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Abstract

We analyze input-output matrices for a wide set of countries as weighted directed networks. These
graphs contain only 47 nodes, but they are almost fully connected and many have nodes with strong
self-loops. We apply two measures: random walk centrality and one based on count-betweenness.
Our findings are intuitive. For example, in Luxembourg the most central sector is “Finance and
Insurance”and the analog in Germany is “Wholesale and Retail Trade” or “Motor Vehicles”, accord-
ing to the measure. Rankings of sectoral centrality vary by country. Some sectors are often highly
central, while others never are. Hierarchical clustering reveals geographical proximity and similar
development status.

1 Introduction
It is natural to think of an input-output matrix as a network. Each sector is a vertex, and the flow of
economic activity from one sector to another constitutes an edge. Studying the network properties of
these matrices poses four practical problems. First, at the usual level of aggregation, these networks
are dense; they are typically completed connected. Second, they are directed; for example, in the
United States in 2003, $11.3 billion of rubber and plastic products were used in the production of
motor vehicles, but only $97 million of the output of the motor vehicle industry was used in the
production of rubber and plastic products. Third, these networks have self-loops; in the same case,
more than thirty percent of total industry output was used as its own input. Fourth, they are weighted;
for example, the output of the sector transit and ground transportation was only about six percent of
that of motor vehicles in the United States in 2003.

In this paper we develop two measures of betweenness that are suited for these networks. We
apply our measures to a wide array of input output tables for the OECD countries. These data are

∗The authors’ emails are florian.bloechl@helmholtz-muenchen.de, efisher@calpoly.edu, and fabian.theis@helmholtz-
muenchen.de. Fisher thanks the ETH at Zurich for the hospitality that allowed this work to be completed. All the data
and Matlab programs are available upon request.
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consistent in two ways. First, they are derive from macroeconomic accounts; the total of value added
across sectors is equal to national income. Second; they are consistent across countries. The level
of aggregation and the definition of sectors allows us to compare networks across countries in an
appealing and intuitive way.

Each edge is the local currency value of a sector’s output that is used as an input into another
sector, including perhaps itself. An industry’s outputs need not be closely related to its inputs, and
each row of the table is as a directed flow of economic activity. For example, motor vehicle industry
may be severely affected by bottlenecks in the production of rubber and plastic products, but the
converse is not true.

We are not the first to emphasize that an input output matrix is a directed network. Gancho
Ganchev, Lothar Krempel, and Margarita Shivergeva [6] give a nice visual representation of the
structure of the Bulgarian economy. McNerney [12] also investigates applications of network analysis
to national input-output tables, although he empahsizes measures of flow, not centrality.

Freeman [3] introduced the notion of centrality in a network; he defined the centrality of a node as
the average number of shortest links between pairs of other nodes that pass through it. His definition
is not adequate for an economic network in which edges may have different capacities. Freeman,
Borgatti, and White [5] describe a measure of flow for weighted networks that is based upon a maxi-
mum capacity of flows between nodes. Their measure ignores the possibility of parallel processing,
whereby information might flow between nodes through many different channels. Addressing this
deficiency forthrightly, Newman [13] defined random-walk betweenness. Our measures build upon
his important work, and they are easy to calculate.

It is alleged that Leontief [9] developed aspects of input-output accounting during the Second
World War partly as an attempt to help identify strategic weaknesses in the German economy. The
techniques of input-output accounting have ready applications in economic planning. One of the
most important reasons for collecting and constructing economic data at a disaggregated level is to
identify the influence of sectors on national economic activity. Fischer Black (1987) hypothesized the
business cycle might arise because of the propagation of shocks between the sectors of an economy,
and Long and Plosser [10] developed an elegant analysis of the United States economy based on this
idea. Our analysis is an attempt to quantify which sectors are most central in this process.

The first step in our analysis is to normalize the row sums to unity.1 Then a row shows the shares
of output that goes into each sector; it is also the probability that a given dollar’s worth of output will
flow into any one sector. Hence, we do not distinguish between economies that have very different
vectors of aggregate output, as long as commodities flow the same way in every sector. This has the
advantage of allowing us to compare economies of very different sizes, and it is somewhat akin to
defining countries as having identical technologies when their unit input requirements are identical.
For us, two economies are identical when their normalized output flows are the same for every sector.

Consider a unit of agricultural output. In equilibrium, a farmer will be indifferent between sell-
ing to the manufacturing sector or the construction sector since the marginal revenues are identical.
Hence the output will flow randomly to any one of several sectors. Also, payments received will
arrive from any random business using the output as an intermediate input; after all, a dollar is green
no matter its provenance. Thus centrality measures based upon the random flow of goods between
sectors–and the corresponding random flows of payments between businesses–will be quite apt. We

1Indeed, the matrices as raw data are not comparable for two reasons. First, each table is defined in a local currency.
Second, there is an enormous difference between th volume of economic activity in American, which accounts for about 24%
of world GDP, and the Slovak Republic, which contributes 0.2% to world output.
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develop and implement two of them.
Our first centrality measure is based upon the concept of Mean First Passage Time, a measure

of the distance between a source and target sector. Imagine a supply shock to any one sector. The
incremental output will flow randomly into all the sectors of the economy. We compute the expected
time it takes first to reach any particular target sector, where it is used for final demand. We argue
that a sector is most central if on average any random supply shock first flows through it. For exam-
ple, in the United States economy in 2000, the sector called “Public admin. & defence; compulsory
social security”has the lowest Mean First Passage Time when one averages across all possible supply
shocks. We consider it the most central sector in the American economy; in essence, the govern-
ment “purchases”as intermediate inputs a broad array of the outputs (including compulsory social
insurance) from many different sectors. Thus it will feel the effects of supply shocks fairly early.

Our second measure is counting centrality. Again, imagine a supply shock falling on any one
sector. The extra value added will eventually leak out of the system of intermediate inputs as a good
or service used for final demand. But first the incremental output will flow randomly through the
economy, causing secondary effects everywhere before it leaks out to satisfy the final demand for
consumption, investment, government purchases, or net exports. We keep track of how often it is
expected to visit any node, and we average these numbers of visits across all possible pairs of supply
shocks and sectoral outflow for final demand For example, in the German economy in 2000, the
sector called “Motor vehicles”has the highest counting centrality.

The rest of this paper is structured as follows. The second section gives some preliminary defini-
tions. In the third section, we develop our two centrality measures and then contrast using a simple
network. The fourth section shows our results; to our knowledge, it is the first use in economics of
hierarchical clustering to identify similarities among countries. The fifth section presents some brief
conclusions and suggestions for future research.

2 Definitions
We describe two measures of centrality that are designed to highlight aspects of the input output
matrices. Both are based on the concept of random walks in graphs. These measures are highly
correlated, but each has a slightly different focus.

Let G = (V,E) be a connected, weighted, and directed graph, consisting of a set of vertices V
and a set of edges E ⊂ V × V . Each edge (i, j) ∈ E is assigned a non-negative real weight aij . Our
graph may contain self-loops but one an only one edge connects the ordered pair (i, j). The number
of vertices and edges is denoted by n and m respectively.

The graph can be represented by its n× n adjacency matrix A = (aij), where the (i, j) − th
element represents the weight of edge i → j. To keep notation simple, we name the vertices by
natural numbers, and we can identify them with the according positions in the adjacency matrix. The
out-degree of node i is k(i) =

∑n
j=1 aij and the set of out-neighbors of i by N(i) = {j | (i, j) ∈ E},

so k(i) =
∑

j∈N(i) aij . This yields the total weight of the graph k(G) =
∑

i∈V k(i).
Any real economic transaction has its monetary counterpart. Thus we can model the movement

of goods between sectors or the corresponding flow of payments. The weight aij in an input-output
matrix corresponds to the value of goods produced in sector i sold to sector j. Hence it is the nominal
value of a flow of commodities or services from i to j and also the corresponding flow of monetary
payments from j to i.
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We model the movement of goods by random walks; see [1] for more details. In graph theory,
a random walker starts out at a given position with an intended destination. He or she repeatedly
chooses an edge incident to the current position, and these choices are made according to a probability
distribution determined by the edge weights. The random walker proceeds until the goal is reached.
In an input-output table, a random walk keeps track of a dollar circulating through the economy, with
the transition probabilities given by the flow of goods and services between sectors. Because of the
dual nature of all economic transactions, we are keeping track of the flow of the value of goods and
services from the source to the destination and also the flow of a dollar from the destination back to
the source.

The input-output matrices give us the sales of a large number firms in each sector. Hence by
normalizing an input-output matrix by its row sums, we get the transition probabilities for sales of
output by sector. We work with the Markov matrix

M = K−1A, (1)

where K is the diagonal matrix of the out-degrees k(i) defined above.2 It is entirely possible for a
dollar to become stuck in a sector if it makes sales only to itself and records no other transactions
with the rest of the economy, including payments to the factors of production.

The input-output matrix A is not a closed system. In particular, its row sums are not equal to
its column sums. The table records only sales by firms to other firms of goods and services used as
intermediate inputs in the production process. In national accounts, the total value of the gross output
of a sector is a row sum that includes sales for final demand, broken into consumption, investment,
government purchases, and net exports. The total value of gross inputs into a sector is a column sum
that includes payments to the factors of production called, gross operating surplus, compensation to
employees, and indirect business taxes.

3 Two Centrality Measures
In this section, we define two centrality measures that describe the nodes in input-output matrices
well. We also give a simple example that contrasts them.

3.1 Random Walk Centrality
In social network analysis, closeness centrality, introduced by Freeman [4], is a widely used measure.
It is usually defined as the inverse of the mean geodesic distance from all nodes to a given one. For an
input-output network, this measure makes little sense; no dollar knows how to travel along a shortest
path between sectors. It can take an arbitrarily long route, and it may even pass over the same link
more than once. In fact, a dollar could easily cycle for a long time between sectors i to j before
eventually moving on to k. Indeed, all real economies are so densely connected that one can get
from any sector to any other in at most two transactions. Since there is an ineluctable element of

2In our empirical implementation, there are countries with sectors recording no output. These arise because of data
limitations in the local national accounts. The most serious case is the Russian Federation, where the OECD records output
in only 22 sectors. In essence, such a sector splits the economy into two disconnected components. Our empirical work is
based upon matrices where none of the row sums is zero. Then we assign zero centrality to a sector with no output.
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randomness in how a dollar flows around the economy, we could have labeled our measure random
walk closeness. But we wish to pay homage to [14]

Hence, we need to measure distance between nodes in a different way. We propose using the
Mean First Passage Time (MFPT) as a metric when dealing with random walk processes [1]. The
MFPT from node s to t is the expected number of steps a random walker starting at node s needs to
reach node t for the first time:

H(s, t) :=
∞∑
r=1

r · Pr(s
r→ t) . (2)

Here Pr(s
r→ t) is the probability that it needs exactly r steps before the first arrival. 3 As we are

interested in the first visit of the target node, we consider an absorbing random walk, means we never
leave node t after we went there. It is appropriate to modify the Markov matrix M by deleting its
t− th row and column, resulting in a (n− 1)× (n− 1) matrix that we denote by M−t.

The (s, i) element of the matrix
((M−t)

r−1)si. (3)

gives the probability of starting at s and being at i in r− 1 steps, without ever having passed through
t. Consider a walk of exactly r steps from s that first arrives at t. Its probability is:

Pr(s
r→ t) =

∑
i 6=t

((M−t)
r−1)simit .

Plugging this into equation (2), we find

H(s, t) =

∞∑
r=1

r
∑
i 6=t

((M−t)
r−1)simit .

The infinite sum
∑∞

r=1 r(M−t)
r−1 = (I −M−t)

−2, where I is the n−1 dimensional identity matrix.
Being able to make this inversion is the reason for deleting one row and column from the original
transition matrix M . Lovasz [11] shows that (I −M−t) is invertible as long as there are no absorbing
states, whereas (I −M) is not since M is a Markov matrix. So

H(s, t) =
∑
i 6=t

(
(I −M−t)

−2
)
si
mit .

This can be easily vectorized:

H(., t) = (I −M−t)
−2m−t .

where H(., t) is the vector of mean first hitting times for a walk that ends at target t and m−t =
(m1t, ...,mt−1,t,mt+1,t, ...,mnt)

′ is the t − th column of M with the element mtt deleted. Further,
let e be an n− 1 dimensional vector of ones. Then m−t = (I −M−t)e. Hence

H(., t) = (I −M−t)
−1 e . (4)

3By convention, H(t, t) = 0 since Pr(t
r→ t) = 0 for r ≥ 1.
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This equation allows calculation of the MFHT matrix row-by-row with basic matrix operations only.
Using Sherman-Morrison formula [7], we can speed up the n matrix inversions further.

In principle, the MFHT is not symmetric, even for undirected graphs. This property reflects the
fact that it is much easier to travel from the periphery to the center than it is to go the other way
around. Using the natural analogy with closeness centrality, we define random walk centrality as the
inverse of the average mean first hitting time to a given node:

C1(i) =
n∑

j∈V H(j, i)
. (5)

This measure is similar to the one proposed in [14]. Consider a supply shock that occurs with equal
probability in any sector. Then random walk centrality is the inverse of the expected number of steps
it will take for this shock to be felt in sector i. If this is a low number, then sector i is very sensitive to
supply conditions anywhere in the economy. Hence a sector that depends on a wide array of inputs
will tend to have a high random walk centrality.

3.2 Counting Centrality
Our second approach is inspired by Newman’s random walk betweenness [13]. We modify this
concept slightly and generalize it to directed networks with self-loops. Also, this measure is a gen-
eralization of betweenness centrality [3]: Betweenness centrality measures how often a certain node
lies on a shortest path if one averages over all possible pairs of source and target. A fast algorithm
for computing it is developed in [2]. Betweenness centrality is inadequate for networks based on
input output matrices since the shortest path concept is not useful in this case; also, betweenness
centrality does not allow for self-loops. We build on the concept of random walk betweenness and
define a measure that we call counting betweenness. It counts how often a given node is visited on
first passage walks, averaged over all pairs of source and target.

For a source node s and target node t 6= s, the probability of being at node i 6= t after r steps is
((M−t)

r)si. Then the probability of going from i to j is mij . So the probability that a walker uses
the edge i → j immediately after r steps is ((M−t)r)sjmij . Summing over r we can calculate how
often the walker is expected to use this edge:∑

r

((M−t)
r)simij = mij

∑
r((M−t)

r)si

= mij ((I −M−t)
−1)si

=: N st
ij

Notice that a walker never uses an edge i→ j if j is not a neighbor of i. The total number of times we
go from i to j and back to i is N st

ij +N st
ji . Here we differ from [13], who excludes walks that oscillate

and thus counts only the net number of visits. On any walk from s to t, we enter node i 6= s, t as
often as we leave it. Hence, on a path from s to t, vertex i is visted

∑
j 6=t(N

st
ij +N st

ji )/2 times. For
source s and target t and vertex i 6= s, t, we define:

N st(i) =
∑
j 6=t

(N st
ij +N st

ji )/2 . (6)
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a

b

c

A B a b c
Shortest-path betweenness 0.2 0.64 0.2
Random Walk betweenness 0.27 0.67 0.33

Counting betweenness 1.93 2.80 1.03
Random Walk Centrality 0.048 0.094 0.044

Figure 1: A A toy network, adapted from [13]. B Different centrality measures calculated for selected
nodes.

Since self loops are completely normal in an input-output network, a random walk can follow the edge
i→ i, in which case the vertex i is visited twice consecutively. Since it is possible that i = j 6= t, we
must take care to divide by 2 in all cases.

There are two special cases. If i = s, then the walker visits vertex s one extra time

N st(s) =
∑
j 6=t

(N st
sj +N st

js)/2 + 1.

Also, if i = t, then the walker is absorbed by vertex t the first time it arrives there and

N st(t) = 1.

The counting betweenness of node i is the average of this quantity across all source-target pairs:

C2(i) =
∑

s∈V
∑

t∈(V−{s})N
st(i)

n(n− 1)
. (7)

Counting betweenness can be used as a micro-foundation for the velocity of money. Consider a
dollar of final demand that is spent with equal probability on the output of any sector, and assume
that all transactions for intermediate goods must be paid for with cash, not credit. Then the counting
betweenness of sector i is the expected number of periods that this dollar will spend there. If it is
a high number, then that sector requires many transactions before the money is eventually returned
to the household sector as a payment to some factor of production. If each transaction takes a fixed
amount of time, then a sector with a high betweenness is a drag on the velocity of money in the
economy.

3.3 Toy examples
Before applying our measures to the Input-Output graphs, we study their behavior on small toy exam-
ples. Figure 1 shows a graph introduced by Newman [13] to illustrate different concepts of centrality
measures. Here, all useful measures should rank nodes b as the most central ones. However, while
concepts based on shortest paths do not account for the topologically central position of node a, the
Random Walk Betweenness does. Calculating our measures from the last section, we find that in con-
trast both rank nodes of type a higher than node c. A random walker causes a large amount of traffic
within the strongly connected subgraph which dominates the lower traffic over the bridge c. Thus, as
we do not average out traffic in opposite directions, this leads to a large counting betweenness of the
nodes a.
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Figure 2: A A small network with a self-loop. B Centrality measure in

In Figure 2 we plot a small network illustrating the differences between our two centrality ap-
proaches regarding the role of self-loops. Depending on the self-loop weight a44 either node 3 or 4
has the highest counting betweenness in this network. In contrast, independently of a44 node 3 is
always most central with respect to random walk centrality.

4 Central Sectors in Modern Economies
Table 1 presents the most central sectors in each economy. Our countries are Argentina, Australia,
Austria, Belgium, Brazil, Canada, China, the Czech Republic, Denmark, Finland, France, Germany
in 1995 and in 2000, Great Britain, Greece, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan,
Korea, Luxembourg, the Netherlands, New Zealand, Norway, Poland, Portugal, the Russian Federa-
tion, Slovakia, South Africa, Spain, Sweden, Switzerland, Turkey, Taiwan, and the United States in
1995 and in 2000. These countries account for more than 85% of world gross domestic product.

It is striking that “Wholesale and retail trade”is most frequently the sector with highest centrality.
In many economies, this sector has the highest share of final demand. Still, it is noteworthy that our
normalization does not depend upon this fact. For example, in Germany in 2000, this sector accounts
for 12% of final demand, but out normalization makes this sector’s entries sum to unity, just like any
others. Real estate activities is the second most important sector accounting for 9.6% of final demand,
but its random walk centrality is ranked only eighth. One can tentatively conclude that high random
walk centrality is actually based upon a rich pattern of output linkages, not on the sector’s absolute
importance in the economy.

Counting centrality captures sectors with hig average betweenness and also important self-loops.
Focussing on counting centrality reveals the importance of Nokia in Finland and the motor vehicle
sector in several advanced industrialized economies. Textiles play an important role in China, In-
donesia, and Turkey, showing the importance of that manufacturing sector in a countries with low
wages. Finally, it is worth noting that public administration, defence, and compulsory social security
is most central in Israel, South Africa, and the United States.
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Table 1: Most Central Sectors
Country Random Walk Centrality Counting Centrality
arg1997 Food products Health and social work
aus199899 Wholesale and retail trade Wholesale and retail trade
aut2000 Wholesale and retail trade Wholesale and retail trade
bel2000 Wholesale and retail trade Motor vehicles
bra2000 Wholesale and retail trade Food products
can2000 Wholesale and retail trade Motor vehicles
che2001 Wholesale and retail trade Chemicals excluding pharmaceuticals
chn2000 Construction Textiles
cze2000 Wholesale and retail trade Construction
deu1995 Wholesale and retail trade Motor vehicles
deu2000 Wholesale and retail trade Motor vehicles
dnk2000 Wholesale and retail trade Food products
esp2000 Wholesale and retail trade Construction
fin2000 Wholesale and retail trade Communication equipment
fra2000 Construction Motor vehicles
gbr2000 Wholesale and retail trade Health and social work
grc1999 Wholesale and retail trade Wholesale and retail trade
hun2000 Wholesale and retail trade Motor vehicles
idn2000 Wholesale and retail trade Textiles
ind199899 Land transport Food products
irl2000 Construction Office machinery
isr1995 Defence and social security Health and social work
ita2000 Wholesale and retail trade Wholesale and retail trade
jpn2000 Other Business Activities Motor vehicles
kor2000 Construction Motor vehicles
lux2000 Finance and insurance Finance and insurance
nld2000 Wholesale and retail trade Food products
nor2000 Wholesale and retail trade Food products
nzl200203 Wholesale and retail trade Food products
pol2000 Wholesale and retail trade Wholesale and retail trade
prt2000 Wholesale and retail trade Health and social work
rus2000 Wholesale and retail trade Food products
svk2000 Wholesale and retail trade Motor vehicles
swe2000 Other Business Activities Motor vehicles
tur1998 Food products Textiles
twn2001 Wholesale and retail trade Office machinery
usa1995 Wholesale and retail trade Health and social work
usa2000 Defence and social security Defence and social security
zaf2000 Defence and social security Defence and social security

It is impressive to visualize the structure in complicated sets of data by using clustering tech-
niques. A clustering assigns a set of objects into groupings according to a measure of similarity. Our
normalized data are of dimension 2209 = 47 ∗ 47, but our focus on centrality reduces each economy
to an element in a 47-dimensional space. Reducing the complex networks to a list of centrality val-
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Figure 3: Dendrograms of clusterings according to A Random Walk Centrality and B Counting Between-
ness

ues, we can dramatically compress the relevant information. Even more, we do not want to attach
too much importance to the actual centrality numbers themselves. Instead, we are concerned with
their rankings. Thus, for us two economies are similar if their Spearman rank correlation of centrality
across sectors is high. This also captures the fact that we had to remove sectors without input or
output to keep our measures well-defined.

Perhaps the easiest and most commonly used clustering method is hierarchical clustering, for
a detailed treatment see e.g. [8]. This iterative algorithm groups economies starting with the most
similar ones. Our distance measure is Spearman rank correlation. Figure 2 shows that Belgium
and Spain are the two most similar networks; hence, they are the closest two networks. We use
complete linkage clustering to draw the rest of the dendrogram with respect to a ranking according
to a betweenness measure: Let A and B be two sets; then distance between them is d(A,B) =
max{d(x, y) : x ∈ A, y ∈ B}. The clustering algorithm proceeds iteratively by identifying nearest
neighbors and showing their distance using branch heights in the dendrogram. When all the initial
singletons are linked, the algorithm stops. Cutting the tree at a predefined threshold gives a clustering
at the selected precision. For example, at the threshold 0.65, there are three clear clusters in Figure 2:
(1) a group of advanced industrial economies ranging from Belgium through the United States; (2) a
mixed group of countries where agriculture may be important; and (3) a group of rapidly emerging
economies ranging from China through Russia.

Figure 3b shows a clustering based upon the similarity of networks according to counting central-
ity. Taiwan is grouped quite differently in the two clusterings. According to random walk centrality,
it is in the middle of the advanced industrial economies. But in the clustering according to count
centrality, it is a close neighbor of Korea, in the “Asian Tigers”sub-group of the emerging economies.
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An important reason for this different grouping is that Korea and Taiwan have food products and
textiles industries that both have large self-loops. This clustering captures the remnants of the his-
torical development process in which both economies were based on manufacturing sectors just one
generation ago.

It is reassuring that the clusterings are stable across the two measures. The groupings are natural;
it is appropriate that the American and German economies, each sampled five years apart, are most
closely related their former selves. Leontief argued that the stability of input-output relations across
time was a good empirical justification for using a fixed-coefficients technology in his original work.
These clusterings support his assertion.

Focusing on Random Walk Centrality, we turn briefly to a detailed study of two different pairs
of similar economies. Tables 2 and 3 look into the details inherent in the clusterings that arise from
our the Random Walk Centrality. The two nearest neighbors are Belgium and Spain. We report the
ranks of the ten most central sectors in each country. There are forty-seven sectors in each case, but
reporting all would overwhelm the reader. The list of ten sectors shows the level of disaggregation of
our data. The main conclusion drawn from Table 2 is that there is a remarkable similarity between the
flow of intermediate inputs in each of these economies. Retail trade and construction are notoriously
pro-cyclical, and Random Walk Centrality shows that fact clearly.

Table 2: Two Similar Advanced Economies
Rank Sector in Belgium Sector in Spain
1 Wholesale and retail trade Wholesale and retail trade
2 Construction Construction
3 Other Business Activities Hotels and restaurants
4 Food products Other Business Activities
5 Chemicals excluding pharmaceuticals Food products
6 Hotels and restaurants Real estate activities
7 Travel agencies Travel agencies
8 Motor vehicles Other social services
9 Agriculture Motor vehicles
10 Health and social work Agriculture

India and Turkey cluster together, but they are somewhat less similar than Belgium and Spain;
in Fig. 2, the length of the branch that brings them together is twice as high as that for Belgium
and Spain. Food products, construction, and hotels and restaurants all have high centrality rankings.
These rankings seem to indicate that the sectoral composition of business cycles is somewhat differ-
ent in an emerging economy.
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Table 3: Two Similar Emerging Economies
Rank Sector in India Sector in Turkey
1 Land transport Food products
2 Food products Wholesale and retail trade
3 Agriculture Construction
4 Construction Hotels and restaurants
5 Hotels and restaurants Agriculture
6 Textiles Finance and insurance
7 Health and social work Textiles
8 Wholesale and retail trades Land transport
9 Chemicals excluding pharmaceuticals Travel agencies
10 Electricity Machinery, nec

5 Conclusion
We developed two centrality measures suited for measuring the flow of economic activity between
sectors in an economy. A node’s random walk centrality is the inverse of its mean first hitting time,
averaged over all pairs of source and target. In an input-output table a central sector will bear the
brunt of a supply shock very quickly. A node’s counting centrality measures expected number of
times that a commodity passes though before it exits the system as a good for final demand. Again,
we average over all pairs of source and target. The main difference between the two measures is that
counting centrality captures the effects of self-loops, an important part of economic networks.

We have concentrated on the flow of economic activity across the sectors of the economy. Our
normalization was to divide the input-output table by its row sums. Hence we treated sectors that had
large volumes of output of intermediate goods in the same way as those that had small volumes. We
directed our attention to the flow of economic activities as intermediate outputs before they exited the
system for use in final demand.

Taking full advantage of the the consistency of the data across countries, we have given the first
hierarchical clusterings of these economic networks. The clusterings were intuitive. They revealed
level of development and similarity of the same economy across time. To the best of our knowledge,
we have given the first hierarchical clusterings of the production structures of different economies.
We anticipate that others will build on this aspect of our work.

Using random walk centrality, we interpret a central node as a sector that it is most immediately
affected by a random supply shock. Hence, if one could predict sectoral shocks accurately, one would
short equity in a central sector and go long equity in a remote sector during an economic downturn.
Using counting centrality, we interpret a central sector as one that is both central and has a strong
self-loop. This measure of centrality is related to the velocity of money, and it does not ignore that
firms in the same sector actually buy and sell from each other.

There is a lot more work to be done in this area. The theory of networks has flourished in
the last two decades, and consistent international data has also become widely available during this
time. In the social sciences, network theory arose from theoretical sociology, but it obviously has
ready applications to economic data, both real and financial. we expect that our techniques will be
useful for analyzing payment networks and other financial systems. Also, our measure of counting
betweenness is useful for any network where self-loops are important. If the nodes of a social network
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describe aggregates such as clubs or teams–not just individuals themselves–then self-loops become
an important part of its architecture.
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