of this range.

Table 9 reports the estimates of the parameter γ and δ in the skill demand equation (9)

using the sample of plants for which the outcome variable is measurable and for which the

estimated propensity scores are on the estimated common support. Notably, the coefficient of

the interaction term between the lagged value of the log of the skill ratio and the propensity score

is negative and significant. Because various treatment effects can be written as the weighted

averages of the MTE, this implies that plants with higher initial skill ratios tend to find that

importing has a lower impact on their demand for skilled production workers. One possible

interpretation is that plants with high initial skill ratios may have already adopted relatively skill-

biased technology and, as a result, further adoption of foreign technology induced by importing

may not substantially increase their demand for skilled workers. The estimates of the other

explanatory variables are largely similar to those of the IV regressions reported in Table 2.

4.3.2 Treatment Effects for Production and Non-production Workers

Figure 2 plots the relationships between the MTE for production workers or non-production

workers and UD along with 90 percent (equal-tailed) bootstrap confidence bands, where the

import decision model is estimated for each bootstrap sample so that the first stage estimation

error is taken into account. As shown in Figure 2(a)(b), the estimated MTE curve for production

workers is well above zero for small values of UD and is downward sloping in both the full sample

and the sample of initial non-importers. These findings indicate that among plants with a high

incentive to import due to unobserved characteristics (i.e., a high value of UD), importing

has a greater impact on the demand for skilled production workers (i.e., a higher value of

ε = U1 − U0) than those with low values of UD. In contrast, when we restrict the sample to

initial non-importers in Figure 2(d), the estimated MTE curve for non-production workers is not

significantly different from zero across all values of UD. That is, our findings do not indicate any

statistically significant impact of importing on skill upgrading within non-production workers.

Table 10 reports the estimates of various summary measures of the impact of importing on

skill demand: the ATE, the TT, the TUT, and policy relevant treatment effects (the MPRTEs

and the PRTE), where these treatment effects are computed as the weighted averages of the

MTE with weights that integrate to one in the restricted support reported in the second to last

row of Table 10. Appendix B discusses the details of our estimation procedure while Appendix

D reports the estimated weights for computing different treatment parameters.

The first four columns of Table 10 report the estimated treatment effects for production

workers using the log of the production skill ratio or the wage share of skilled workers among
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production workers as outcome variables. Bootstrap standard errors and the 90 percent equal-

tailed bootstrap confidence interval are reported in square brackets and in parentheses, respec-

tively. The ATE, the TT, and the TUT for production workers are estimated to be positive and

statistically significant, indicating that importing increases the demand for educated workers

within production workers across different groups of plants. Furthermore, the TT is estimated

to be substantially larger than the ATE which, in turn, is substantially larger than the TUT.

This suggests that there might be substantial unobserved heterogeneity in the effect of import-

ing on skill demand across plants. While plants that were induced to import witnessed large

increases in the demand for skilled production workers, the impact of importing on the demand

for skilled production workers is substantially smaller for plants that chose not to import.

In contrast, as the last four columns of Table 10 show, the estimated treatment effects for

non-production workers vary substantially across samples and measures of skill demand. Given

the potential concern with using transport costs as our instrument in the full sample, the results

from the subsample of initial non-importers reported in columns (6) and (8) may be preferable;

these results consistently indicate that the ATE, the TT, and the TUT are not significantly

different from zero.

Table 11 examines the robustness of our results using different samples, specifications, and

estimation methods, where we focus on the log of the skill ratio for production workers as the

outcome variable and always use the sample of initial non-importers. In column (1), we estimate

the treatment effects using the subsample of plants that did not export in both 1996 and 2006

to control for the history of export status, where, according to the bootstrapped confidence

intervals, the ATE, the TT, and the TUT are significantly positive at the 10 percent value.

Column (2) reports the estimates of treatment effects when we use conventional TFP in place

of our estimated Hicks-neutral productivity. In this case, the treatment effects are smaller than

the baseline case and insignificant for the ATE and the TUT. Because the conventional TFP

measure is likely to be positively correlated with skill-biased productivity, the use of TFP in place

of Hicks-neutral productivity could have lead to a downward bias in the estimated treatment

effects.

In column (3) of Table 11, we estimate the partial linear model (9) where we use a sieve

estimator based on the 4th order polynomials in P (Z) instead of the local polynomial estimator

as discussed in Appendix B. Column (4) considers a specification of the skill demand equation

(9) with no interactions with Z so that X̃ is empty while column (5) estimates treatment effects

over the estimated common support instead of the subset of common support defined by the

1st percentile and the 99th percentile of observations that are on the common support.13 The

estimates of the ATE, the TT, and the TUT in columns (3)-(5) of Table 11 are significantly

13To estimate the treatment effects reported in Table 11, we use the same specification for the decision to
import as the specification reported in Table 8 except that, in column (4), we exclude the interaction terms
between instruments and the 1996 value of the log of skill ratio from the set of explanatory variables.
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positive and exhibit the patterns similar to those reported in column (2) of Table 10.

4.3.3 Policy Experiment

Our IV and MTE estimates confirm that importing has a substantial impact on the demand for

skilled production workers. Nonetheless, it is less clear how large the effect of further changes

in policy related variables would be on the demand for skilled production workers. To examine

this issue, we consider alternative policies that change the probability of importing but do not

affect potential outcomes or the unobservables related to import decisions, (S0, S1, V ) defined

in (6)-(7), and compute the mean effect of going from a baseline policy to an alternative policy

per plant shifted into importing. This treatment effect is called the Policy Relevant Treatment

Effect (PRTE) proposed by Heckman and Vytlacil (2005, 2007b). Let P ∗(Z) and P (Z) denote

the propensity scores under an alternative policy and a baseline policy, respectively.

We consider the alternative policy of reducing the cost of shipping goods to the nearest port

by 1 percent so that P ∗(Z) is set to the propensity score under the alternative transport cost

of TC∗ = 0.99TC. The PRTE under this alternative policy captures the causal impact that a

marginal improvement in roads and infrastructure would have on the relative demand for skilled

workers across plants. Note that this policy change will have a heterogeneous impact across

plants. We compute the estimate of what the PRTE would be when we restrict the support

of the propensity scores to the restricted support reported in the second to the last row of

Table 10.14 We also compute the marginal version of PRTE called the Marginal Policy Relevant

Treatment Effect (MPRTE) proposed by Carneiro, Heckman, and Vytlacil (2010). Given a

sequence of alternative policies indexed by a scalar variable α such that limα→0 P
∗
α(Z) = P (Z),

the MPRTE is defined as the limit of a sequence of PRTEs as α approaches to zero. We consider

two policy sequences as described in Carneiro, Heckman, and Vytlacil (2010): (i) a policy that

increases the probability of importing by α so that P ∗α = P + α and (ii) a policy that shifts one

of the components in Z, say Zk, so that Zkα = Zk + α.

As reported in columns (1)-(4) of the lower panel of Tables 10, the estimates of the MPRTEs

and the PRTE for production workers indicate that the subset of plants that would be induced

to start importing by further policy change would substantially increase their demand for skilled

production workers. These estimates are not sensitive to changes in specifications, samples, and

estimation methods on the whole as shown in the lower panel of Table 11. In contrast, for non-

production workers, the results of the PRTE and the MPRTEs are mixed at best as reported in

columns (5)-(8) of Tables 10.

14As discussed in Carneiro, Heckman, and Vytlacil (2010), the PRTE is not identifiable without strong support
conditions. To compute the estimate of what PRTE would be on the restricted support, we replace the value of
the propensity scores with the maximum value of the support whenever the value of the propensity scores under
the alternative policy is larger than the maximum value of the restricted support so that all of the propensity
scores under the alternative policy lies on the restricted support.
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4.3.4 Discussion

Consistent with our IV results, we find strong evidence that importing has a large and significant

impact on the relative demand for skilled production workers, but little evidence that importing

affects the demand for skill among non-production workers. To examine whether skill demand

is related to the adoption of technology, we also estimated the treatment effects of adopting

standard production processes, where we replace the import dummy with a dummy for the

adoption of standards while using the sample of initial non-importers which did not export in

1996 or 2006. As reported in column (6) of Table 11, the TT is estimated to be substantially

larger than the ATE or the TUT while the estimates for the PRTE and the MPRTEs indicate

that further policy change which promotes the adoption of standards would have a substantial

impact on the demand for skilled production workers.

Last, we again check if we would have made broadly different conclusions if we had only

used production and non-production data without education level data as typically done in

prior research. Using the log of the ratio of non-production workers to production workers as

the outcome variable with the sample of initial non-importers, we find no effect of importing on

the relative demand for non-production workers; the ATE, the TT, the TUT, the PRTE, and the

MPRTEs are not significantly different from zero while the estimated MTE curve is nearly flat

and the confidence band is wide and includes zero. See Table D.6 and Figure D.2 in Appendix

D. Our findings indicate that while importing does have a large, economically important and

statistically significant impact on the demand for skilled production workers, it is possible, even

likely, that without sufficiently disaggregated data we may misleadingly conclude that importing

has little impact on plant-level skill-demand.

5 Conclusion

This paper studies the impact that importing foreign materials has on the demand for educated

workers among Indonesian manufacturing plants. We develop a model of heterogeneous manu-

facturing plants where the decision to import may be influenced by the return from importing

through the adoption of skill-biased technology, where the degree to which importing induces

skill-biased technological change is potentially heterogenous across plants and unobservable to

the researcher. To the extent that importing affects skill-biased productivity we would expect

that it will directly impact mix of skilled and unskilled workers hired by Indonesian manufac-

turers.

To estimate the impact of importing on the demand for skilled workers we exploit detailed

data from the Indonesian manufacturing survey. Our data documents the education level of

every worker in every manufacturing plant with at least 20 employees. Defining a skilled worker

as one with a high school education we find that importing greatly increases the demand for
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skilled production workers among Indonesian importers. In contrast, importing is rarely found

to have a significant impact on the relative demand for skilled non-production workers. We

also document significant evidence that the impact of importing on the demand for skilled

production workers is heterogeneous across plants. In particular, plants which were induced to

import during our sample period were estimated to be those with generally high returns from

importing.

We further find that policies that improve transportation infrastructure in Indonesia would

encourage new plants to start importing and increase the demand for skilled production work-

ers among those new importers. Notably, however, when we repeat any of our experiments

using a conventional measure of relative skill demand, defined as the ratio of non-production to

production workers, we do not find any impact of importing on the demand for skilled labor.
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Table 1: Importing and Skill Intensity 2006

Panel A: All Workers
Highest Degree Completed/Fraction

No Jr. Grad. Training R&D Non-Prod. No. of

Primary Primary High High College School Worker Worker All Workers Obs.
All Plants

Importers 0.015 0.071 0.302 0.538 0.073 0.0006 70.9 73.8 0.184 5,512
(0.075) (0.171) (0.218) (0.237) (0.093) (0.004) (724.4) (1037.1) (0.151)

Non-Importers 0.059 0.275 0.306 0.323 0.036 0.0003 23.2 17.8 0.135 23,952
(0.151) (0.302) (0.248) (0.295) (0.078) (0.005) (570.0) (294.4) (0.163)

Exporting Plants
Importers 0.007 0.069 0.222 0.609 0.091 0.0011 150.7 158.2 0.184 1,519

(0.044) (0.124) (0.208) (0.235) (0.103) (0.0065) (1,310.4) (1,826.3) (0.159)
Non-Importers 0.030 0.190 0.293 0.437 0.050 0.0003 65.0 46.5 0.150 3,690

(0.102) (0.239) (0.227) (0.292) (0.075) (0.0034) (1,141.0) (613.4) (0.160)
Non-Exporting Plants

Importers 0.018 0.072 0.333 0.511 0.066 0.0004 40.6 41.6 0.184 3,993
(0.084) (0.186) (0.214) (0.232) (0.088) (0.0031) (260.8) (461.2) (0.148)

Non-Importers 0.065 0.291 0.309 0.302 0.033 0.0002 15.6 12.6 0.132 20,262
(0.158) (0.309) (0.252) (0.291) (0.078) (0.0056) (383.0) (183.9) (0.163)

Foreign-Owned Plants
Importers 0.008 0.070 0.170 0.651 0.099 0.0015 176.4 360.0 0.196 303

(0.045) (0.111) (0.183) (0.238) (0.108) (0.0054) (744.1) (3,726.2) (0.177)
Non-Importers 0.023 0.130 0.208 0.555 0.083 0.0007 59.9 111.5 0.178 376

(0.086) (0.185) (0.205) (0.294) (0.108) (0.0038) (337.6) (843.4) (0.158)
Domestic Plants

Importers 0.037 0.170 0.199 0.513 0.080 0.0012 115.4 100.6 0.179 2,178
(0.115) (0.235) (0.203) (0.311) (0.104) (0.0065) (1103.6) (768.8) (0.170)

Non-Importers 0.071 0.329 0.276 0.291 0.033 0.0003 26.7 19.3 0.129 19,896
(0.163) (0.303) (0.240) (0.301) (0.080) (0.0058) (623.5) (301.2) (0.164)

Panel B: Production vs. Non-Production Workers
Production Workers Non-Production Workers

Less than Jr. College Less than Jr. College
Primary Primary High High Grad. Primary Primary High High Grad.

All Plants
Importers 0.016 0.078 0.328 0.544 0.035 0.002 0.018 0.168 0.566 0.245

(0.077) (0.182) (0.234) (0.264) (0.071) (0.037) (0.092) (0.204) (0.236) (0.232)
Non-Importers 0.061 0.290 0.324 0.309 0.017 0.017 0.085 0.193 0.534 0.172

(0.156) (0.314) (0.267) (0.315) (0.065) (0.107) (0.232) (0.288) (0.352) (0.257)
Exporting Plants

Importers 0.008 0.081 0.240 0.627 0.044 0.003 0.024 0.104 0.529 0.340
(0.046) (0.144) (0.225) (0.266) (0.084) (0.026) (0.086) (0.157) (0.254) (0.271)

Non-Importers 0.030 0.206 0.314 0.429 0.021 0.013 0.053 0.133 0.543 0.258
(0.104) (0.256) (0.247) (0.320) (0.060) (0.091) (0.166) (0.223) (0.322) (0.292)

Non-Exporting Plants
Importers 0.018 0.077 0.361 0.513 0.031 0.002 0.016 0.194 0.581 0.207

(0.086) (0.195) (0.229) (0.256) (0.066) (0.040) (0.094) (0.215) (0.227) (0.203)
Non-Importers 0.067 0.305 0.326 0.287 0.016 0.018 0.091 0.206 0.532 0.154

(0.163) (0.322) (0.270) (0.309) (0.066) (0.110) (0.244) (0.298) (0.358) (0.245)
Foreign-Owned Plants

Importers 0.009 0.084 0.181 0.686 0.041 0.004 0.023 0.074 0.498 0.401
(0.044) (0.134) (0.200) (0.269) (0.085) (0.039) (0.075) (0.136) (0.276) (0.299)

Non-Importers 0.023 0.145 0.229 0.564 0.038 0.012 0.034 0.102 0.506 0.346
(0.085) (0.208) (0.227) (0.336) (0.100) (0.081) (0.116) (0.198) (0.334) (0.330)

Domestic Plants
Importers 0.038 0.185 0.216 0.521 0.039 0.006 0.048 0.099 0.539 0.308

(0.118) (0.248) (0.225) (0.343) (0.086) (0.060) (0.146) (0.194) (0.296) (0.281)
Non-Importers 0.073 0.346 0.290 0.275 0.016 0.021 0.107 0.168 0.529 0.175

(0.168) (0.315) (0.260) (0.320) (0.068) (0.120) (0.257) (0.287) (0.376) (0.273)

Notes: Standard deviations are in parentheses. The first column indicates current import status, where “importers”

denotes plants that import and “non-importers” captures plants that do not import in the current year. The first panel

pools all plants in all years. The second and third panel split the sample by export status, while the fourth and fifth

panels split the sample by the country of ownership. Specifically, foreign-owned plants are defined as those plants where at

least 10% of equity is held by foreign investors while domestic plants are defined as plants for which at least 90% of equity

is held by domestic investors.
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Table 2: Skill Demand Equation for Production Workers

Dependent Variable: ln(Lps/L
p
u)06

Full Sample Sample of Initial Non-importers (D96 = 0)

(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV Import IV Import IV Import OLS IV Import IV Import IV Import

using using using using using using

dTC TC (TC, ∆τm, ∆τy) dTC TC (TC, ∆τm, ∆τy)

Import 0.2507*** 2.6080*** 2.4904*** 2.5965*** 0.2515*** 4.2318*** 4.3037*** 4.2509**

[0.057] [0.670] [0.589] [0.649] [0.096] [1.594] [1.634] [1.807]

Export 0.0140 -0.3696*** -0.3545*** -0.3501*** -0.0330 -0.3235** -0.3194** -0.2923*

[0.055] [0.127] [0.115] [0.133] [0.069] [0.144] [0.145] [0.166]

Capital 0.1379*** 0.0871*** 0.0889*** 0.0980*** 0.1457*** 0.1098*** 0.1081*** 0.1178***

[0.013] [0.020] [0.019] [0.021] [0.016] [0.025] [0.025] [0.027]

Hicks-neutral ϕ -0.2737*** -0.3445*** -0.3445*** -0.3634*** -0.2804*** -0.3389*** -0.3391*** -0.3491***

[0.038] [0.049] [0.048] [0.053] [0.044] [0.058] [0.059] [0.065]

Foreign 0.1548 -0.2918 -0.2682 -0.3976** 0.2347 -0.2351 -0.2308 -0.4088

[0.100] [0.181] [0.171] [0.186] [0.146] [0.301] [0.302] [0.314]

R&D 0.0511 -0.1199 -0.1068 -0.0778 0.0654 -0.2427 -0.2331 -0.1372

[0.074] [0.103] [0.098] [0.104] [0.099] [0.183] [0.177] [0.171]

Training 0.2183*** 0.1251** 0.1294** 0.1061 0.2000*** 0.0880 0.0821 0.0621

[0.048] [0.062] [0.061] [0.066] [0.055] [0.082] [0.085] [0.090]

ln(Ws
Wu

) -0.0953 -0.0442 -0.0521 0.0059 -0.0782 -0.0298 -0.0445 -0.0065

[0.072] [0.086] [0.086] [0.092] [0.080] [0.098] [0.099] [0.103]

ln(
Lps
L
p
u

)96 0.3864*** 0.3570*** 0.3595*** 0.3514*** 0.3775*** 0.3472*** 0.3471*** 0.3511***

[0.017] [0.022] [0.022] [0.024] [0.021] [0.028] [0.029] [0.031]

dpu,96 0.5642*** 0.4077** 0.3895** 0.4133** 0.2906 0.0157 -0.0366 0.0228

[0.143] [0.178] [0.175] [0.201] [0.177] [0.269] [0.273] [0.302]

dps,96 -1.0549*** -0.9872*** -1.0115*** -0.9964*** -1.0593*** -1.1046*** -1.1192*** -1.1314***

[0.060] [0.071] [0.070] [0.074] [0.066] [0.082] [0.082] [0.092]

No. Obs. 4,970 4,970 4,914 4,301 3,767 3,767 3,718 3,281

R-squared 0.413 – – – 0.379 – – –

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Province dummies and 3-digit ISIC

industry dummies are also included.
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Table 3: Robustness Check: Skill Demand Equation for Production Workers using Sample of

Initial Non-importers (D96 = 0)

Dependent Variable: ln(Lps/L
p
u)06

(1) (2) (3) (4) (5) (6)

Sample of Sample of Sample of Sample of Replace ϕ Replace ϕ

Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0; with TFP; with TFP;

and Export06 = 0; and Export06 = 0; and Export06 = 0; IV both IV Import IV Import

IV Import IV Import IV Import Import and using using

using using using Export using TC (TC, ∆τm, ∆τy)

dTC TC (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import 3.2080* 4.6053* 5.2353** 5.1904* 4.0235** 3.8712**

[1.851] [2.519] [2.568] [2.656] [1.581] [1.707]

Export -1.0712 -0.3256** -0.2904*

[1.855] [0.141] [0.159]

TFP 0.0387 0.0289

[0.046] [0.048]

No. Obs. 2,718 2,692 2,412 2,654 3,719 3,282

Dependent Variable:
(

WsL
p
s

WsL
p
s+WuL

p
u

)
06

(7) (8) (9) (10) (11) (12) (13)

OLS IV Import IV Import IV Import Sample of Sample of Replace ϕ

using using using Export06 = 0 Export96 = 0 with TFP;

dTC TC (TC, ∆τm, ∆τy) and Export96 = 0 IV both Import IV Import

IV Import using and Export using using

(TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import 0.0226 0.8450*** 0.7116*** 0.5252** 0.7251* 0.4479 0.4977**

[0.014] [0.239] [0.234] [0.239] [0.378] [0.349] [0.234]

Export 0.0240** -0.0416* -0.0280 -0.0111 -0.3696 -0.0107

[0.012] [0.024] [0.023] [0.024] [0.368] [0.024]

TFP 0.0080

[0.007]

No. Obs. 5,639 5,639 5,576 4,939 3,912 4,207 4,940

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Province dummies and 3-digit ISIC

industry dummies are also included. Columns (1)-(13) use the same set of explanatory variables as in Table 2 except that

we use a “conventional” TFP measure based on a Cobb-Douglas production function in place of Hicks-neutral

productivity measure φ in columns (5), (6), and (13) while we include
(

WsL
p
s

WsL
p
s+WuL

p
u

)
96

in place of ln(
Lps
L
p
u

)96, dpu,96, and

dps,96 in columns (7)-(13). The sample of initial non-importers is used in all columns except columns (1)-(3) and (11)

which use the subsample of plants that do not export in 2006 or import in 1996 while columns (4) and (12) use the

subsample of plants that do not export in 1996 or in 2006 and do not import in 1996.
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Table 4: Skill Demand Equation for Non-Production Workers

Panel A: Baseline Specification

Dependent Variable: ln(Lns /L
n
u)06

Full Sample Sample of Initial Non-importers (D96 = 0)

(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV Import IV Import IV Import OLS IV Import IV Import IV Import

using using using using using using

dTC TC (TC, ∆τm, ∆τy) dTC TC (TC, ∆τm, ∆τy)

Import 0.0892 2.3802** 2.3388*** 2.6406*** 0.2265* 5.2753 3.7538* 3.5420

[0.074] [1.079] [0.797] [0.884] [0.124] [5.038] [2.241] [2.337]

Export 0.1877** -0.1622 -0.1585 -0.2122 0.0384 -0.3624 -0.2432 -0.2360

[0.073] [0.186] [0.152] [0.168] [0.093] [0.431] [0.221] [0.218]

No. Obs. 2,254 2,254 2,233 1,923 1,654 1,654 1,635 1,430

Panel B: Robustness Check using Sample of Initial Non-importers (D96 = 0)

Dependent Variable: ln(Lns /L
n
u)06

(1) (2) (3) (4) (5) (6)

Sample of Sample of Sample of Sample of Replace ϕ Replace ϕ

Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0; with TFP; with TFP;

and Export06 = 0; and Export06 = 0; and Export06 = 0; IV both IV Import IV Import

IV Import IV Import IV Import Import and using using

using using using Export using TC (TC, ∆τm, ∆τy)

dTC TC (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import 5.5247 5.3115 0.1457 1.9798 3.5452 3.0180

[8.034] [5.089] [2.847] [3.298] [2.184] [2.201]

Export -0.9619 -0.2547 -0.2273

[2.184] [0.218] [0.210]

No. Obs. 1,154 1,147 1,027 1,138 1,635 1,430

Dependent Variable:
(

WsL
n
s

WsLns+WuLnu

)
06

(7) (8) (9) (10) (11) (12) (13)

OLS IV Import IV Import IV Import Sample of Sample of Replace ϕ

using using using Export06 = 0 Export96 = 0 with TFP;

dTC TC (TC, ∆τm, ∆τy) and Export96 = 0 IV both Import IV Import

IV Import using and Export using using

(TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import -0.0635*** -0.2639 -0.0574 -0.2182 -0.2553 -0.3207 -0.4337

[0.018] [0.256] [0.270] [0.303] [0.299] [0.480] [0.468]

Export 0.0384** 0.0549** 0.0374 0.0411 0.0414 -0.2212

[0.015] [0.026] [0.026] [0.031] [0.031] [0.507]

No. Obs. 5,639 5,639 5,576 4,939 4,940 3,912 4,207

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Columns (1)-(8) in Panel A use the

same set of explanatory variables as in Table 2 except that we use ln(
Lns
Lnu

)96, dnu,96, and dns,96 in place of ln(
Lps
L
p
u

)96, dpu,96,

and dps,96, respectively. Columns (1)-(13) of Panel B use the same set of explanatory variables as those in Panel A except

that we use a “conventional” TFP measure based on a Cobb-Douglas production function in place of Hicks-neutral

productivity measure φ in columns (5) and (6) while we include
(

WsL
n
s

WsLns+WuLnu

)
96

in place of ln(
Lns
Lnu

)96, dnu,96, and dns,96

in (7)-(13). The sample of initial non-importers is used in all columns except columns (1)-(3), and (11) of Panel B which

use the subsample of plants that do not export in 2006 or import in 1996 while columns (4) and (12) of Panel B use the

subsample of plants that do not export in 1996 or in 2006 and do not import in 1996.
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Table 5: Skill Demand Equation for the Ratio of Production Workers to Non-Production Workers

Dependent Variable: ln((Lps + Lns )/(Lns + Lnu))06
Full Sample Sample of Initial Non-importers (D96 = 0)

(1) (2) (3) (4) (5) (6) (7) (8)

OLS IV Import IV Import IV Import OLS IV Import IV Import IV Import

using using using using using using

dTC TC (TC, ∆τm, ∆τy) dTC TC (TC, ∆τm, ∆τy)

Import -0.0108 0.4906 0.4031 0.1688 -0.0034 0.4535 0.7170 0.4939

[0.042] [0.413] [0.404] [0.444] [0.066] [0.804] [0.911] [1.026]

Export -0.0260 -0.1128 -0.1126 -0.0581 -0.0213 -0.0595 -0.1013 -0.0725

[0.047] [0.087] [0.086] [0.099] [0.057] [0.090] [0.097] [0.113]

No. Obs. 7,123 7,123 7,051 6,192 5,639 5,639 5,576 4,939

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Province dummies and 3-digit ISIC

industry dummies are also included. Columns (1)-(8) use the same set of explanatory variables as in Table 2 except that

we use ln((Lps +Lns )/(Lns +Lnu))06, du,96 := 1(Lpu +Lnu = 0), and ds,96 := 1(Lps +Lns = 0) in place of ln(
Lps
L
p
u

)96, dpu,96, and

dps,96, respectively.

Table 6: Skill Demand, Import Decision, and Adoption of Standards of Production Process

using Sample of Plants that Neither Import Nor Export in 1996 (D96 =Export96 = 0)

Dep. Var.: ln(Lps/L
p
u)06 Dep. Var.: Dummy for Standards in 2006

(1) (2) (3) (4) (5) (6) (7)

D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0

Sample Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0

Export06 = 0 Export06 = 0 Export06 = 0 Export06 = 0 Export06 = 0

IV IV IV IV both IV IV IV both

IV Standards Standards Standards Standards and Import Import Import and

using using using Export using using using Export using

dTC TC (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) TC (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Standards 1.7283* 2.1351** 3.0635** 3.7553**

[0.970] [1.026] [1.315] [1.668]

Import 1.5642*** 1.5051*** 1.0713**

[0.464] [0.505] [0.445]

Export -1.1245 0.5893

[1.954] [0.513]

No. Obs. 2,718 2,692 2,412 2,654 4,370 3,912 4,207

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Province dummies and 3-digit ISIC

industry dummies are also included. Columns (1)-(4) use the same set of explanatory variables, the same IVs, and the

same sample as in columns (1)-(4) of Table 3, respectively, except that we replace the import dummy with a dummy for

the use of standards. Columns (5)-(7) use the same set of explanatory variables and the same IVs as in columns (2)-(4) of

Table 3, respectively, except that the dependent variable is a dummy for the use of standards in place of ln(Lps/L
p
u).
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Table 7: Skill Demand, Export Decision, and Initial Skill Levels using Sample of Plants that

Neither Import Nor Export in 1996 (D96 =Export96 = 0)

Dep. Var.: ln(Lps/L
p
u)06 Dep. Var.: Export Dummy in 2006

(1) (2) (3) (4) (5) (6)

Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0

Sample D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0

D06 = 0 D06 = 0 D06 = 0

IV Export IV Export IV both Import OLS OLS IV Import

IV or OLS using using and Export using using

(∆τm, ∆τy) (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) TC

Import 5.1904* 0.1263*** -0.4408

[2.656] [0.030] [0.501]

Export 1.4183 -0.9551 -1.0712

[1.471] [1.218] [1.855]

ln(Lps/L
p
u)96 0.3732*** 0.3796*** 0.3377*** 0.0039 0.0028 0.0075

[0.026] [0.026] [0.039] [0.005] [0.005] [0.007]

dpu,96 0.3596 0.3125 -0.0637 0.0011 -0.0178 0.0483

[0.296] [0.299] [0.437] [0.050] [0.043] [0.075]

dps,96 -0.9668*** -1.0094*** -1.1348*** -0.0146 -0.0107 -0.0058

[0.080] [0.080] [0.110] [0.014] [0.014] [0.018]

No. Obs. 2,510 2,490 2,654 2,654 2,490 2,654

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in square brackets. Province dummies and 3-digit ISIC

industry dummies are also included. The full specifications and their estimates are reported in Table D.5 in Appendix D.

31



Table 8: Import Decision Model using Logit for the Sample of Production Workers

Full Sample Initial Non-Importers

Coeff. S.E. Ave. Deriv. S.E. Coeff. S.E. Ave. Deriv. S.E.

TC -0.6998 [0.1169] -0.0823 [0.0122] -0.6328 [0.1690] -0.0381 [0.0100]

∆τy 0.0912 [0.1430] 0.0010 [0.0012] 0.0480 [0.2430] 0.0005 [0.0011]

∆τm 0.0303 [0.1725] -0.0016 [0.0020] 0.2874 [0.3055] 0.0009 [0.0020]

TC ×∆τy -0.0236 [0.2989] 0.0433 [0.4563]

TC ×∆τm -0.2350 [0.3052] -0.3865 [0.4043]

TC × log(
Lps
L
p
u

)96 0.0174 [0.0903] -0.0572 [0.1469]

∆τy × log(
Lps
L
p
u

)96 -0.0128 [0.1174] -0.0953 [0.2084]

∆τm × log(
Lps
L
p
u

)96 0.1957 [0.1408] 0.0878 [0.2337]

Export 0.5659 [0.0522] 0.1153 [0.0104] 0.5324 [0.0927] 0.0567 [0.0100]

Capital 0.4017 [0.0570] 0.0193 [0.0027] 0.3224 [0.0867] 0.0091 [0.0024]

Hicks-neutral ϕ 0.0996 [0.0458] 0.0163 [0.0074] 0.1225 [0.0642] 0.0112 [0.0059]

Foreign 0.1467 [0.0343] 0.0868 [0.0200] 0.1148 [0.0446] 0.0464 [0.0181]

R&D 0.0873 [0.0383] 0.0336 [0.0146] 0.0957 [0.0549] 0.0226 [0.0132]

Training 0.1409 [0.0488] 0.0301 [0.0104] 0.2124 [0.0687] 0.0249 [0.0082]

log(Ws
Wu

) -0.0344 [0.1826] -0.0070 [0.0369] -0.1158 [0.3090] -0.0123 [0.0331]

log(
Lps
L
p
u

)96 0.1765 [0.0877] 0.0130 [0.0064] 0.1559 [0.1489] 0.0062 [0.0060]

dpu,96 0.0967 [0.1237] 0.0197 [0.0251] 0.1667 [0.1933] 0.0178 [0.0206]

dps,96 -0.0255 [0.0654] -0.0052 [0.0132] 0.2780 [0.0887] 0.0296 [0.0096]

No. Obs. 6084 4648

Notes: Estimates from the sample which uses the log of the production skill ratio as an outcome variable. Bootstrap

standard errors are in square brackets. Province dummies and 3-digit ISIC industry dummies are also included.

Table 9: Estimates of Skill Demand Equation (9) for the Sample of Production Workers

Dependent Var. ln(Lps/L
p
u)06 (WsL

p
s/(WuL

p
u +WsL

p
s))06

Sample Full D96 = 0 Full D96 = 0

Export -0.2329 [0.0987] -0.2508 [0.1313] -0.0132 [0.0169] 0.0066 [0.0195]

Capital 0.1045 [0.0195] 0.1274 [0.0257] 0.0222 [0.0034] 0.0283 [0.0041]

Hicks-neutral ϕ -0.3209 [0.0498] -0.3693 [0.0597] -0.0165 [0.0079] -0.0223 [0.0106]

Foreign -0.1517 [0.1331] -0.2041 [0.1907] -0.0460 [0.0234] -0.0319 [0.0336]

R&D 0.0051 [0.0883] -0.0668 [0.1268] 0.0171 [0.0152] 0.0312 [0.0210]

Training 0.1252 [0.0606] 0.0341 [0.0774] 0.0305 [0.0108] 0.0290 [0.0137]

log(Ws
Wu

) 0.0891 [0.1931] 0.2043 [0.2334]

log(
Lps
L
p
u

)96 0.3908 [0.0292] 0.3753 [0.0393] 0.4585 [0.0242] 0.4536 [0.0276]

dps,96 -1.0504 [0.0978] -1.1576 [0.1211]

dpu,96 0.0800 [0.3121] -0.1029 [0.3968]

log(
Lps
L
p
u

)96 × P (Z) -0.0928 [0.0850] -0.4157 [0.2287] -0.3287 [0.0768] -0.5354 [0.1844]

dps,96 × P (Z) -0.0944 [0.6406] -0.6318 [1.0293]

dpu,96 × P (Z) 1.2672 [0.7590] 1.4262 [1.8273]

No. Obs. 4151 2867 5839 4120

Notes: The bootstrap standard errors are in square brackets. Province dummies and 3-digit ISIC industry dummies are

also included.
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Table 10: Treatment Effects of Importing on Skill Demand

Production Non-Production

Dep. Var. ln(Lps/L
p
u)06 (WsL

p
s/(WuL

p
u +WsL

p
s))06 ln(Lns /L

n
u)06 (WsLns /(WuLnu +WsLns ))06

(1) (2) (3) (4) (5) (6) (7) (8)

Sample Full D96 = 0 Full D96 = 0 Full D96 = 0 Full D96 = 0

ATE 2.3529 3.1511 0.3308 0.5049 1.3971 0.7757 -0.2662 -0.2591

[0.7227](a) [1.2936] [0.0930] [0.1955] [0.7361] [1.2968] [0.1289] [0.1916]

(1.35,3.76)(b) (1.29,5.63) (0.20,0.50) (0.28,0.92) (0.19,2.64) (-1.47,2.78) (-0.47,-0.05) (-0.56,0.07)

TT 4.6086 5.5598 0.5408 1.3821 2.0388 2.0573 -0.6105 -0.8271

[1.3570] [1.9759] [0.2002] [0.8279] [0.9177] [1.9921] [0.6213] [0.5325]

(3.06,7.38) (3.49,9.77) (0.24,0.88) (0.65,3.36) (0.57,3.56) (-0.93,5.40) (-1.55,0.49) (-1.70,0.03)

TUT 1.9263 2.7775 0.2893 0.4206 1.2154 0.5339 -0.2140 -0.1876

[0.7248] [1.2470] [0.0871] [0.1866] [0.7467] [1.2751] [0.1031] [0.1689]

(0.81,3.25) (0.97,5.16) (0.17,0.45) (0.18,0.81) (0.01,2.56) (-1.78,2.43) (-0.37,-0.02) (-0.46,0.10)

MPRTE 3.6536 5.1268 0.4956 1.0027 1.846 1.8485 -0.5157 -0.7177

(P ∗α = P + α) [1.0176] [1.8048] [0.1623] [0.5523] [0.8342] [1.8284] [0.3372] [0.4497]

(2.40,5.56) (3.18,9.03) (0.26,0.79) (0.51,2.27) (0.52,3.19) (-1.00,5.06) (-1.07,0.06) (-1.45,0.02)

MPRTE 3.5027 5.0521 0.4866 0.8784 1.8242 1.7918 -0.4724 -0.6452

(Zk∗α = Zk + α) [0.9643] [1.7723] [0.1525] [0.4554] [0.8252] [1.7760] [0.2372] [0.3895]

(2.28,5.28) (3.16,8.89) (0.27,0.76) (0.44,1.94) (0.51,3.16) (-0.92,4.91) (-0.86,-0.08) (-1.27,-0.01)

PRTE 3.7075 5.2428 0.5595 1.099 1.9002 1.8519 -0.5209 -0.7051

(TC∗ = 0.99TC) [2.2713] [1.8444] [2.1459] [0.6211] [1.2917] [1.8366] [1.5229] [0.4366]

(1.93,6.10) (3.33,9.24) (0.30,0.93) (0.54,2.52) (0.36,3.37) (-0.92,5.10) (-1.50,0.49) (-1.43,0.01)

Support(c) [0.010,0.837] [0.006,0.483] [0.010,0.852] [0.007,0.480] [0.009,0.853] [0.006,0.466] [0.004,0.852] [0.007,0.466]

No. of Obs.(d) 4151 2867 5839 4120 1845 1237 5987 4103

Notes: (a) The bootstrap standard errors are in square brackets. (b) The bootstrap equal-tailed 90 percent confidence intervals are in parentheses. (c) The minimum

and the maximum values of support over which treatment effects are computed; various treatment effects are computed by restricting the weights to integrate to one in

the restricted support, for which minimum and maximum values are determined by the 1st percentile and the 99th percentile of observations in the common support,

respectively. (d) The sample size for estimating the MTE curve.
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Table 11: Robustness Check: Treatment Effects of Importing on Skill Demand for Production

Workers using the Sample of Initial Non-Importers (D96 = 0)

Dep. Var. ln(Lps/L
p
u)06

(1) (2) (3) (4) (5) (6)

Sample of Replace ϕ Use Sieve No Treatment Use Dummy

Export96 = 0 with in place of Interaction Effects over for Standards

and Export06 = 0 TFP Local Poly. with Z Common Support in place of D06
(e)

ATE 3.7063 1.7604 2.7416 2.3764 2.5906 2.1017

[3.4275](a) [1.1411] [1.3425] [0.9677] [1.4769] [1.1434]

(0.35,8.62)(b) (-0.49,3.31) (0.88,5.11) (0.88,4.08) (0.98,5.39) (0.47,4.05)

TT 5.9506 3.7704 5.4234 6.5888 5.5811 4.4938

[4.3382] [1.6654] [2.9006] [3.0328] [2.0474] [1.8976]

(0.28,13.61) (1.10,6.73) (1.46,10.85) (2.04,12.06) (3.08,9.71) (2.16,8.11)

TUT 3.1992 1.4359 2.3237 1.8249 2.2983 1.6421

[3.6630] [1.1184] [1.2822] [0.8520] [1.5203] [1.0862]

(0.01,7.71) (-0.78,2.89) (0.43,4.46) (0.45,3.31) (0.65,5.22) (-0.07,3.42)

MPRTE 5.2086 3.4361 4.9549 5.3837 5.1309 3.9486

(P ∗α = P + α) [3.8015] [1.5436] [2.3563] [2.3239] [1.8701] [1.6616]

(0.23,11.86) (0.86,6.09) (2.08,9.63) (1.81,9.43) (2.85,8.85) (1.86,7.16)

MPRTE 4.9763 3.3787 4.8751 5.0801 5.0526 3.9109

(Zk∗α = Zk + α) [3.6241] [1.5188] [2.2353] [2.1372] [1.8359] [1.6407]

(0.23,11.16) (0.83,5.98) (2.14,9.35) (1.90,8.73) (2.84,8.72) (1.82,7.10)

PRTE 5.3081 3.5216 5.0776 5.6964 5.2942 4.0116

(TC∗ = 0.99TC) [4.8633] [1.5722] [2.5513] [2.4664] [50.5908] [1.9699]

(0.55,12.44) (0.93,6.30) (1.81,10.06) (2.02,10.10) (2.79,9.29) (1.45,7.45)

Support(c) [0.0033,0.2495] [0.0052,0.4951] [0.0064,0.4834] [0.0063,0.4812] [0.0059,0.7347] [0.0163,0.7370]

No. of Obs.(d) 2007 2904 2868 2871 2868 2208

Notes: (a) The bootstrap standard errors are in square brackets. (b) The bootstrap equal-tailed 90 percent confidence

intervals are in parentheses. (c) The minimum and the maximum values of support over which treatment effects are

computed; various treatment effects are computed by restricting the weights to integrate to one in the restricted support,

for which minimum and maximum values are determined by the 1st percentile and the 99th percentile of observations in

the common support, respectively. (d) The sample size for estimating the MTE curve. (e) We use the sample of

Export96 = 0 and Export06 = 0 in column (6) as in column (1).
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Figure 1: Support of Estimated Propensity Scores
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(b) Subsample of Initial Non-Importers

Figure 2: Estimated MTE for Dependent Variables ln(Lps/L
p
u) and ln(Lns /L

n
u)
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(a) Production Workers, Full Sample
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(b) Production Workers, Initial Non-Importers
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(c) Non-Production Workers, Full Sample
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A Data Description

This section describes the construction of the variables used for the empirical analysis. Specifically, it
includes the description of variables coming from manufacturing survey data, household survey data and
the construction of instrumental variables.

A.1 Manufacturing Plant Data

Our plant level data comes from the Indonesian manufacturing census (Large and Medium Industrial
Statistics) in years 1994-1996 and 2004-2007. This survey data covers all manufacturing plants in In-
donesia with at least 20 employees. Key variables used in our study are described below.

A.1.1 Labor

For each plant, the survey records the education levels of all production and non-production workers.
This dimension of the data allows us to compute the number of skilled and unskilled workers in each
occupation category. As discussed in the main text we define a skilled worker as a worker with a high
school diploma or more. Using this threshold we count the number of skilled and unskilled workers for
each production category and each plant.

A.1.2 Intermediate Goods and Capital

In order to estimate plant-specific productivity, we also need the intermediate goods and capital used for
production. Intermediate goods includes imported raw materials, domestically purchased raw materials
and expenditures on energy. The wholesale price index for manufactured goods is used to convert nominal
values into real values.

We compute the real value of capital at the beginning of year t as

Kit = buildingit/P
build
t +machineit/P

mach
t + vehicleit × 100/P vehict + (rentit/0.1)/P rentt ,

where buildingit, machineit, and vehicleit are the nominal value of buildings, machines, and vehicles
at the beginning of year t; rentit is equal to the reported value of rental payments for buildings and
machines, where we divide the rental value by the depreciation rate (10 percent) to get the appropriate
capitalized value. The capital price indices are obtained from Badan Pusat Statistik (BPS).15 Since rent
is only paid for buildings and machines, we compute price index for rented capital as

P rentt =

∑
i buildingit∑

i(buildingit +machineit)
× P buildt +

∑
imachineit∑

i(buildingit +machineit)
× Pmacht .

When the capital values are not reported in 1996 or 2006, we use the reported values of capital in
1994, 1995 and 1997 for constructing the 1996 capital value, and similarly, the reported values of cap-
ital in 2004, 2005 and 2007 for constructing the 2006 capital value by assuming Kit = 0.9Kit−1 +
Investmentit−1 with Investmentit = Investmentbuildingsit + Investmentmachinesit + Investmentvehiclesit ,

where Investmentbuildingit , Investmentmachinesit , and Investmentvehiclesit are the real values of net invest-
ment for buildings, machines, and vehicles in year t.

15Specifically, we use the price indices for construction goods, imported and domestic machines, and vehicles.
The imported and domestic machines price indices are weighted according to the input-output table for manu-
factured goods to get one price index for machines. The building price index covers the period 1996-2006 and is
extended to 2007; machine and vehicle price data only covers 1998 to 2005 and is extended to the period 1996-
2007. The extension from 1998 to 1996 relies on the wholesale price of capital goods which is available during the
1992-1999 period. The GDP deflator for construction goods, machines and vehicles is used to extend the original
price index to 2007.
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Some plants do not report capital values in any year between 2004 and 2007. For those plants, we
impute the values of capital as follows. First, using the plant observations in 2005 for which capital values
are constructed from the data between 2004 and 2007, we run the OLS regression

logKi,2005 = X ′i,2005α+ εi,2005,

where Ki,2005 is the beginning-of-period capital in 2005; Xit−1 includes a constant, the ratio of investment
to capital, the log of production workers, the log of non-production workers, the log of output, the log
of intermediate goods, an import dummy, province dummies, industry dummies, plant age, plant age
squared, a dummy variable for positive investment, a dummy variable for no hiring of production workers,
and a dummy variable for no hiring of non-production workers. Then, given the OLS estimate of α, α̂,
we compute the imputed value of capital at the beginning of year 2006 for plants with missing capital
values as

Kimpute
i,2006 = 0.9 exp(X ′i,2005α̂) + Investmenti,2005.

For the sample of initial non-importers, we use the imputed values of capital for 11 percent of observations.
For plants with missing capital values in 1996, we similarly construct the imputed value of capital at the
beginning of year 1996 using 1995 data.

A.1.3 Other Variables

Other plant information contained in the data includes the percentage of foreign ownership, total expenses
on research and development (R&D), and total expenses on training. Dummies variables for foreign
ownership, R&D and training are defined as whether the above mentioned variables are greater than
zero.

A.2 Regional Data

A.2.1 Wages

We use the household survey data (SAKERNAS—Indonesian Labour Force Survey) to construct local
market wages for skilled and unskilled workers for each regency (kabupaten/kota) in Indonesia. The
basic measure of a wage is the average wage of workers who are 25-35 years old at different skill levels
(more or less than high-school education) in the regency. However, the relative wage computed using this
basic measure may not measure the true skill premium since unskilled workers will generally have had
more work experience than skilled workers within same age range. To solve this problem, we use Mincer
regressions to get the return to skill. Specifically, for each regency, we regress the individual level log
wage over experience, experience squared and a skill dummy and use the coefficient on the skill dummy
as the log of the wage premium in that regency. The plant-level wage share of skilled workers in the total

wage bills for occupation j ∈ {p, n} is computed as
WsL

j
s

WsL
j
s+WuL

j
u

=
(Ws/Wu)L

j
s

(Ws/Wu)L
j
s+L

j
u

, where Ws/Wu is the

estimated wage ratio for the regency in which a plant is located.

A.2.2 Distance to Port

To form this instrumental variable, we use the location information of individual plants. Indonesia is
comprised of 33 provinces which are administratively subdivided in to 429 regencies in our data. The
dataset includes the location of the surveyed plants down to the regency level. Due to the detailed ad-
ministrative divisions, the variation contained in the plant location data is informative. Among all ports
in Indonesia, 2 can be considered large, 16 medium and all others remaining are either small or very
small.16 The 18 large or medium sized ports are chosen to be the main destinations for our constructed

16Source of port information: World Port Source.
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measure of transportation costs. Specifically, given these destinations, and taking the geographical fea-
tures of Indonesia into consideration, we compute the least-cost path from the center of every regency to
its nearest port by ArcGIS. The calculation divides the entire country into cells with size 1 km2 where
each cell contains a value representing the average elevation of that area. The travel cost of each cell
depends on the slope from the cell to its adjacent cells and whether the cell locates on land or on sea. Ar-
cGIS determines the optimal route for each cell by finding the least-accumulative-cost path to its nearest
major port. The transportation cost for a regency is approximated by the the accumulative cost along
the optimal route from the center cell of the regency. For each plant, the proxy for its transportation
cost is the transportation cost of the regency in which the plant is located. Details about the process of
computing this cost measure are described in the following paragraphs.

Three types of data are used in ArcGIS to generate the transportation cost: raster data (R), point
data (P) and table data (T). Raster data consists of a matrix of cells (pixels) organized into a grid where
each cell contains a value representing information. In our data, each cell represents a 1 km2 square
in the real world. Point data contains information for specific points. Each point is composed of one
coordinate pair representing its location on the earth. Table data is used to store the attributes (e.g.
names, locations, temperatures, etc.) of features.

There are three main steps for computing the transportation cost. First, generate the cost raster
for Indonesia which defines the cost to move planimetrically through each cell according to geographical
features. Second, given a cost raster and the main ports as destination points, the “Cost Distance”
tool generates the raster data in which the least accumulated cost distance for each cell to its nearest
destination is calculated. Lastly, to get the measure of the transportation cost for each regency, we extract
the cost distance value for the cells located in the center of the regencies from the raster data obtained
from second step. Figure A.1 displays the process of this calculation. The ellipses in the flowchart
represent data while the round-cornered squares represent tools.

Step 1. The travel cost of each cell depends on the slope from the cell to its adjacent cells and
whether the cell is located on land or sea. “Elevation-full” is the Indonesia elevation data, the value of
a cell in this raster data indicates the average elevation in the 1 km2. Cells in the sea take a value of
zero. The “SLOPE” tool generates the slope layer “Elevation Slope”, in which a cell value indicates the
maximum rate of change between the cell and its neighbors. A road which traverses less steep slopes is
preferable. We reclassify the slope layer, slicing the values into 10 equal intervals. A value of 10 is assigned
to the most costly slopes (steepest) and 1 is assigned to the least costly slope (flattest), values in between
are ranked linearly. “Reclass Slope” is the raster data after re-classification. Each cell value between 1
and 10 indicates the difficulty of traveling over it. One problem with this surface is that traveling across
the sea is considered costless since the elevation is zero (and so are the slopes) everywhere on the sea.
To solve this problem, another layer “Sea” is created. The “Sea” raster assigns value 0 for land and
1 for sea. The last step for generating the cost raster overlays the rasters “Reclass Slope” and “Sea”
using a common measurement scale and weights 50 percent on each layer. Specifically, scale values of the
“Reclass Slope” layer are unchanged (10 for steepest and 1 for flattest), and scale values for “Sea” layer
are set to be 1 for land (low cost) and 10 for sea (high cost), thus, the cost of travelling over cell i is

Costi = 0.5×ReclassSlopei + 0.5× 10Seai (10)

Putting all the cells on map forms the raster data “Cost Surf”.
Step 2. Given the 18 main ports (“Main Ports”) as destinations, the “COST DISTANCE” tool

calculates the accumulated distance from each cell to its nearest destination along the optimal path,
using the “Cost Surf” data obtained in step 1 to measure the cost of passing cells. The resulting
raster data “Cost Dist” reports the transportation cost of all the cells. Figure A.2 presents this cost
surface. Red to purple and white represent highest to lowest transportation costs, blue boat symbols
indicate the main ports. It is clear that the regencies in west Indonesia face lower transportation costs as
there are more ports while regencies in the east are subject to high transportation costs. For each cell,
“Backlink” indicates the neighbor that is the next cell on the least accumulative cost path to the nearest
destination. This direction information is not used in the empirical analysis, but it helps draw the paths
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when necessary.
Step 3. We extract the values of the cells located in the center of administrative regencies from the

transportation cost map “Cost Dist” using the tool “EXTRACT VALUES TO POINTS.”

Figure A.1: Process of Measuring Transportation Cost

Notes: This figure displays the process of calculating the transportation cost for the regencies in Indonesia using
ArcGIS. The ellipses in the flowchart represent data and the round-cornered squares represent tools.

A.2.3 Tariffs

The plant-level manufacturing data are matched with detailed industry-level tariff data from Amiti
and Konings (2007). Specifically, each plant is assigned a 5-digit code in each year and is matched
to output and input tariff rates with the same 5-digit code in the same year. Figure A.3 demonstrates
that output tariffs have fallen across most industries in Indonesia over the 1991-2001 period and that
there is substantial variation in the initial tariff levels and the subsequent fall across 5-digit industries
over the following decade.

B Estimating MTE and Treatment Effects

We estimate γ, δ, and K(p) by a partially linear regression of S on X and P (Z) (Robinson, 1988) as
follows.

39



Figure A.2: Map of Transportation Cost

Notes: This map presents the cost surface. Red to purple and white represent highest to lowest transportation
cost, blue boat symbols indicate the main ports. It is clear that the regencies in west Indonesia face lower
transportation cost as there are more ports while regencies in the east are subject to high transportation costs.

Figure A.3: Change in Tariffs, 1991-2000, Relative to 1991 Level
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Notes: Tariffs fell over the sample period in all industries with the exception of the liquors and wine industries
(ISIC codes 31310, 31320) and rice milling industries (ISIC codes 31161, 31169).
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Step 1: We estimate P (Z) using a logit specification as described in the main text. Denote the estimated
value by “hat” notation so that P̂ (Z) denotes the estimate of P (Z).

Step 2: Using the subsample of observations for which the outcome variable is measurable and for which
estimated propensity scores P̂ (Zi)’s are on the estimated common support, we estimate E[S|P (Z)],
E[X|P (Z)], and E[X̃|P (Z)] by local linear regressions of S, X, and X̃ on P̂ (Z), respectively, where
we use a normal kernel and choose their bandwidths by “leave-one-out” cross-validation.

Step 3: By regressing S− Ê[S|P (Z)] on X − Ê[X|P (Z)] and P (Z)(X̃ − Ê[X̃|P (Z)]) without an intercept,
we obtain the estimate of γ and θ.

Step 4: We estimate K(P (Z)) and K ′(P (Z)) by using a local quadratic regression of S −X ′γ̂ − P̂ (Z)X̃ ′θ̂
on P̂ (Z), where we use cross-validation to choose the bandwidth for the local quadratic regression.

To avoid numerical singularity, all continuous variables in Z, X, and X̃ are standardized by subtracting
their means and then dividing by their sample standard deviations while all dummy variables are trans-
formed into {−1, 1}. Table B.1 reports the bandwidth choices using the standardized variables for Step
2 and Step 4. We set the maximum value of the bandwidth to one-half of the length of the common
support of P̂ (Z|D = 0) and P̂ (Z|D = 1).

In column (3) of Table 11, we use a sieve estimator to estimate the partial linear regression. Specif-
ically, we estimate E[S|P (Z)], E[X|P (Z)], and E[X̃|P (Z)] in Step 2 by regressing S, X, and X̃ on the
fourth order polynomials of P̂ (Z) while we estimate K(P (Z)) and K ′(P (Z)) by regressing S − X ′γ̂ −
P̂ (Z)X̃ ′θ̂ on the fourth order of polynomials in P̂ (Z).

As Heckman and Vytlacil (2005, 2007a, 2007b) and Carneiro, Heckman, and Vytlacil (2010) show,
various treatment effects conditional on X can be expressed as weighted averages of the MTE.

ATE(x) =

∫ 1

0

∆MTE(x, p)dp, TT (x) =

∫ 1

0

∆MTE(x, p)hTT (x, p)dp,

TUT (x) =

∫ 1

0

∆MTE(x, p)hTUT (x, p)dp, PRTE(x) =

∫ 1

0

∆MTE(x, p)hPRTE(x, p)dp,

MPRTE(x) =

∫ 1

0

∆MTE(x, p)hPRTE(x, p)dp,

(11)

where

hTT (x, p) =
1− FP (p|X = x)

E(P |X = x)
, hTUT (x, p) =

FP (p|X = x)

E(1− P |X = x)
,

hPRTE(x, p) =
FP∗(p|X = x)− FP (p|X = x)

E(P |X = x)− E(P ∗|X = x)
,

hMPRTE(x, p) = lim
α→0

FP∗α (p|X = x)− FP (p|X = x)

E(P |X = x)− E(P ∗α|X = x)
=

(∂/∂α)FP∗α (p|X = x)|α=0∫
(∂/∂α)FP∗α (p|X = x)|α=0dp

.

(12)

FP (·|X = x) and FP∗(·|X = x) are the cumulative distributions of P and P ∗, respectively, conditional
on X = x, where P ∗ is the probability of importing under an alternative policy.

Treatment effects can be computed by integrating conditional treatment effects in (11) using the
appropriate distribution of X. Because X is high dimensional, however, it is not computationally feasible
to estimate the conditional density function of P given X. For this reason, exploiting the fact that
fp(P |X) = fp(P |X ′θ) implies E[log(P/(1− P ))|X] = E[log(P/(1− P ))|X ′θ], we regress log(P̂ /(1− P̂ ))

on X and obtain a single index of X, X ′θ̂. The conditional density function of P given X ′θ, denoted by
fP (p|x′θ), is estimated by the ratio of the joint density of P and X ′θ̂ to the marginal density of X ′θ using
‘double-kernel’ local linear regression, where we choose the bandwidth by the cross-validation following
the suggestion of Fan and Yim (2004).

We compute weights hTT (x′θ, p), hTUT (x′θ, p), hPRTE(x′θ, p), and hMPRTE(x′θ, p) as hTT (x, p),
hTUT (x, p), hPRTE(x, p), and hMPRTE(x′θ, p) in the formula (12) but using FP (p|X ′θ = x′θ) =

∫ p
0
fP (u|X ′θ =
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x′θ)du in place of FP (p|X = x). To apply (11) to compute treatment effects conditioning on the single
index X ′θ, we evaluate the MTE at X ′θ = x′θ instead of X = x. To do so, we estimate E[X̃ ′δ|X ′θ] by
local linear regression and define the MTE at X ′θ = x′θ as ∆̂MTE(x′θ, p) = Ê[x̃′δ|X ′θ = x′θ] + K̂ ′(p).
Integrating ∆̂MTE(x′θ, p) using weights hTT (x′θ, p), hTUT (x′θ, p), hPRTE(x′θ, p) , and hMPRTE(x′θ, p)
gives our estimates of the TT (x′θ), TUT (x′θ), PRTE(x′θ), and MPRTE(x′θ). To obtain the uncon-
ditional version of treatment effects, we integrate X ′θ from TT (X ′θ), TUT (X ′θ), PRTE(X ′θ), and
MPRTE(X ′θ) using the marginal distribution of X ′θ, denoted by fX′θ(x

′θ), which is estimated by local
linear regression. The last four rows of Table B.1 report the bandwidth choices associated with estimating
fP (p|x′θ), fX′θ(x′θ), and E[X̃ ′δ|X ′θ].

Finally, because the full support condition is violated, we report estimates of ATE, TT, TUT, PRTE,
and MPRTE when we restrict the weights to integrate to one in the restricted support of the MTE as
described in the main text. As discussed in Heckman and Vytlacil (2005) and Carneiro, Heckman and
Vytlacil (2010), the PRTE cannot be identified without strong support conditions. We compute the
estimate of what the PRTE would be when we restrict the support of P and P ∗ to the restricted support
for which minimum and maximum values are given by the 1st and the 99th percentiles of the common
support, where the maximum value of P ∗ is set to the maximum value of the restricted support when
the value of P ∗ is above the maximum value of the support.

We use 500 bootstrap replications to construct equal-tailed bootstrap confidence bands for ∆̂MTE(x′θ, p)
and the standard errors for treatment effects. In each bootstrap iteration we re-estimate P (Z) so all stan-
dard errors account for the fact that P (Z) is estimated.

Table B.1: Bandwidth Choices by Cross-validation

Dep. Var. ln(Lps/L
p
u)06 (

WsL
p
s

WuL
p
u+WsL

p
s

)06

(1) (2) (3) (4)
Sample Full D96 = 0 Full D96 = 0
Step 2: E[S|P ] 0.07 0.03 0.05 0.01

E[ln(Lps/L
p
u)96|P ] 0.19 0.07 0.05 0.03

E[Capital|P ] 0.03 0.11 0.03 0.03
E[ϕ|P ] 0.07 0.15 0.03 0.05
E[Foreign|P ] 0.11 0.23 0.13 0.23
E[R&D|P ] 0.11 0.03 0.47 0.17
E[Training|P ] 0.03 0.07 0.05 0.03
E[Export|P ] 0.15 0.11 0.15 0.13
E[dps,96|P ] 0.03 0.05

E[dpu,96|P ] 0.46 0.36

E[ln(Ws/Wu)|P ] 0.03 0.05

E[industry/province|P ](a) 0.03 0.03 0.01 0.01

Step 4: E[S −X′γ − P (Z)X̃′θ|P ] 0.09 0.23 0.17 0.03
Bandwidth for P of fP (p|x′θ) 0.005 0.005 0.005 0.005
Bandwidth for X′θ of fP (p|x′θ) 0.02 0.01 0.01 0.01
Bandwidth for fX′θ(x′θ) 0.03 0.02 0.02 0.01

Bandwidth for E[X̃′δ|X′θ] 0.50 0.05 0.03 0.03

Notes: Columns (1)-(4) reports the cross-validation bandwidth choices that are used to estimate the treatment effects

reported in columns (1)-(4) of Table 10, respectively. (a) We choose the common bandwidth for industry/province

dummies by minimizing the sum of cross-validation criterion functions over industry/province dummies.

C Estimating Hicks-Neutral Productivity

Our model implies that Hicks-neutral productivity differences are potentially among the most important
determinants of plant-level import decisions. Unfortunately, the data do not provide a convenient measure
of Hicks-neutral productivity. Moreover, standard productivity estimation methods do not consider how
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we might separately identify skill-biased and Hicks-neutral productivity.17 Accordingly, we develop an
extension of the control function methods pioneered by Olley and Pakes (1996) [OP, hereafter], Levinsohn
and Petrin (2003) [LP, hereafter] and Ackerberg, Caves and Frazer (2006), among others, to estimate a
Hicks-neutral productivity series for each plant in our data.18

We assume that the firm’s production function is specified as

Yit = eεitQit, where Qit = eα0+ωitKαk
it M

αm
it L

αp
p,itL

αn
n,it (13)

where ωit is the part of the Hicks-neutral productivity shock that is observed/anticipated by firm i at the
time which it makes input decisions while εit captures either measurement error or an iid unanticipated
shock that is not observed at the time which it makes input decisions. The variables Lp,it and Ln,it
represent the aggregate labor inputs for production and non-production activities, respectively, and are
defined by

Lj,it =

(
(AjL

s
j,it)

σj−1

σj + (Luj,it)
σj−1

σj

) σj
σj−1

for j = p, n. (14)

Here, Lsj,it and Luj,it represent the number of skilled workers and that of unskilled workers, respectively,
in occupation j, where the subscript “p” indicates production workers while the subscript “n” captures
non-production workers. We assume that ωit follows a first order Markov process.

To estimate the production function coefficients, including the elasticity of substitution parameters,
we use the implications of plant profit maximization behavior.19 The first order conditions with respect
to Luj,it and Lsj,it are given by

Wu
t L

u
j,it

Qit
= αj

(Luj,it)
σj−1

σj

(AjLsj,it)
σj−1

σj + (Luj,it)
σj−1

σj

and
W s
t L

s
j,it

Qit
= αj

(AjL
s
j,it)

σj−1

σj

(AjLsj,it)
σj−1

σj + (Luj,it)
σj−1

σj

, (15)

respectively, so that (
Luj,it
Lsj,it

) 1
σ

A

σj−1

σj

j =
W s
t

Wu
t

for j = p, n, (16)

where W s
t and Wu

t represent the wages in year t for skilled and unskilled workers, respectively. We
assume that there is no unanticipated ex-post shock to Aj , W

s
t , and Wu

t . Substituting (16) into (14), we
get

Lj,it = X
−

σj
σj−1

j,it Luj,it, where Xj,it ≡
Wu
t L

u
j,it

W s
t L

s
j,it +Wu

t L
u
j,it

.

Substituting the above equation for Lj,it into (13) and taking the logarithm gives

yit = α0,t + αkkit + αmmit + αpl
u
p,it + βpxp,it + αnl

u
n,it + βnxn,it + ωit + εit (17)

where βj = − σjαj
σj−1 for j = p, n, and lower case letters represent the logarithm of the upper case letters

(e.g., yit ≡ ln(Yit)). Note that, if we can consistently estimate αj and βj , then we also have a consistent
estimate of σj because −βj/αj =

σj
σj−1 .

We recover the estimates in two stages. In the first stage, following LP, we write ωit as a function of
mit, kit: ωit = ω∗t (mit, kit). Taking an expectation of (17) conditional on (mit, kit), and subtracting it

17Doraszelski and Jaumandreu (2012) is a key exception.
18Other important contributions to this literature include Wooldridge (2009), De Loecker (2011), De Loecker

et al. (2012) and Doraszelski and Jaumandreu (2013).
19Our method is broadly based on the ideas contained in Gandhi, Navarro, and Rivers (2011), but our production

function is specified using a simple Cobb-Douglas form with CES aggregators for production and non-production
labor inputs so that our analysis is substantially simpler than theirs.
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from (17) gives

yit − E[yit|mit, kit] = αp{lup,it − E[lup,it|mit, kit]}+ βp{xp,it − E[xp,it|mit, kit]}
+αn{lun,it − E[lun,it|mit, kit]}+ βn{xn,it − E[xn,it|mit, kit]}+ εit. (18)

where E[εit|mit, kit] = 0 under the assumption that εit is mean zero random variable and that εit is not
observed yet when a plant makes intermediate input decision.

The parameters αp, βp, αn, and βp are estimated by (i) first estimating the functions E[yit|mit, kit],
E[`up,it|mit, kit], E[`un,it|mit, kit], E[xp,it|mit, kit] and E[xn,it|mit, kit] and then (ii) running a no-intercept
OLS regression of (18) using the estimate of the conditional expectation terms. Note that, even though
we consider the possibility of endogenous exiting, the first stage procedure is identical to that of LP.

In the second stage we identify the remaining production function parameters αk and αm. To ac-
complish this, we first define

φt(mit, kit) ≡ α0,t + αkkit + αmmit + ω∗t (mit, kit)

and
xit ≡ yit − {αplup,it + βpxp,it + αnl

u
n,it + βnxn,it}.

Further, let χit = 1 indicate plant survival in year t. We assume that a firm stays in the market if and
only if ωit ≥ ωt(kit) as in OP. Then, we may write (17) as

xit = α0,t + αkkit + αmmit + E[ωit|ωit−1, χit = 1] + ξit + εit

= αkkit + αmmit + gt(ωt(kit), ωit−1) + ξit + εit (19)

where ξit = ωit − E[ωit|ωit−1, χit = 1] and gt(ωt(kit), ωit−1) ≡ α0,t + E[ωit|ωit−1, χit = 1].
The survival probability conditional on ωt−1 is given by

Pr{χit = 1|ωit−1, kit−1,mit−1} = Pr{ωt ≥ ωt(kit)|ωit−1,mit−1, kit−1}

=

∫ ∞
ωt(kit(mit−1,kit−1))

F (dωit|ω∗t−1(mit−1, kit−1))

= Pχit . (20)

where F (·) represents the law of motion for ωit. The capital stock follows kit = (1−δ)kit−1 + ιit where ιit
is the amount of investment between t− 1 and t, ιit captures net investment, δ is the depreciation rate,
and we assume that ιit is a function of (ωit−1, kit−1) = (ω∗t (mit−1, kit−1), kit−1) so that we may write kit
as a function of mit−1 and kit−1, i.e., kit(mit−1, kit−1) in the second line of (20). We estimate the survival
probability (20) using a probit with third order polynomials in (mit−1, kit−1). Given ω∗t−1(mit−1, kit−1),
we may invert (20) with respect to ωt; therefore, we may write ωt as a function of survival probabilities,
Pχit , and ω∗t−1(mit−1, kit−1) as in ωt(P

χ
it , ω

∗
t−1(mit−1, kit−1)).

Then, we may express gt(ωt(kit), ωit−1) in (19) as a (year-specific) nonlinear function of (Pχit , ω
∗
t−1(mit−1, kit−1))

as

gt(ωt(P
χ
it , ω

∗
t−1(mit−1, kit−1)), ω∗t−1(mit−1, kit−1))

= α0,t +

∫ ∞
ωt(P

χ
it,ω

∗
t−1(mit−1,kit−1))

ωit
F (dωit|ω∗t−1(mit−1, kit−1))∫∞

ωt(P
χ
it,ω

∗
t−1(mit−1,kit−1))

F (dωit|ω∗t−1(mit−1, kit−1))
.

Define

qt(P
χ
t , α0,t−1 + ω∗t−1(mit−1, kit−1)) ≡ gt(ωt(P

χ
it , ω

∗
t−1(mit−1, kit−1)), ω∗t−1(mit−1, kit−1)),

and substituting this equation into (19) and using α0,t−1 + ω∗t−1(mit−1, kit−1) = φt−1(mit−1, kit−1) −
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αkkit−1 − αmmit−1, we have

xit = αkkit + αmmit + qt(P
χ
t , hit−1) + ξit + εit, (21)

where hit = φt(mit, kit)− αkkit − αmmit. This equation corresponds to equation (12) in OP.
Given the above definitions, we recover αk and αm in three distinct steps. First, let x̂it = yit −

{α̂plup,it + β̂pxp,it + α̂nl
u
n,it + β̂nxn,it}, where (α̂p, α̂n, β̂p, β̂n) is the first stage estimate of corresponding

parameters. Then we estimate φ(mit, kit) by regressing x̂it on third order polynomials in (mit, kit). Sec-
ond, we estimate the survival probability by estimating the probit of survival (χit = 1) conditional on
(mit−1, kit−1) using third order polynomials. Third, for each candidate value of (αk, αm), we compute

ĥit(αk, αm) = φ̂it − αkkit − αmmit and regress x̂it − {αkkit + αmmit} on third order polynomials in

(P̂χit , ĥit−1) to obtain the estimate of qt(P
χ
it , hit−1) as its predicted value, denoted by q̂it(αk, αm). Denot-

ing ̂(ξit + εit)(αk, αm) = x̂it − {αkkit + αmmit − q̂it(αk, αm)}, we estimate (αk, αm) using the moment
conditions E[(ξit+εit)mit−1] = 0 and E[(ξit+εit)kit−1] = 0. Note that we do not use kit as an instrument
because kit will be correlated with ξit given that we take a long difference.

We apply the above estimation procedure to the two years of data from 1996 and 2006 so that the
time subscripts t − 1 and t correspond to 1996 and 2006, respectively. The Hicks-neutral productivity,
including both the unexpected shock εit and the year-specific constant α0,t, is computed as

ϕit ≡ α0,t + ωit + εit = yit − (α̂kkit + α̂mmit + α̂pl
u
p,it + β̂pxp,it + α̂nl

u
n,it + β̂nxn,it).

We find that (αk, αm, αp, αn, βp, βn) is estimated as (0.017, 0.602, 0.152, 0.110,−0.253,−0.138). Note
the production function parameters are very similar to those estimated elsewhere (e.g. See Amiti and
Konings (2007)). Our estimates further imply that the elasticity of substitution parameters among
production and non-production workers (σp, σn) are estimated to be (1.664,1.255).

As an alternative measure of productivity, we also estimate the “conventional” measure of total factor
productivity (TFP) under the assumption that skilled and unskilled workers are perfect substitutes with
a Cobb-Douglas production function given by

Yit = eεitQit, where Qit = eα0+ωitKαk
it M

αm
it L̃

αp
p,itL̃

αn
n,it (22)

where L̃p,it = Lsp,it + Lup,it and L̃n,it = Lsn,it + Lun,it. Repeating our estimation exercise under this
restriction we again recover the parameters (αk, αm, αp, αn) as (0.030, 0.908, 0.065, 0.074). We also use
this alternative structure and estimates to construct a second measure of productivity. In the main text
this second measure is denoted as “conventional” TFP.
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D Additional Tables

Table D.1: Definitions of the Variables

Variable Definition

S The log of the ratio of skilled workers to unskilled workers in 2006 in occupation j ∈ {p, n}, ln
(
Ljs

L
j
u

)
06

,

the wage share of skilled workers in the total wage bill in 2006 in occupation j ∈ {p, n},
(

WsL
j
s

WsL
j
s+WuL

j
u

)
06

,

or the log of the ratio of non-production workers to production workers in 2006, ln
(
Lns+Lnu
L
p
s+L

p
u

)
06

.

D Equal to one if plant imports materials from abroad in 2006; zero otherwise.

X Export dummy, capital stock, a measure of Hicks-neutral productivity, foreign ownership dummy,
a dummy for positive R&D expenditures, a dummy for positive training expenditures, the log of the
ratio of skilled workers’ wages to unskilled workers’ wages in the region where a plant locates,

the 1996 value of the outcome variables denoted by ln
(
Ljs

L
j
u

)
96

,
(

WsL
j
s

WsL
j
s+WuL

j
u

)
96

, and ln
(
Lns+Lnu
L
p
s+L

p
u

)
96

for j ∈ {p, n}, a dummy for no hiring of skilled workers or unskilled workers in occupation j ∈ {p, n}
in 1996 denoted by djs,96 := 1(Ljs = 0) or dju,96 := 1(Lju = 0), respectively, TFP measure constructed
by the Levinsohn and Petrin method under the assumption of a Cobb-Douglas production function,
3-digit ISIC industry dummies, and province dummies.

Z\X Transport cost to the nearest port, a change in output and input tariff rates at 5-digit ISIC level
between 1996 and 2001, interaction terms between transport cost and tariffs.

Notes: A skilled worker is defined as a worker with high school eduction and unskilled worker is defined as a
worker without high school education. Occupation categories “p” and “n” denote production workers and
non-production workers, respectively. All variables are measured in 2006 unless stated otherwise.
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Table D.2: Descriptive Statistics for Variables for the Sample of Initial Non-Importers

D = 0 D = 1

Explanatory Variable(a) Mean S.D. Mean S.D.
TC 0.79 0.72 0.65 0.80
∆τy -6.76 9.61 -8.03 5.63
∆τm -3.39 6.90 -4.65 3.15
Export 0.15 0.36 0.39 0.49
Capital 13.28 1.83 14.56 2.32
ϕ 5.17 0.57 5.48 0.64
TFP 1.28 0.65 1.26 0.65
Foreign 0.01 0.11 0.08 0.27
R&D 0.05 0.21 0.14 0.35
Training 0.27 0.45 0.52 0.50
ln(Ws/Wu) 0.61 0.16 0.59 0.14
ln(Lps/L

p
u)96 -0.73 1.33 -0.33 1.40

dpu,96 0.01 0.12 0.05 0.21

dps,96 0.39 0.49 0.27 0.45

Standard 0.15 0.36 0.39 0.49
No. of Obs. 4342 306

D = 0 D = 1

Outcome Variable(b) Mean S.D. Mean S.D.
ln(Lps/L

p
u)06 -0.53 1.65 0.12 1.80

ln(Lns /L
n
u)06 0.58 1.31 1.21 1.39

ln((Lnu + Lns )/(Lnu + Lns + Lpu + Lps))06 -2.14 1.24 -2.05 1.36
ln(WsL

p
s/(WsL

p
s +WuL

p
u))06 0.41 0.35 0.55 0.36

ln(WsLns /(WsLns +WuLnu))06 0.66 0.42 0.69 0.41

Notes: (a) The sample statistics for the explanatory variables that are used to estimate the decisions to import reported

in the column of “Initial Non-Importers” of Table 8. (b) The sample statistics for the outcome variables that are used to

estimate the skill demand equation (10). In each case, the outcome variable is computed using the sample of initial

non-importers.
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Table D.3: The First Stage Regression using Linear Probability Model

Sample Full Sample Sample of Initial Non-importers (D96 = 0)
Dep. Var. Import Dummy Import Dummy Export Dummy Dummy for Standards
Table-Column Table 2-(2) Table 2-(3) Table 2-(4) Table 2-(6) Table 2-(7) Table 2-(8) Table 3-(4) Table 3-(4) Table 7-(2) Table 6-(1) Table 6-(2) Table 6-(3)
for 2nd Stage
dTC 0.0900*** 0.0472*** 0.0804***

[0.013] [0.011] [0.019]
TC -0.0854*** -0.0869*** -0.0382*** -0.0341*** -0.0272** 0.0116 0.0200 -0.0665*** -0.0538***

[0.011] [0.012] [0.009] [0.011] [0.012] [0.013] [0.013] [0.016] [0.017]
∆τy 0.0030 0.0002 -0.0001 -0.0032** -0.0032** 0.0020

[0.002] [0.002] [0.002] [0.002] [0.002] [0.003]
∆τm -0.0032 0.0007 -0.0006 0.0030 0.0015 -0.0054

[0.003] [0.002] [0.002] [0.002] [0.002] [0.004]
∆τy × TC -0.0020 0.0010 0.0009 0.0019 0.0019 -0.0011

[0.001] [0.001] [0.001] [0.002] [0.002] [0.002]
∆τm × TC 0.0031 -0.0013 -0.0012 -0.0036 -0.0034 0.0021

[0.002] [0.001] [0.002] [0.002] [0.002] [0.003]
Export 0.1617*** 0.1634*** 0.1775*** 0.0723*** 0.0720*** 0.0795***

[0.016] [0.016] [0.017] [0.014] [0.014] [0.016]
Capital 0.0211*** 0.0211*** 0.0213*** 0.0088*** 0.0093*** 0.0087*** 0.0097*** 0.0250*** 0.0193*** 0.0272*** 0.0272*** 0.0291***

[0.003] [0.003] [0.004] [0.003] [0.003] [0.003] [0.004] [0.004] [0.004] [0.005] [0.005] [0.005]
Hicks-neutral ϕ 0.0270*** 0.0281*** 0.0309*** 0.0133 0.0133 0.0156* 0.0124 0.0288** 0.0323*** 0.0344** 0.0350** 0.0305**

[0.010] [0.010] [0.011] [0.008] [0.008] [0.009] [0.009] [0.011] [0.012] [0.014] [0.014] [0.015]
Foreign 0.1892*** 0.1885*** 0.1856*** 0.1196*** 0.1168*** 0.1038** 0.0824 0.1538** 0.1016 0.1114 0.1124 0.0417

[0.035] [0.035] [0.038] [0.045] [0.045] [0.050] [0.063] [0.071] [0.077] [0.087] [0.088] [0.094]
R&D 0.0693*** 0.0705*** 0.0631*** 0.0751*** 0.0725*** 0.0530** 0.0526* 0.0621* 0.0598 0.1453*** 0.1497*** 0.1483***

[0.022] [0.022] [0.024] [0.024] [0.024] [0.026] [0.030] [0.036] [0.037] [0.045] [0.045] [0.048]
Training 0.0406*** 0.0450*** 0.0440*** 0.0293*** 0.0317*** 0.0316*** 0.0317*** 0.0681*** 0.0616*** 0.1088*** 0.1069*** 0.1130***

[0.012] [0.012] [0.013] [0.010] [0.010] [0.011] [0.012] [0.015] [0.014] [0.018] [0.018] [0.019]

ln(Ws
Wu

) -0.0032 0.0148 0.0180 -0.0037 0.0069 0.0150 0.0335** 0.0227 0.0197 0.0290 0.0435 0.0467

[0.018] [0.018] [0.020] [0.013] [0.014] [0.014] [0.016] [0.023] [0.023] [0.030] [0.030] [0.031]

ln(
L
p
s

L
p
u

)96 0.0105** 0.0113** 0.0117** 0.0070* 0.0077* 0.0063 0.0064 0.0047 0.0028 0.0111* 0.0103 0.0056

[0.005] [0.005] [0.005] [0.004] [0.004] [0.004] [0.005] [0.005] [0.005] [0.007] [0.007] [0.007]
d
p
u,96 0.0635 0.0664 0.0726 0.0650 0.0705 0.0671 0.0832 0.0116 -0.0178 -0.0263 -0.0234 0.0151

[0.042] [0.042] [0.045] [0.044] [0.044] [0.047] [0.056] [0.052] [0.043] [0.062] [0.062] [0.074]
d
p
s,96 -0.0268** -0.0264* -0.0173 0.0110 0.0107 0.0221* 0.0182 -0.0123 -0.0107 -0.0310* -0.0306* -0.0207

[0.013] [0.014] [0.014] [0.011] [0.012] [0.012] [0.013] [0.014] [0.014] [0.018] [0.018] [0.019]
No. Obs. 4,970 4,914 4,301 3,767 3,718 3,281 2,654 2,654 2,490 2,718 2,692 2,412
R-squared 0.238 0.242 0.244 0.119 0.120 0.111 0.092 0.189 0.174 0.230 0.228 0.246

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses. Province dummies and 3-digit ISIC industry dummies are also included.
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Table D.4: Robustness Check: Skill Demand Equation for Production Workers using Full Sample

Dependent Variable: ln(Lps/L
p
u)06

(1) (2) (3) (4) (5) (6)
Sample of Sample of Sample of Sample of Replace ϕ Replace ϕ

Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0; with TFP; with TFP;
and Export06 = 0; and Export06 = 0; and Export06 = 0; IV both IV Import IV Import

IV Import IV Import IV Import Import and using using
using using using Export using TC (TC, ∆τm, ∆τy)
dTC TC (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import 1.8970** 2.4907*** 3.0461*** 3.2374*** 2.3008*** 2.2781***
[0.739] [0.847] [0.994] [0.953] [0.570] [0.608]

Export 0.7187 -0.3652*** -0.3398***
[1.932] [0.113] [0.127]

TFP 0.0561 0.0625
[0.037] [0.041]

No. Obs. 3,267 3,239 2,881 3,229 4,916 4,303

Dependent Variable:
(

WsL
p
s

WsL
p
s+WuL

p
u

)
06

(7) (8) (9) (10) (11) (12) (13)
OLS IV Import IV Import IV Import Sample of Sample of Replace ϕ

using using using Export06 = 0 Export96 = 0 with TFP;
dTC TC (TC, ∆τm, ∆τy) and Export96 = 0 IV both Import IV Import

IV Import using and Export using using
(TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy)

Import 0.0324*** 0.5501*** 0.4745*** 0.4223*** 0.5144*** 0.4540** 0.4055***
[0.009] [0.113] [0.101] [0.111] [0.176] [0.181] [0.108]

Export 0.0255*** -0.0626*** -0.0491** -0.0387* -0.3454 -0.0378*
[0.009] [0.022] [0.021] [0.023] [0.428] [0.023]

TFP 0.0155**
[0.007]

No. Obs. 7,123 7,123 7,051 6,192 4,530 4,951 6,194

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses. Columns (1)-(13) use the same set of

explanatory variables as in Table 2 except that we use the “conventional” TFP measure based on Cobb-Douglas

production function in place of Hicks-neutral productivity measure φ in columns (5), (6), and (13) while we include(
WsL

p
s

WsL
p
s+WuL

p
u

)
96

in place of ln(
Lps
L
p
u

)96, dpu,96, and dps,96 in columns (7)-(13). The full sample is used except in columns

(1)-(3) and (11) where we use the subsample of plants that do not export in 2006 while columns (4) and (12) use the

subsample of plants that do not export in 1996 or in 2006.
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Table D.5: Skill Demand, Export Decision, and Initial Skill Levels using Sample of Plants that
Neither Import Nor Export in 1996 (D96 =Export96 = 0)

Dep. Var.: ln(Lps/L
p
u)06 Dep. Var.: Export Dummy in 2006

(1) (2) (3) (4) (5) (6)
Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0 Export96 = 0

Sample D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0 D96 = 0
D06 = 0 D06 = 0 D06 = 0

IV Export IV Export IV both Import OLS OLS IV Import
IV or OLS using using and Export using using

(∆τm, ∆τy) (TC, ∆τm, ∆τy) (TC, ∆τm, ∆τy) TC
Import 5.1904* 0.1263*** -0.4408

[2.656] [0.030] [0.501]
Export 1.4183 -0.9551 -1.0712

[1.471] [1.218] [1.855]
TC 0.0151 0.0200

[0.013] [0.013]
∆τy -0.0032** -0.0032** -0.0018

[0.002] [0.002] [0.001]
∆τm 0.0031 0.0015 -0.0014

[0.002] [0.002] [0.002]
∆τy × TC 0.0018 0.0019

[0.002] [0.002]
∆τm × TC -0.0035 -0.0034

[0.002] [0.002]
Capital 0.1253*** 0.1676*** 0.1335** 0.0238*** 0.0193*** 0.0292***

[0.036] [0.033] [0.053] [0.004] [0.004] [0.006]
Hicks-neutral ϕ -0.3224*** -0.2506*** -0.3099*** 0.0272** 0.0323*** 0.0343**

[0.071] [0.069] [0.088] [0.012] [0.012] [0.014]
Foreign -0.0253 0.2204 -0.1748 0.1434** 0.1016 0.1913**

[0.292] [0.313] [0.513] [0.070] [0.077] [0.092]
R&D 0.0391 0.1843 -0.0887 0.0554 0.0598 0.0880*

[0.156] [0.152] [0.253] [0.036] [0.037] [0.048]
Training 0.1311 0.2772*** 0.1537 0.0641*** 0.0616*** 0.0815***

[0.117] [0.106] [0.164] [0.014] [0.014] [0.022]

ln(Ws
Wu

) 0.0826 0.1248 0.0097 0.0185 0.0197 0.0380

[0.112] [0.105] [0.142] [0.023] [0.023] [0.026]

ln(
L
p
s

L
p
u

)96 0.3732*** 0.3796*** 0.3377*** 0.0039 0.0028 0.0075

[0.026] [0.026] [0.039] [0.005] [0.005] [0.007]
d
p
u,96 0.3596 0.3125 -0.0637 0.0011 -0.0178 0.0483

[0.296] [0.299] [0.437] [0.050] [0.043] [0.075]
d
p
s,96 -0.9668*** -1.0094*** -1.1348*** -0.0146 -0.0107 -0.0058

[0.080] [0.080] [0.110] [0.014] [0.014] [0.018]
No. Obs. 2,510 2,490 2,654 2,654 2,490 2,654
R-squared 0.199 0.174

Notes: *** p<0.01, ** p<0.05, * p<0.1. Standard deviations are in parentheses. Province dummies and 3-digit ISIC

industry dummies are also included. This table reports full specifications and their estimates of Table 7.
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Table D.6: Treatment Effects of Importing on Skill Demand using the Ratio of Non-Production
Workers to Production Workers using the Sample of Initial Non-Importers

Dep. Var. ln
(
Lnu+Lns
L
p
u+L

p
s

)
06

ATE 0.3508

[2.0258](a)

(-0.7075,1.4927)(b)

TT 0.6594
[1.5838]

(-1.2319,3.0656)
TUT 0.3062

[2.4386]
(-0.6996,1.3492)
[0.0051,0.4803]

MPRTE 0.6136
(P ∗α = P + α) [1.3339]

(-1.0758,2.7724)
MPRTE 0.6016
(Zk∗α = Zk + α) [1.2866]

(-1.0668,2.6922)
PRTE 0.6189
(TC∗ = 0.99TC) [1.3438]

(-1.1037,2.8036)

Support(c) [0.007,0.842]

No. of Obs.(d) 4281

Notes: (a) The bootstrap standard errors are in square brackets. (b) The bootstrap equal-tailed 90 percent confidence

intervals are in parentheses. (c) The minimum and the maximum values of support over which treatment effects are

computed; various treatment effects are computed by restricting the weights to integrate to one on the restricted support,

for which minimum and maximum values are determined by the 1st percentile and the 99th percentile of observations in

the common support, respectively. (d) The sample size for estimating the MTE curve.

Figure D.1: Weights for ATE, TT, TUT, MPRTEs, and PRTE (Dependent Variables:
ln(Lps/L

p
u))
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Figure D.2: Estimated MTE for Dependent Variable ln
(
Lnu+Lns
Lpu+Lps

)
06

using the Sample of Initial

Non-Importers
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