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Abstract

We analyze input-output matrices for a wide set of countries as weighted directed networks. These
graphs contain only 47 nodes, but they are almost fully connected and many have nodes with strong
self-loops. We apply two measures: random walk centrality and one based on count-betweenness.
Our findings are intuitive. For example, in Luxembourg the most central sector is “Finance and Insur-
ance”and the analog in Germany is “Wholesale and Retail Trade” or “Motor Vehicles”, according to
the measure. Rankings of sectoral centrality vary by country. Some sectors are often highly central,
while others never are. Hierarchical clustering reveals geographical proximity and similar develop-
ment status.
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1 Introduction

Within a few weeks of the onset of the financial crisis in 2008, the world economy had plunged into a

severe global recession. The volume of international trade contracted sharply, and the world economy

did not grow in 2009 for the first time since World War II. Many governments reacted with programs

to mitigate the effects of the global downturn on their local economies. The United States spent $3

billion on the Car Allowance Rebate System (CARS). Germany spent an even larger fraction of its

national economy (e 1.5 billion) for a car scrappage program. What effect did these programs have?

How did the supply of new cars work its way through the rest of the local economy?

Input-output analysis was designed to explore this kind of effect (ten Raa, 2006; Leontief, 1986).

An input-output table is the matrix of the sales of goods and services between the different sectors of

an economy. A sector is a fairly coarse level of aggregation; an industry is composed of many firms

making an identical product, and a sector is composed of several industries making similar products.

“Agriculture” and “Pharmaceuticals” are two typical sectors.

The techniques of input-output analysis have had ready applications in economic planning. It is

alleged that Leontief (1986) developed aspects of input-output analysis during the Second World

War partly as an attempt to help identify strategic weaknesses in the German economy. Ranking the

influences of single sectors on national economic activity allows the identification of “key” sectors.

For example, there has been much discussion about firms that are “too big to fail”, and there was an

implicit understanding that the bail-out of General Motors was necessary because of the importance

of the automotive sector in the American economy.

In order to formalize such intuitive aspects, a deeper understanding of the structures of national

economies seems to be warranted. Any national economy is a complex system in which many agents

of different sizes interact by buying and selling goods and services. Schweitzer et al. (2009) suggest

that an understanding of these interactions on a systemic level may be achieved by analyzing the un-

derlying complex networks. During the last decade, network analysis has been applied successfully in

physics, biology and the social sciences (Vega-Redondo, 2007; Barabási and Albert, 2002; Newman,

2003; Dorogovtsev and Mendes, 2003). The literature on economic networks is growing rapidly.

Several authors have studied international trade networks. The early work used binary approaches
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(Garlaschelli and Loffredo, 2005; Serrano and Boguñá, 2003), but it soon became evident that trade

ought to be analyzed as weighted graph (Bhattacharya et al., 2008; Fagiolo et al., 2009). Interpreting

the gross domestic product (GDP) as a country’s fitness, Garlaschelli and Loffredo (2004) proposed

a model reproducing the topology of bilateral trade. A gravity model has been used to understand

weighted trade networks (Bhattacharya et al., 2008). Recently, the “product space” (Hidalgo et al.,

2007) and connections between banks (Iori et al., 2008) have been analyzed. Grassi (2010) studied

information flow across board members of different firms, focusing on node centralities.

In fact, it is natural to interpret an input-output table as a network. Each sector corresponds to a ver-

tex, and the flow of economic activity from one sector to another constitutes a weighted directed edge.

In complex network theory, identifying “key” sectors and ranking the sectors’ roles in an economy is

the task of applying an appropriate measure of node centrality to this input-output graph.

Vertex centrality measures have been studied extensively for quite some time. Freeman (1977)

introduced the notion of centrality in a graph; he defined the betweenness centrality of a node as the

average number of shortest paths between pairs of other nodes that pass through it. Flow betweenness

is based upon the maximum capacity of flows between nodes. It also includes contributions from

some non-geodesic paths (Freeman et al., 1991). Another approach, closeness centrality, is commonly

defined as the inverse of the mean geodesic distance from all nodes to a given one (Freeman, 1979).

All these measures require flows in the network to know an ideal route from each source to each

target, either in order to find a shortest path or to maximize flow. Addressing this potential deficiency,

Newman (2005) defined random walk betweenness. He averages effective visits over all possible

random walks in a network.

Three properties of input-output graphs make it hard to apply current centrality measures. First, at

the usual level of aggregation, these networks are dense, typically almost completely connected. Thus

applying measures based on shortest paths makes little sense. As the topology is nearly trivial, one

needs to analyze edge weights. Second, they are directed; for example, in the United States in 2000,

$13.5 billion of rubber and plastic products were used in the production of motor vehicles, but only

$53 million of the output of the motor vehicle sector was used in the production of rubber and plastic

products. Third, self-loops play a central role; in the same case, more than 60% of the total output

of the cars sector was used as its own input. Some authors including White and Borgatti (1994) have
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extended centrality concepts to the directed case, but, to the best of our knowledge, no one until now

has examined node centralities that incorporate self-loops. We derive two measures that are suited for

such networks. Both rely on random walks and each has an economic interpretation.

The rest of the manuscript is structured as follows. The next section provides the basic concepts.

The third section derives two centrality measures and shows their relation to economic theory. We

contrast our two approaches using a small example. The forth section shows our empirical results

using input-output data from a wide range of countries. The proposed measures reveal important

aspects of different national economies. Moreover, the consistency of the data allows us to compare

nodes’ centralities across countries in an intuitive way. Finally, we present some brief conclusions

and suggestions for future research. Implementations of the measures, the data and results are freely

available at http://hmgu.de/cmb/ionetworks.

2 Basic Concepts

A graph G = (V,E) consists of a set of vertices V and a set of edges E ⊂ V × V . In our case, each

edge (i, j) ∈ E is directed and assigned a non-negative real weight aij . By definition, the graph may

contain self-loops. The number of vertices is denoted by n. We consider strongly connected graphs

only; for any pair of nodes, there exists a directed path connecting them.

The graph can be represented by its n× n adjacency matrix A = (aij), where the element (i, j)

represents the weight aij of the edge from node i to node j. To keep notation simple, we name the

vertices by natural numbers, and we can identify them with according indices in the adjacency matrix.

Missing edges correspond to zero weights in the adjacency matrix. Then, the out-degree of node i is

ki =
�n

j=1 aij . We denote the set of out-neighbors of i by N(i) = {j | (i, j) ∈ E}.

2.1 Input-Output Networks

An input-output table A is an adjacency matrix of a network whose vertices are the sectors of an

economy. Its edges quantify the flow of economic activity between sectors. We focus on the table of

intermediate inputs. It records only sales of goods and services by firms to other firms that are directly

consumed or used up as inputs in the production process. It is not a closed system; the row and column
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sums are not equal. In national accounts, the total value of the gross output of a sector also includes

sales for final demand: consumption, investment, government purchases, and net exports. The total

value of gross inputs into a sector also includes payments to the factors of production: gross operating

surplus, compensation to employees, and indirect business taxes (ten Raa, 2006).

2.2 Random Walks

The movement of goods between the sectors of an economy is best modeled as a random walk (Bor-

gatti, 2005). In graph theory, a random walker starts out at a given position and repeatedly chooses an

edge incident to the current position (Bollobás, 2001). These choices are made according to a prob-

ability distribution determined by the edge weights. The random walker proceeds for an arbitrarily

long time or until a prescribed goal is reached.

An input-output table keeps track of the goods circulating through an economy, consisting of the

outputs of a large number of firms in each sector. Hence, each entry is the statistical aggregation of

many individual sales. We are interested in the transition probabilities of outputs produced by a sector.

These can be obtained by normalizing the input-output matrix by its row sums.

Hence in the following we work with the transition matrix

M = K
−1

A, (1)

where K is the diagonal matrix of the out-degrees ki.

3 Two Centrality Measures

This section derives two centrality measures that are suited for weighted directed networks with self-

loops. First, we explain their economic foundations. We relate the measures to other commonly used

ones and also give a small example that contrasts them.

3.1 Economic Intuition

Following the ideas of Fischer Black (Black, 1987), we design both our centrality measures to quantify

the response of sectors to an economic shock. Such a shock is a change in an exogenous variable
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that has repercussions on the endogenous variables under analysis (ten Raa, 2006). In input-output

accounts, prices, technologies, firms, the distribution of profits, government policy, and the vector of

final demands are exogenous, and the flows of commodities and corresponding payments between

sectors are endogenous. Fischer Black hypothesized that the business cycle might arise because of

the propagation of such shocks between the sectors of an economy (Black, 1987). Long and Plosser

(1983) developed an elegant analysis of the United States economy based on this idea.

We trace supply shocks as they flow as intermediate inputs through the business sectors of an

economy. Their random journeys end at the sector from which the extra output eventually satisfies

final demand, which we interpret as the target of some random walk. Consider an extra dollar of

production in the car sector – perhaps as a result of a government program – and the target “Food

products”. The initial output will be sold randomly to another sector, according to the pattern of sales

in the input-output table. The original dollar of extra revenue will be paid to capital, labor, or indirect

business taxes in “Motor vehicles”. The supply shock becomes an input into some sector, and it will

increase economic activity there by one dollar, akin to the conservation of current in a circuit. The new

output again will be sold to some sector. Eventually this process will hit the target “Food products”,

where the extra dollar of output exits the system to satisfy final demand. Averaging over all initial

shocks or over all pairs of shocks and targets, we define a node’s centrality by how quickly or how

frequently it is visited during this process.

Every economic transaction consists of a real and a monetary counterpart; thus when keeping track

of the flow of goods and services from a source to a destination at the same time we monitor the flow

of a dollar in payments from the destination back to the source.

3.2 Random Walk Centrality

Freeman’s closeness centrality (Freeman, 1979) is widely used in social network analysis. It is com-

monly defined as the inverse of the mean geodesic distance from all nodes to a given one. Again,

shortest paths make little sense in densely connected networks like input-output graphs. Moreover,

they completely ignore self-loops.

In order to generalize the concept of closeness, distance between nodes has to be measured in a

different way. We propose using the mean first passage time (MFPT). This distance is the measure of
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choice when dealing with random walk processes (Bollobás, 2001). The MFPT H(s, t) from node s

to t is the expected number of steps a random walker who starts at s needs to reach t for the first time:

H(s, t) :=
∞�

r=1

r · P (s r→ t) . (2)

Here P (s r→ t) is the probability that it takes exactly r steps before the first arrival at t. Note that

H(t, t) = 0 since P (t r→ t) = 0 for r ≥ 1. The MFPT is not symmetric, even for undirected graphs.

This property reflects the fact that it is much more probable to travel from the periphery to the central

nodes of a graph than to go the other way around.

We are interested in the first visit of the target node t. For calculations we can consider an absorbing

random walk that by definition never leaves node t once it is reached. It is thus appropriate to modify

the transition matrix M by deleting its t−th row and column. This (n−1)× (n−1) matrix we denote

by M−t.

The element (s, i) of the matrix (M−t)r−1 gives the probability of starting at s and being at i in

r − 1 steps, without ever having passed through the target node t. Consider a walk of exactly r steps

from s that first arrives at t. Its probability is

P (s r→ t) =
�

i�=t

((M−t)r−1)simit .

Plugging this into equation (2), we find

H(s, t) =
∞�

r=1

r

�

i�=t

((M−t)r−1)simit .

The infinite sum over r is essentially the sum of the geometric series for matrices

∞�

r=1

r(M−t)r−1 = (I −M−t)−2
, (3)
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where I is the n−1 dimensional identity matrix. Making this inversion is the reason for having deleted

one row and column from the original transition matrix M . Lovász (1993) shows that (I −M−t) is

invertible as long as there are no absorbing states, whereas (I −M) is not. So

H(s, t) =
�

i�=t

�
(I −M−t)−2

�

si
mit .

For fast calculation, this can be easily vectorized as H(., t) = (I −M−t)−2
m−t. Here H(., t) is

the vector of mean first passage times for a walk that ends at target t and m−t = (m1t, ...,mt−1,t,

mt+1,t, ...,mnt)� is the t − th column of M with the element mtt deleted. Further, let e be an n − 1

dimensional vector of ones. Then m−t = (I −M−t)e. Hence

H(., t) = (I −M−t)−1
e . (4)

This equation allows calculation of the MFPT matrix row-by-row with basic matrix operations only.

Using the Sherman-Morrison formula (Golub and Van Loan, 1996), we can speed up the n matrix

inversions further.

Using the natural analogy with closeness centrality, we define random walk centrality as the inverse

of the average mean first passage time to a given node:

Crw(i) =
n�

j∈V H(j, i)
. (5)

This measure is essentially proposed by Noh and Rieger (2004). Random walk centrality incorporates

self-loops indirectly because they slow down the traffic between other nodes.

The economic interpretation of this measure is straightforward. Consider a supply shock that occurs

with equal probability in any sector. Then a high random walk centrality of a sector means that it is

very sensitive to supply conditions anywhere in the economy. Hence, if one could predict sectoral

shocks accurately, one would short equity in a central sector and go long equity in a remote sector

during an economic downturn.
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3.3 Counting Betweeness

Our second approach is inspired by Newman’s random walk betweenness (Newman, 2005). We mod-

ify his concept slightly and generalize it to directed networks with self-loops. The proposed measure

denoted as counting betweenness keeps track of how often a given node is visited on first-passage

walks, averaged over all source-target pairs.

For source node s and target t �= s, the probability of being at node i �= t after r steps is ((M−t)r)si.

Then, the probability of going from i to j is mij . So the probability that a walker uses the edge (i, j)

immediately after r steps is ((M−t)r)sjmij . Summing over r, we can calculate how often the walker

is expected to use this edge:

N
st
ij : =

�

r

((M−t)r)si mij = mij

�

r

((M−t)r)si

= mij ((I −M−t)−1)si

Notice that a walker never uses an edge (i, j) if j is not a neighbor of i since the according transition

probability is zero. The total number of times we go from i to j and back to i is N
st
ij + N

st
ji . Here we

differ from Newman (2005), who excludes walks that oscillate and thus counts only the net number

of visits. On any walk from s to t, we enter node i �= s, t as often as we leave it. Hence, on a path

from s to t, vertex i is visted
�

j �=t(N
st
ij +N

st
ji )/2 times. For source s, target t and vertex i �= s, t, we

define:

N
st(i) =

�

j �=t

(N st
ij + N

st
ji )/2 . (6)

We allow for self-loops, hence a random walker may follow the edge (i, i), in which case the vertex i

is visited twice consecutively. Since it is possible that i = j �= t, we have to divide by 2 in all cases.

There are two special cases. If i = s, then the walker visits node s one extra time when it starts

N
st(s) =

�

j �=t

(N st
sj + N

st
js)/2 + 1.

Also, if i = t, then the walker is absorbed by vertex t the first time it arrives there and

N
st(t) = 1. (7)
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a

b

c

A

B

a b c
Shortest-path betweenness Csp 0.2 0.64 0.2
Newman’s betweenness CNrw 0.27 0.67 0.33
Random walk centrality Crw 0.048 0.094 0.044

Counting betweenness Cc 1.93 2.80 1.03

Figure 1: The network in (A) is taken from Newman (2005). (B) contrasts centrality measures calcu-
lated for selected nodes. Even though c is topologically central, our measures do not rank it highly,
in contrast to Newman’s betweenness. Instead, they focus on how quickly or how frequently traf-
fic within the network reaches a node. In a graph with two completely connected subcomponents, a
slightly remote bridge-like node is not crossed over frequently.

We define the counting betweenness of node i as the average of this quantity across all source-target

pairs:

Cc(i) =

�
s∈V

�
t∈(V−{s}) N

st(i)
n(n− 1)

. (8)

Counting betweenness can be used as a micro-foundation for the velocity of money. Consider a

dollar of final demand that is spent with equal probability on the output of any sector, and assume

that all transactions must be paid for with cash, not credit. Then the counting betweenness of sector

i is the expected number of periods that this dollar will spend there. If it is a high number, then that

sector requires many transactions before the money is eventually returned to the household sector as a

payment to some factor of production. If each transaction takes a fixed amount of time, then a sector

with a high counting betweenness is a drag on the velocity of money in the economy.

3.4 Illustrative Examples

Before applying our measures to actual data, we demonstrate their behavior in small artificial ex-

amples. Figure 1(A) shows a graph introduced by Newman (2005) to illustrate different concepts

of centrality. Here, all useful measures should obviously rank nodes of type b most central. While
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Figure 2: (A) This small network illustrates the importance of a self-loop. (B) This figure shows the
difference between the centrality of node 4 and 3 as a function of the self-loop weight a44. All other
links have unit weight. Random walk centrality always ranks node 3 highest. Counting betweenness
ranks node 4 higher when a44 exceeds a threshold near 1.6. If the self-loop has a large weight, it takes
a long time before a random walk leaves node 4 and enters the rest of the network.

concepts based on shortest paths do not account for the topologically central position of node c, New-

man’s betweenness gives a high centrality to c. In contrast, our measures both rank nodes of type a

higher than node c. A random walker spends a lot of time within the fully connected subgraph on the

left and seldom crosses over the bridge-like node c. The former is why counting betweenness ranks

node a highly, and the latter is why random walk centrality gives it a high ranking.

Figure 2(A) shows a small network that illustrates the differences between our two measures. It

emphasizes the role of a self-loop. Depending on the self-loop weight a44 attached to node 4, either

node 3 or 4 has the highest counting betweenness. In contrast, random walk centrality ranks node 3

highest, no matter the value of a44 is. Counting betweenness strongly emphasizes on the importance

of self-loops which are considered only indirectly by random walk centrality.
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4 The Central Sectors of Modern Economies

Our data are the input-output accounts from the STAN database at the Organization for Economic

Co-operation and Development (OECD), which are freely available at http://www.oecd.org/

sti/inputoutput/. They consist of 47 sectors and are benchmarked for 37 countries near the

year 2000 (see Table 1 for a list). Each country’s input-output table is one input-output graph. The

analyzed countries account for more than 85% of world GDP.

The used data are consistent on three important dimensions. First, they are designed to be consistent

across countries. Second, they are consistent with macroeconomic accounts; indeed, they maintain

the national income accounting identities. Third, they are consistent across time; so we can compare

Germany and the United States against themselves in two different benchmark years. The input-output

accounts are reported in local currencies, but we have no need to use exchange rates or GDP deflators

because we are only considering the unit-free transition matrices.

Some countries have sectors with no input or output. These arise because of data limitations in the

local national accounts. The most serious case is the Russian Federation, where the OECD records

output in only 22 sectors. Such sectors hinder the matrix inversion in equation (3). We therefore

assign zero centrality to these nodes and remove them from the adjacency matrix.
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Table 1: The most central sectors in the economies benchmarked by the OECD.

Country Random Walk Centrality Counting Betweenness
Argentina Food products Health and social work
Australia Wholesale and retail trade Wholesale and retail trade
Austria Wholesale and retail trade Wholesale and retail trade

Belgium Wholesale and retail trade Motor vehicles
Brazil Wholesale and retail trade Food products

Canada Wholesale and retail trade Motor vehicles
China Construction Textiles

Czech Republic Wholesale and retail trade Construction
Denmark Wholesale and retail trade Food products
Finland Wholesale and retail trade Communication equipment
France Construction Motor vehicles

Germany 1995 Wholesale and retail trade Motor vehicles
Germany 2000 Wholesale and retail trade Motor vehicles
Great Britain Wholesale and retail trade Health and social work

Greece Wholesale and retail trade Wholesale and retail trade
Hungary Wholesale and retail trade Motor vehicles
Indonesia Wholesale and retail trade Textiles

India Land transport Food products
Ireland Construction Office machinery
Israel Public admin. & defence Health and social work

social security
Italy Wholesale and retail trade Wholesale and retail trade
Japan Other business activities Motor vehicles
Korea Construction Motor vehicles

Luxembourg Finance and insurance Finance and insurance
Netherlands Wholesale and retail trade Food products

Norway Wholesale and retail trade Food products
New Zealand Wholesale and retail trade Food products

Poland Wholesale and retail trade Wholesale and retail trade
Portugal Wholesale and retail trade Health and social work
Russia Wholesale and retail trade Food products

Slovakia Wholesale and retail trade Motor vehicles
South Africa Public admin. & defence Public admin. & defence

social security social security
Spain Wholesale and retail trade Construction

Sweden Other business activities Motor vehicles
Switzerland Wholesale and retail trade Chemicals

Turkey Food products Textiles
Taiwan Wholesale and retail trade Office machinery

USA 1995 Wholesale and retail trade Health and social work
USA 2000 Public admin. & defence Public admin. & defence

social security social security
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4.1 Results for Individual Countries

Table 1 presents each country’s most central sector with respect to our two measures. The complete

results are available at http://hmgu.de/cmb/ionetworks. It is striking that “Wholesale and

retail trade” is most frequently the sector with highest random walk centrality. In many economies,

this sector has the highest share of final demand. Still, it is noteworthy that our normalization does

not depend upon this fact. For example, in Germany in 2000, this sector accounts for 12% of final

demand. “Real estate activities” is the second most important sector accounting for 9.6% of final

demand, but its random walk centrality is ranked only eighth.

Counting betweenness reveals the importance of Nokia in Finland and the “Motor vehicles” sector

in several advanced industrialized economies. Textiles play an important role in China, Indonesia, and

Turkey, showing the significance of that manufacturing sector in countries with low wages. “Finance

and insurance” is most central for Luxembourg. Finally, we note that “Public administration, defence,

and compulsory social security” is most central in Israel, South Africa, and the US in 2000.

4.2 Comparison of Different Countries

The consistency of the data across countries allows us to immediately compare the centralities of

sectors over different countries. We use a clustering technique to visualize our results. A clustering

assigns a set of objects into groups according to some measure of similarity. The adjacency matrices

are of dimension 2209 = 47 ∗ 47, but our focus on centrality reduces each economy to a vector of

length 47. Reducing the complex networks to a list of centrality values, we compress dramatically the

relevant information. Moreover, we do not want to attach too much importance to the actual centrality

numbers themselves, since we removed sectors without output in some countries. Instead, we are

concerned with rankings. Thus, for us two economies are similar if their Spearman rank correlation

of centralities across the sectors is high.

An easy and commonly used clustering technique is hierarchical clustering; Hastie et al. (2001)

gives a good introduction. This iterative algorithm groups economies starting with the closest pair. In

Figure 3A, Belgium and Spain are the two most similar countries; hence, they are on the lowest linked

branches. Again, by similar we mean that the Spearman rank correlation of centralities across the

sectors is high. We use complete linkage clustering to complete the dendrogram. This method defines
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Figure 3: (A) gives a hierarchical clustering according to random walk centrality. Colors indicate
the three important clusters: (1) the industrial countries from Belgium through the USA; (2) a mixed
group from Argentina through Indonesia, where agriculture and primary products are important; and
(3) a group of emerging economies from China through Russia. (B) shows clusterings according to
counting betweenness. The clusterings according to the two measures are largely stable.

the distance between two sets X and Y as the maximum of the distances between any element in X

and any element in Y . The clustering algorithm proceeds iteratively by identifying nearest neighbors

and showing the distance between them using branch heights. When all the initial singletons are

linked, the algorithm stops.

Cutting the tree at a predefined threshold gives a clustering at the selected precision. At the thresh-

old 0.65, we find three clusters in Figure 3A: (1) a group of advanced industrial economies ranging

from Belgium through the United States; (2) a mixed group of countries where agriculture may be

important; and (3) a group of rapidly emerging economies ranging from China through Russia.

Figure 3B shows a clustering of economies based upon the similarity according to counting be-

tweenness. Note that Taiwan is grouped quite differently in the two dendrograms. According to

random walk centrality, it is in the middle of the advanced industrial economies. But in the clustering

according to counting betweenness, it is a close neighbor of Korea, in the “Asian Tigers” sub-group of

the emerging economies. An important reason for this difference is that Korea and Taiwan have food

products and textiles sectors, both of which have strong self-loops. The clusterings capture the rem-
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nants of the historical development process in which both economies were based on manufacturing

sectors just one generation ago.

It is reassuring that the clusterings are in large parts stable across the two measures. The groupings

are natural; it is appropriate that the American and German economies, each sampled five years apart,

are most closely related to their former selves. Leontief argued that the stability of input-output

relations across time was a good empirical justification for using a fixed-coefficients technology in his

original work (Leontief, 1986). These clusterings support his assertion.

4.3 Two Detailed Comparisons

Focusing on random walk centrality, we turn briefly to a detailed study of two different pairs of similar

economies. Tables 2 and 3 look into the details inherent in the sector’s rankings that arise from that

measure.

The two nearest neighbors in Figure 3(A) are Belgium and Spain. Both are advanced economies.

Table 2 reports the ten most central sectors in each country. There is a remarkable similarity between

the flow of intermediate inputs in these economies. The most central sectors in both countries are “Re-

tail trade” and “Construction”. These sectors are notoriously pro-cyclical, and random walk centrality

shows that fact clearly.

Table 2: Two advanced economies that are similar in their nodes’ rankings according to random walk
centrality.

Rank Sector in Belgium Sector in Spain
1 Wholesale & retail trade Wholesale & retail trade
2 Construction Construction
3 Other business activities Hotels and restaurants
4 Food products Other business activities
5 Chemicals Food products
6 Hotels and restaurants Real estate activities
7 Travel agencies Travel agencies
8 Motor vehicles Other social services
9 Agriculture Motor vehicles
10 Health and social work Agriculture
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Figure 4: The core of the input-output networks of (A) Spain and (B) Turkey. For this illustration, the
graphs were thresholded. Edge thickness corresponds to the observed commodity flows, the thickness
of the nodes’ strokes encodes self-loop weight.
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India and Turkey are two developing countries that cluster together. This pair is somewhat less sim-

ilar than Belgium and Spain; in Figure 3(B), the length of the branch that brings them together is twice

as high as that for Belgium and Spain. “Food products”, “Construction”, and “Hotels and restaurants”

all have high centrality rankings. These rankings seem to indicate that the sectoral composition of

business cycles is somewhat different in an emerging economy.

Table 3: Two emerging economies that are similar in their nodes’ rankings according to random walk
centrality.

Rank Sector in India Sector in Turkey
1 Land transport Food products
2 Food products Wholesale & retail trade
3 Agriculture Construction
4 Construction Hotels and restaurants
5 Hotels and restaurants Agriculture
6 Textiles Finance & insurance
7 Health and social work Textiles
8 Wholesale & retail trade Land transport
9 Chemicals Travel agencies
10 Production Machinery and equipment

Figure 4 shows the core of the input-output networks of Spain and Turkey.

5 Conclusion

We described two vertex centrality measures that are based on random walks. A node’s random walk

centrality is the inverse of the mean number of steps it takes to reach it, averaged over all starting

nodes. Counting betweenness measures the expected number of times that a random walk passes a

certain node before it reaches its target, averaged over all pairs of sources and targets. Both mea-

sures allow the analysis of weighted directed networks with self-loops. The need for such measures

arises from interpreting economic questions within a graph-theoretic framework. We expect that our

techniques will be useful for analyzing payment networks and other financial systems. Moreover, any

coarsely grained network – such as one describing clubs or teams, not just individuals themselves

– will have important self-loops. Our measures will serve well to describe this kind of network ar-

chitecture. We agree with Estrada et al. (2009) that there is no best measure of centrality, and we
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followed their advice and developed two measures that are based on economic theory. We verified our

approaches with the application to real complex networks.

We directed our attention to the flow of economic activity as intermediate inputs before they exited

the system for use in final demand. Our measures identify a central node as a sector that is affected

most immediately or most strongly by a random supply shock. Applying these measures to OECD data

revealed important aspects of different national economies. We took full advantage of the consistency

of the data across countries and gave clusterings of the sector’ rankings in these networks. These were

intuitive, grouping countries with similar levels of development.

To the best of our knowledge, our hierarchical clustering based on node centralities was the first

attempt to quantitatively compare properties of individual nodes which are linked differently in multi-

ple instances of connecting graphs. This was possible because we had the same sectors trading goods

and services in many countries. Hence, we believe this data set is a rich source for other researchers

in the field.

There is a lot more work to be done in this area. The theory of networks has flourished in the last

decade, and consistent international data have also become widely available during this time. These

data have a time dimension, and one may also begin to study the temporal evolution of economic net-

works. This may well enable researchers to connect generative models of networks with observations

from the real world. Comparisons of extended versions of these network architectures may shed light

on the oldest question in all of economics: Why are some countries poor, while others are prosperous?
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