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1 Introduction

What induces country pairs to trade? In 2015, still more than one quarter of potential

bilateral trade relations reported zero trade flows.1 Comparing these zero trade flows with

trade relations in 2014, these zeros turn out to be extremely persistent: 84.6 percent of

country pairs that did not trade in 2014 did not trade in 2015 either, as can be seen in the

transition matrix depicted in Table 1. And similarly, 94.4 percent of pairs that did trade in

2014 continued to do so in the year after.2

Table 1: Persistence in Bilateral Trade Relations (2014 – 2015)

Traded in 2015
Traded in 2014 No Yes

No 84.6 % 15.4 %
Yes 5.6 % 94.4 %

Both intuitively and based on existing theoretical and empirical insights, we would expect

geographically close and economically large country pairs to have the greater bilateral

trade potential and thus be more likely to engage in international trade. As distance is

time-invariant and economic size does not change abruptly from one year to another, these

gravity-like characteristics may explain (part of) the observed persistence. Figure 1 breaks

down the share of nonzero trade flows in 2015 along the percentiles of four different

ad-hoc indicators of trade potential: bilateral distance; product of GDPs; “naive” gravity,

i.e. the product of GDPs divided by the countries’ bilateral distance; and the latter when

excluding country pairs in FTAs, with common currencies or common colonial history. The

x-axis indicates the potential trade volume, i.e. the joint economic size and/or proximity

of any two countries. All four plots paint a common picture: the black dots, covering

all country pairs, show a strong general relationship between trade potential and actual

nonzero trade. The blue and red dots split the country pairs according to whether the two

did or did not engage in trade in the previous year. The clearly separated pattern for the

two groups highlights the remarkable persistence of trade relations, even after controlling

for differences in trade potential in terms of distance, size, and bilateral trade policy. More

than 50 percent of those country pairs in the lowest percentile of trade potential trade

again in 2015, provided they already did so in 2014. On the other hand, even compa-

rably large and close pairs are likely not to trade in 2015 if they did not trade in 2014 either.3

1According to data from UN Comtrade.
2Note that throughout the paper, “country pair” refers to a directed pair of countries, i.e. Germany-France

and France-Germany are two distinct country pairs.
3A very similar pattern emerges for other points in time (see Figure A1 in Appendix A where the same graph

is reproduced for the years 1990–1991). If longer time intervals are considered, a similar picture remains, but
the relationship becomes considerably weaker (see Figure A2 in Appendix A for the years 1997–2006).
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Figure 1: Determinants of the Extensive Margin of Trade — Gravity and Persistence.
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from CEPII (Head and Mayer, 2014).

Two potential features of the extensive margin of trade that can generate the pattern docu-

mented by Table 1 and Figure 1 are what Heckman (1981) termed “true state dependence”

— i.e. countries actually are more likely to trade because they did so in the previous period —

and unobserved bilateral heterogeneity — i.e. persistence is due to unobservable factors

continuously driving bilateral trade potential — denoted as “spurious state dependence”
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by Heckman (1981). In this paper we introduce estimators for the determinants of the

extensive margin of international trade that explicitly take its persistence due to observable

characteristics, true state dependence, and unobserved heterogeneity into account. We

introduce features from the firm dynamics literature into a heterogeneous firms model of in-

ternational trade with bounded productivity to derive expressions for an exporting country’s

participation in a specific destination market in a given period. These expressions depend

on partly unobserved (i) exporter-time, (ii) destination-time, and (iii) exporter-destination

specific components, as well as on (iv) whether the exporter has already served the market

in the previous period, and on (v) exporter-destination-time specific gravity-type trade cost

determinants. We estimate the model making use of recent computational advances in the

estimation of binary choice estimators with high-dimensional fixed effects to address (i)-(iii).

The inclusion of fixed effects in a binary choice setting induces an incidental parameter

problem that is potentially aggravated by the dynamics introduced by (iv). To mitigate this

bias, we propose and implement new analytically and jackknife bias-corrected estimators for

coefficients and average partial effects in three-way fixed effects specifications. Additionally,

we provide an expression for long-run partial effects. Extensive simulation experiments

demonstrate the desirable statistical properties of our proposed bias-corrected estimators.

The empirical application provides evidence that both unobserved bilateral factors and true

state dependence due to entry dynamics contribute strongly to the high persistence. Taking

this persistence into account changes the estimated effects of the most commonly studied

potential determinants considerably: The impact of a common currency is reduced from

about 10 percentage points to less than 4 percentage points, the impact of joint membership

in the WTO decreases from 2.6 percentage points to 0.7 percentage points, and a common

regional trade agreement loses statistical significance. Specifications with a lagged depen-

dent variable and/or bilateral fixed effects further yield better predictions for which country

pairs will trade than specifications that fail to account for state dependence appropriately.

Our paper builds on recent insights from three flourishing strands of literature. First, our

paper is related to the literature on the extensive margin of international trade. A number

of theoretical frameworks have sought to propose mechanisms behind the decisions of firms

to export, and their aggregate implications of zero or nonzero trade flows at the country

pair level. Analogous to the intensive margin counterpart, these theories have established

gravity-like determinants, such as two countries’ bilateral distance, a free trade agreement,

a common currency and joint membership in the WTO. Egger and Larch (2011) and Egger,

Larch, Staub, and Winkelmann (2011) append an extensive margin to an Anderson and

Wincoop (2003)-type model by assuming export participation to be determined by (homo-

geneous) firms weighing operating profits and bilateral fixed costs of exporting. Helpman,

Melitz, and Rubinstein (2008) build a model of international trade with heterogeneous

4



firms and bounded productivity in which a country only exports to a given destination if the

most productive firm can afford to overcome the fixed costs of exporting. Eaton, Kortum,

and Sotelo (2013) move away from the arguably simplifying notion of a continuum of firms

and develop a model of a finite set of heterogeneous firms. Here, no firm may export to a

given market because of their individual efficiency draws. Our model proposed in this paper

directly builds on Helpman, Melitz, and Rubinstein (2008) and extends it by features from

the literature on firm dynamics. In this firm-level literature, Das, Roberts, and Tybout (2007)

develop a dynamic discrete-choice model in which current export participation depends

on previous exporting, and hence sunk costs, and observable characteristics of profits from

exporting (in line with previous empirical evidence by Roberts and Tybout, 1997; Bernard

and Jensen, 2004). Alessandria and Choi (2007) embed the distinction between sunk costs

and “period-by-period” fixed costs into general equilibrium.4 We aim at reconciling the

estimation of the aggregate extensive margin with the insight from the firm-level literature

that dynamics feature prominently in the determination of the exporting decision by deriving

an econometric specification that explicitly incorporates previous export experience at the

country pair level.

Second, our paper builds on advances in the literature on the gravity equation and the inten-
sive margin of international trade. With the advent of what has now been coined structural
gravity (Head and Mayer, 2014), the gravity framework has gained rich microfoundations.

Anderson and Wincoop (2003) and Eaton and Kortum (2002) each formulate an underlying

structure for exporting and importing countries that in estimations can easily be captured

by appropriate two-way country(-time) fixed effects, as first noted by Feenstra (2004) and

Redding and Venables (2004). Since Baier and Bergstrand (2007), it has furthermore

become standard to include country pair fixed effects to tackle unobservable bilateral trade

cost determinants. Additionally taking into account the multiplicative structure of the

gravity equation following Santos Silva and Tenreyro (2006), nonlinear estimation with

exporter-time, importer-time, and country pair fixed effects has become the gold standard

for the intensive margin. Estimating the model introduced in this paper similarly calls for

three sets of fixed effects, specific to exporters and importers in a given year, as well as

to a given country pair over time. The binary nature of the decision whether to export to

a destination market at all, also clearly asks for a nonlinear estimator. Therefore, in this

paper, we put the estimation of the extensive margin on a par with the intensive margin

gold standard by introducing a respective three-way fixed effects binary choice specification.

4A number of recent contributions also stress the dynamic character of firms’ exporting behaviour and
additionally provide alternative rationales for dynamic feedbacks beyond sunk costs of entry, such as “demand
learning” or consumer accumulation (see e.g. Bernard, Bøler, Massari, Reyes, and Taglioni, 2017; Ruhl and
Willis, 2017; Berman, Rebeyrol, and Vicard, 2019; Piveteau, 2019).
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Third, the paper builds on and contributes to the literature on estimating nonlinear fixed

effects models. Our proposed three-way fixed effects specification faces two difficulties. First,

the large number of fixed effects poses a computational challenge for nonlinear estimators.

Here we can rely on the recently suggested pseudo-demeaning algorithm by Stammann

(2018) to overcome this issue. Second, however, as is known since Neyman and Scott

(1948), the inclusion of fixed effects potentially introduces an incidental parameter problem,

leading to inconsistent estimates. Recently, there have been a number of advances to deal

with this problem, and a variety of approaches have been proposed (see Fernández-Val and

Weidner (2018) for a recent overview). For estimating the extensive margin with binary

choice models, there are so far two approaches, both of which focus exclusively on models

for cross-sectional bilateral data with only importer and exporter fixed effects. Cruz-Gonzalez,

Fernández-Val, and Weidner (2017) apply the bias correction of Fernández-Val and Weidner

(2016), and Charbonneau (2017) proposes a conditional logit estimator. Our contribution is

to develop suitable fixed effects binary choice estimators for bilateral cross-sectional data

over time, i.e. network panel data. While it is sufficient to adapt the two-way bias corrections

of Fernández-Val and Weidner (2016) for the theory-consistent estimation of our model

including the fixed effects for exporter-time (it) and importer-time (jt), we develop a new

bias correction for our preferred specification, which additionally includes a third, bilateral

(ij), set of fixed effects.5 Therefore, our article complements the work of Weidner and

Zylkin (2020) on estimating the intensive margin of trade, who examine the incidental

parameter problem in three-way pseudo-poisson (PPML) models under fixed T asymptotics

and suggest appropriate bias corrections.

The remainder of the paper is structured as follows. In Section 2 we build a dynamic model

of the extensive margin of international trade. The model yields aggregate predictions

that can be structurally estimated using a probit model with high-dimensional fixed effects.

In Section 3 we describe the new bias-corrected three-way fixed effects estimator. We

demonstrate its performance in Monte Carlo simulations in Section 4, before finally showing

the estimator in action by estimating the model in Section 5. Section 6 concludes.

2 An Empirical Model of the Extensive Margin of Trade

We start by setting up a model of the extensive margin of trade that will later guide our econo-

metric specification. We consider a stylized dynamic Melitz (2003)-type heterogeneous firms

5Similarly, it is possible to adapt the estimator of Charbonneau (2017) to the setting with exporter-time
(it) and importer-time (jt) fixed effects. However, her approach is not suitable for our purposes for several
reasons: 1. it does not allow for dynamics 2. it is limited to logit models, 3. it precludes the possibility to
estimate average partial effects, 4. it is computationally infeasible in cases where the number of levels per
fixed effects becomes large.
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model of international trade. Following Helpman, Melitz, and Rubinstein (2008, henceforth

HMR) we assume a bounded productivity distribution, like a truncated Pareto in HMR’s case.

We deviate from HMR by explicitly stating a time dimension and, unlike in the standard

Melitz setting, separate fixed exporting costs into costs of entering a new market and costs of

selling in a given market (as in Alessandria and Choi, 2007; Das, Roberts, and Tybout, 2007).

There are N countries, indexed by i and j, each of which consumes and produces a

continuum of products. The representative consumer in j receives utility according to a CES

utility function:

ujt =

(∫
ω∈Ωjt

(ξijt)
1
σ qjt(ω)

σ−1
σ dω

) σ
σ−1

with σ > 1. (1)

where qjt(ω) is j’s consumption of product ω in period t, Ωjt is the set of products available

in j, σ is the elasticity of substitution across products, and ξijt is a log-normally distributed

idiosyncratic demand shock (with µξ = 0 and σξ = 1) for goods from country i in country

j and period t (similar to Eaton, Kortum, and Kramarz, 2011). Demand in country j for

good ω depends on this demand shock, j’s overall expenditure Ejt, and the good price pjt(ω)

relative to the overall price level as captured by the price index Pjt:

qjt(ω) =
pjt(ω)−σ

P 1−σ
jt

ξijtEjt.

with Pjt =

(∫
ω∈Ωjt

ξijtpjt(ω)1−σdω

) 1
1−σ

.

Each country has a fixed continuum of potentially active firms that have different productiv-

ities drawn from the distribution Git(ϕ), where ϕ ∈ (0, ϕ∗it]. The productivity distribution

evolves over time and firms’ ranks within the productivity distribution can also change from

period to period, though firms that in the last period did not export to a market already

served by a domestic competitor are assumed not to directly jump to being the country’s

most productive firm in the next period.6 Each period, a firm can decide to pay a fixed cost

fprodit and start production of a differentiated variety using labour l as its only input, such

that lt(ω) = fprodit + qt(ω)/ϕt(ω). A firm’s marginal cost of providing one unit of its good to

market j consists of iceberg trade costs τijt and labour costs wit/ϕt(ω). Firms compete with

6Note that we could in principle also allow for new firm entry into the pool of potential producers without
changing our final expression for the extensive margin as long as the new entrants cannot become the country’s
most productive firm right away.
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each other in monopolistic competition and charge a constant markup over marginal costs.

Therefore, the price of a good ω produced in i and sold in j is:

pijt(ω) =
σ

σ − 1

τijtwit
ϕt(ω)

.

A firm’s operating profits in market j are hence given by:

π̃ijt(ω) =
1

σ

(
σ

σ − 1

τijtwit
ϕt(ω)

)1−σ

P σ−1
jt ξijtEjt.

If a firm wants to export to a market j in period t, it has to pay a fixed exporting cost f expijt .

The exporting fixed cost is higher by a market entry cost factor f entry ≥ 1 if the firm has not

been active in the respective market in the previous period. For tractability, the entry cost

factor is assumed to be constant across countries and time. Capturing the export decision by

a binary variable yijt(ω), i.e. equal to one if the firm decides to serve market j in period t,

we can formalize a firm’s realized profits in market j as follows:

πijt(ω) = yijt(ω)
{
π̃ijt(ω)− f expijt (f entry)[1−yij(t−1)(ω)]

}
.

In the absence of entry costs, a firm would simply compare its operating profits to the

fixed exporting cost and decide to serve a market if the former are greater than the latter.

With market entry costs, a firm might be willing to incur a loss in the current period if

expected future profits from that same market outweigh the initial loss. Firms discount

future profits at a rate δ per period. To keep things tractable and allow us to derive a

theory-consistent estimation expression below, we assume that firms expect their future

operating profits from and fixed costs of serving a given market to be equal to today’s values,

i.e. Et[π̃ij(t+s)] = π̃ijt and Et[f expij(t+s)] = f expijt ∀s ∈ N.7 The current value of today’s and all

future operating profits from market j is then given by
∑∞

s=0(1− δ)sπ̃ijt =
π̃ijt
δ

. A firm will

decide to serve a destination market if these discounted expected profits exceed the sum of

today’s and discounted future fixed costs of entry and exporting, given by

f expijt (f entry)(1−yij(t−1)(ω)) +
∞∑
s=1

(1− δ)sf expijt =
f expijt

δ

(
1 + δ(f entry − 1)

)(1−yij(t−1)(ω))
.

7Note that our final expression for the extensive margin also holds if firms instead expect their operating
profits from serving an export market to grow at a constant rate ḡ < δ.
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Given this model setup, the question whether a country exports to another country at all can

be considered by looking at the most productive firm (with ϕ∗t ) only. Denoting that firm’s

product by ω∗, we can capture the aggregate extensive margin by the binary variable yijt as

follows:

yijt = yijt(ω
∗) =

1 if

(
1
σ

(
σ
σ−1

τijtwit
ϕ∗
it

)1−σ
Pσ−1
jt ξijtEjt

)
fexpijt (1+δ(fentry−1))

(1−yij(t−1))
≥ 1,

0 else.

(2)

Country i is hence more likely to export to country j in period t if (i) bilateral variable trade

costs are lower; (ii) wages in i, and hence production costs, are lower; (iii) the productivity

of the most productive firm is higher, again reducing production costs; (iv) competitive

pressure, inversely captured by the price index, in j is lower, corresponding to the idea of

inward multilateral resistance coined by Anderson and Wincoop (2003) in the intensive

margin context; (v) the market in j is larger; (vi) bilateral fixed costs of exporting are

smaller; or (vii) i’s most productive firm already served market j in the previous period and

therefore does not have to pay the market entry cost. Note that (i) to (iv) all act via higher

operating profits and depend on the elasticity of substitution between goods. The higher

this elasticity, the stronger the reaction of profits to changes in any of these factors. At the

same time, a higher elasticity reduces the mark-up firms can charge and hence makes it

generally harder to earn enough profits to mitigate the fixed costs of exporting. Further

note that the importance of the entry costs depends on the discount factor. Intuitively, if

agents are more patient, the one-time entry costs matter less compared to the repeatedly

earned profits. Empirically, (vii) induces true state dependence. As previous exporters do

not have to incur entry costs, they are more likely to stay active in the destination market

and the extensive margin becomes more persistent than would be implied merely by the

persistence of productivity, market potential, and trade costs.

In order to turn equation (2) into the empirical expression that we will bring to the data,

we take the natural logarithm and group all exporter-time and importer-time specific

components and capture them with corresponding sets of fixed effects. Further, we need to

specify the fixed and variable trade costs. In keeping with the existing literature, we model

them as a linear combination of different observable bilateral variables, such as geographic

distance, whether i and j are both WTO members, and whether i and j share a common

currency. In our most general specification, we additionally include country pair fixed

effects. Following Baier and Bergstrand (2007), this is common practice in the estimation

of the determinants of the intensive margin of trade in order to avoid endogeneity due to
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unobserved heterogeneity. Further, these bilateral fixed effects may capture (part of) the

strong persistence documented above.8 Note, however, that the nature of the persistence

captured by these fixed effects is different from the one that is due to the entry dynamics.

This additional state dependence is “spurious” in the sense that countries are not actually

more likely to export to a destination because of the prior experience, but because they keep

incorporating the same unobserved factors over time. With the three sets of fixed effects and

our parametrization for time-varying trade cost determinants, we arrive at the following

econometric model:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else,
(3)

where κ = −σ log(σ)−(1−σ) log(σ−1)−log(1+δ(f entry−1)), λit = (1−σ)(log(wit)−log(ϕ∗it)),

ψjt = (σ− 1) log(Pjt) + log(Ejt), βy = log(1 + δ(f entry − 1)), x′ijtβx + µij = (1− σ) log(τijt)−
log(f expijt ), and ζijt = − log(ξijt) ∼ N (0, 1). The error term distribution implies that a probit

estimator is the appropriate choice to estimate our model. Alternatively, we could deviate

from Eaton, Kortum, and Kramarz (2011) and assume a log-logistic distribution for the

idiosyncratic demand shocks, which would lead to a logit specification. As mentioned above,

we capture the three sets of unobserved components by introducing according sets of fixed

effects. A supposed alternative using random effects is actually not possible, at least for the

it and jt effects, as they are implied by the theoretical model. We therefore cannot make the

distributional assumptions required in a random effects setting. The theory is silent about

the exact form of the bilateral heterogeneity. We decide for a third set of fixed effects as the

most general option in order to avoid assumptions on its distribution or its correlation to

observed factors.

Our theoretical framework implies a flexible empirical specification that can reconcile the

extensive margin estimation with the stylized fact presented in Section 1. Note that we chose

to make a number of simplifying assumptions in order to achieve the clear theory-consistent

interpretation of specification (3). An alternative interpretation of equation (3) as a reduced-

from representation of a more elaborate and realistic model (similar e.g. to how Roberts

and Tybout, 1997, motivate their empirical consideration) is equally justifiable. At the same

time, while our model is written along the lines of Helpman, Melitz, and Rubinstein (2008),

which remains the benchmark for the empirical assessment of the (aggregate) extensive

margin of trade, it is not decisive for our empirical specification that zero trade flows result

8If the trade costs further include any exporter(-time) or importer(-time) specific components, these are
captured by the aforementioned corresponding sets of fixed effects.
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from a truncated productivity distribution instead of a discrete number of firms (as in

Eaton, Kortum, and Sotelo, 2013) or from fixed exporting costs in a Krugman (1980)-type

homogeneous firms setting (as in Egger and Larch, 2011; Egger, Larch, et al., 2011).

3 Dynamic Binary Choice Estimators with Three-Way Fixed Effects

Having set up the empirical framework, we now turn to the estimation procedure. As

equation (3) demands three-way fixed effects to capture unobservable characteristics, we

describe how to implement suitable binary choice estimators. In a first step, we review a

recent procedure for estimating probit and logit models with high-dimensional fixed effects.

In a second step, we characterize new bias corrections to address the induced incidental

parameter problem. In a third step, we show how long-run average partial effects can be

estimated.

3.1 Feasible Estimation with High-Dimensional Three-Way Fixed Effects

In this subsection, we sketch how to estimate structural parameters, average partial effects

(APEs), and the corresponding standard errors in a binary response setting in the presence of

high-dimensional fixed effects. Let Z = [D,X], where D is the dummy matrix corresponding

to the fixed effects and X is a matrix of further regressors. Note that X may also include

predetermined variables. Further, let α denote the vector of fixed effects, β the vector

of structural parameters, and θ = [α′,β′]′. The log-likelihood contribution of the ijt-th

observation is

`ijt(β,αijt) = yijt log(Fijt) + (1− yijt) log(1− Fijt),

where αijt = [λit, ψjt, µij]
′.9 Further, Fijt is either the logistic or the standard normal cumu-

lative distribution function. See Table 2 for the relevant expressions and derivatives.

The standard approach to estimate binary choice models is to maximize the following

log-likelihood function:

L(β,α) =
I∑
i=1

J∑
j=1

T∑
t=1

`ijt(β,αijt)

using Newton’s method. The update in the (r − 1)-th iteration is

9Note that we use for brevity notation for balanced data.
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Table 2: Expressions and Derivatives for Logit and Probit Models

Logit Probit

Fijt (1 + exp(−ηijt))−1 Φ(ηijt)

∂ηFijt Fijt(1− Fijt) φ(ηijt)

∂η2Fijt ∂ηFijt(1− 2Fijt) −ηijtφ(ηijt)

νijt (yijt − Fijt)/∂ηFijt (yijt − Fijt)/∂ηFijt
Hijt 1 ∂ηFijt/(Fijt(1− Fijt))
ωijt ∂ηFijt Hijt∂ηFijt

∂η`ijt yijt − Fijt Hijt(yijt − Fijt)

Note: ηijt = x′ijtβ + λit + ψjt + µij is the linear predictor.

θr − θr−1 = (Z′Ω̂Z)−1Z′Ω̂ν̂ , (4)

where Z′Ω̂Z and Z′Ω̂ν̂ denote the negative Hessian and gradient of the log-likelihood,

respectively, and Ω̂ is a diagonal weighting matrix with diag(Ω̂) = ω̂.

The brute-force computation of equation (4) quickly becomes computationally demanding, if

not impossible.10 Thus Stammann (2018) suggests a straightforward strategy called pseudo-

demeaning, which mimics the well-known within transformation for linear regression

models. The approach allows us to update the structural parameters without having to

explicitly update the incidental parameters, which leads to the following concentrated

version of equation (4)

βr − βr−1 =
(

(M̂X)′Ω̂(M̂X)
)−1

(M̂X)′Ω̂(M̂ν̂) , (5)

where (M̂X)′Ω̂(M̂ν̂) is the concentrated gradient, (M̂X)′Ω̂(M̂X) is the concentrated nega-

tive Hessian, and M̂ = IIJT−P̂ = IIJT−D(D′Ω̂D)−1D′Ω̂ is known as the residual projection

that partials out the fixed effects. After convergence of the optimization routine, the stan-

dard errors associated with the structural parameters can be computed from the inverse of

the concentrated Hessian.

10In a balanced data set (I = J = N) with three-way fixed effects, the number of parameters to be estimated
is ≈ N(N − 1) + 2NT . In a trade panel data set with 200 countries and 50 years, the number of fixed effects
in this case amounts to 59800 parameters.
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Since the computation of M̂ itself is problematic even in moderately large data sets, Stam-

mann (2018) proposes to calculate the centered variables M̂ν̂ and M̂X using the method of

alternating projections (MAP), which only requires repeatedly performing group-specific

one-way weighted within transformations. This approach is feasible, since these within

transformations translate into simple scalar transformations (see Stammann, Heiß, and

McFadden, 2016).11 Note that all expressions containing M̂ or P̂ can be calculated efficiently

based on the MAP.

Next, we address the estimation of APEs. An estimator for the APEs is

δ̂k =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆̂k
ijt ,

where the partial effect of the k-th regressor ∆̂k
ijt is either ∆̂k

ijt = ∂F̂ijt/∂xijtk in the case of

a continuous regressor or ∆̂k
ijt = F̂ijt|xijtk=1

− F̂ijt|xijtk=0
in the case of a binary regressors.

Another question that arises in the context of APEs is how to calculate appropriate standard

errors, even in the case of high-dimensional fixed effects. A possible candidate is the delta

method. In its standard form, though, it requires the entire covariance matrix, which we do

not obtain using the pseudo-demeaning approach. However, as outlined in Fernández-Val

and Weidner (2016) and Czarnowske and Stammann (2019) in a related context with

individual and time fixed effects, it is possible to use a concentrated version of the delta

method. In the following we present the feasible covariance estimators for our three-way

error structure.12 An appropriate covariance estimator for the APEs of the three-way fixed

effects model is

V̂δ =
1

I2J2T 2


(

I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)′
︸ ︷︷ ︸

v1

+
I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt︸ ︷︷ ︸

v2

+ 2
I∑
i=1

J∑
j=1

T∑
s>t

̂̄∆ijtΓ̂
′
ijs︸ ︷︷ ︸

v3

 , (6)

11For further details, we refer the reader to Appendix B.1, where we sketch the MAP for our application of
two-way and three-way models, and provide the entire optimization routine corresponding to equation (5).

12The corresponding asymptotic distribution of the estimators is provided in Appendix B.3.

13



where ̂̄∆ijt = ∆̂ijt − δ̂, ∆̂ijt = [∆̂1
ijt, . . . , ∆̂

m
ijt]
′, δ̂ = [δ̂1, . . . , δ̂m]′, and

Γ̂ijt =

(
I∑
i=1

J∑
j=1

T∑
t=1

∂β∆̂ijt −
(
P̂X
)
ijt
∂η∆̂ijt

)′
Â−1

(
M̂X

)
ijt
ω̂ijtν̂ijt −

(
P̂Ψ̂
)
ijt
∂η ˆ̀

ijt ,

with Â = (M̂X)′Ω̂(M̂X), Ψ̂ijt = ∂η∆̂ijt/ω̂ijt, and ∂η ˆ̀
ijt defined in Table 2. To clarify notation,

∂ιg(·) denotes the first order partial derivative of an arbitrary function g(·) with respect to

some parameter ι. Note, that the term v2 refers to the concentrated delta method. The

terms v1 and v3 are in the spirit of Fernández-Val and Weidner (2016) to improve the finite

sample properties. These are, on the one hand, the variation induced by estimating sample

instead of population means (v1). On the other hand, if we are concerned about the strict

exogeneity assumption (as we are in the case of dynamic three-way error structure models),

the covariance between the estimation of sample means and parameters is another factor

that should be incorporated (v3). These computationally efficient covariance estimators can

be readily applied not only to uncorrected APE estimators, but also to the bias-corrected

APE estimators, which we will introduce below.

3.2 Incidental Parameter Bias Correction

As many nonlinear estimators, standard fixed effects versions of the logit and probit models

suffer from the well-known incidental parameter problem first identified by Neyman and

Scott (1948). The problem stems from the necessity to estimate many nuisance parameters,

which contaminate the estimator of the structural parameters and average partial effects. It

can be further amplified by the inclusion of a lagged dependent variable.13 Fernández-Val

and Weidner (2018) derive the order of the bias induced by incidental parameters to be

given by bias ∼ p/n, where p and n are the numbers of parameters and observations, re-

spectively. The literature suggests different types of bias corrections to reduce this incidental

parameter bias. Jackknife corrections, like the leave-one-out jackknife proposed by Hahn

and Newey (2004), or the split-panel jackknife (SPJ) introduced by Dhaene and Jochmans

(2015), are the simplest approaches to obtain a bias correction, at the expense of being

computationally costly. In contrast to analytical corrections, their application only requires

knowledge of the order of the bias to form appropriate subpanels that are used to reestimate

the model and to form an estimator of the bias terms. For analytical bias correction (ABC),

it is necessary to derive the asymptotic distribution of the maximum likelihood estimator

(MLE), in order to obtain an explicit expression of the asymptotic bias. This is then used to

form a suitable estimator for the bias terms. Fernández-Val and Weidner (2016) propose

13Note that this induces an incidental parameter problem even in the linear three-way fixed effects setting
(see Nickell, 1981) — and hence in our case also affects a linear probability model specification.

14



analytical and split-panel jackknife bias corrections for structural parameters and APEs in

the context of nonlinear models with individual and time fixed effects.

We adapt and extend the bias corrections of Fernández-Val and Weidner (2016) to our three-

way error component.14,15 Fernández-Val and Weidner (2018) conjecture, based on their

previously discussed formula, bias ∼ p/n, that the bias of a three-way fixed effects estimator

in an ijt-panel setting is of order (IT +JT +IJ)/(IJT ) and of the form B1/I+B2/J+B3/T .

In line with the bias structure in two-way error component models, the inclusion of importer-

time and exporter-time fixed effects entails two bias terms of order 1/I and 1/J , respectively.

Intuitively, the inclusion of dyadic fixed effects induces another bias of order 1/T because

there are only T informative observations per additionally included parameter. Based on this

conjecture we propose novel analytical and jackknife bias corrections for three-way fixed

effects models. In Appendix B.2, we illustrate the statistical problem and the working of

bias corrections with a version of the prominent Neyman and Scott (1948) variance example.

For the split-panel jackknife bias correction, this three-part bias structure implies that we

need to split our panel across three dimensions, leading to the following estimator for the

structural parameters:

β̂
sp

= 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2, with (7)

β̂I/2,J,T =
1

2

[
β̂{i:i≤bI/2c,J,T} + β̂{i:i≥dI/2+1e,J,T}

]
,

β̂I,J/2,T =
1

2

[
β̂{I,j:j≤bJ/2c,T} + β̂{I,j:j≥dJ/2+1e,T}

]
,

β̂I,J,T/2 =
1

2

[
β̂{I,J,t:t≤bT/2c} + β̂{I,J,t:t≥dT/2+1e}

]
.

where b·c and d·e denote the floor and ceiling functions. To clarify the notation, the subscript

{i : i ≤ dI/2e}, J, T denotes that the estimator is based on a subsample, which contains all

importers and time periods, but only the first half of all exporters.

Combining insights from the classical panel structure in Fernández-Val and Weidner (2016),

the pseudo-panel setting in Cruz-Gonzalez, Fernández-Val, and Weidner (2017), and the

three-way fixed effects conjecture by Fernández-Val and Weidner (2018), we formulate a

14In Appendix B.3, we also derive the bias corrections for a two-way fixed effects model in our ijt network
panel structure. Previous two-way bias corrections considered either classical it panel structures or ij
pseudo-panels.

15We do not elaborate on the leave-one-out jackknife bias correction because it requires all variables to be
independent over time and thus rules out predetermined and serially-correlated regressors (Fernández-Val and
Weidner, 2018).
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conjecture for the asymptotic MLE distribution in the three-way setting (which we present in

Appendix B.3) and propose the following analytical bias correction which subtracts estimates

of the leading bias terms from the MLE:

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
− B̂β

3

T
, with B̂β

1 = Ŵ−1B̂1, B̂
β
2 = Ŵ−1B̂2, B̂

β
3 = Ŵ−1B̂3, (8)

B̂1 = − 1

2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑I

i=1 ω̂ijt
,

B̂2 = − 1

2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑J

j=1 ω̂ijt
,

B̂3 = − 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

Ĥijt∂η2F̂ijt

(
M̂X

)
ijt

+2
L∑
l=1

(T/(T − L))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂X

)
ijt

)

Ŵ =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂ijt

(
M̂X

)
ijt

(
M̂X

)′
ijt
,

where ∂ι2g(·) denotes the second order partial derivative of an arbitrary function g(·) with re-

spect to some parameter ι. The explicit expressions ofHijt and ∂η2Fijt are reported in Table 2.

L is a bandwidth parameter and is used for the estimation of spectral densities (Hahn and

Kuersteiner, 2007). In a model where all regressors are exogenous, L is set to zero, such

that the second part in the numerator of B̂3 vanishes and all three estimators of the bias

terms are symmetric. Otherwise, for instance in the dynamic model, Fernández-Val and

Weidner (2016) suggest conducting a sensitivity analysis with L ∈ {1, 2, 3, 4}.

The first two correction terms in equation (8) are generalizations of the corresponding

components in the ij-pseudo panel structure of Cruz-Gonzalez, Fernández-Val, and Weidner

(2017) to our ijt structure (see Appendix B.3 for the derivation in a two-way it and jt fixed

effects setting). The additional inclusion of a third set of (ij) fixed effects additionally leads

to the third correction term that mimics the correction for individual fixed effects in an

it-panel setting.

Moving to the APEs, the split-panel jackknife estimator is formed by replacing the estimators

for the structural parameters with estimators for the APEs in formula (7). The analytically
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bias-corrected estimator, based on our conjecture for the asymptotic distribution provided

in Appendix B.3, is given by

δ̃a = δ̂ − B̂δ
1

I
− B̂δ

2

J
− B̂δ

3

T
, with (9)

B̂δ
1 =

1

2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑I
i=1 ω̂ijt

,

B̂δ
2 =

1

2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑J
j=1 ω̂ijt

,

B̂δ
3 =

1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

ω̂ijt

)−1( T∑
t=1

−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt

+2
L∑
l=1

(T/ (T − l))
T∑

t=l+1

∂η ˆ̀
ijt−lω̂ijt

(
M̂Ψ̂

)
ijt

)
.

The last part in the numerator of B̂δ
3 is again dropped if all regressors are assumed to

be strictly exogenous. Note that all quantities are evaluated at bias-corrected structural

parameters and the corresponding estimates of the fixed effects.16 Standard errors can still

be obtained from equation (6).

3.3 Long-Run Average Partial Effects

In dynamic models, the simple average partial effect δ̂k does not provide the full picture of

how the export probability is affected by a change in a regressor. Rather, there are additional

feedback effects: In our context, the introduction of a permanent trade policy that increases

the probability to export to a destination implies that in the next period, entry costs are

more likely to have already been paid, and hence the impact becomes higher with increasing

duration of the policy. To derive expressions for long-run effects, which additionally take

these dynamic feedbacks into account, we make use of the long-run probability of yijt = 1

for a given set of regressors and fixed effects, also mentioned in Carro (2003) and Browning

and Carro (2010):

F̃ijt =
F̂ijt|yij(t−1)=0

1− ∆̂y
ijt

, (10)

where ∆̂y
ijt = F̂ijt|yij(t−1)=1

− F̂ijt|yij(t−1)=0
. Long-run average partial effects are then given by

16For this purpose, we use a computationally efficient offset algorithm as in Czarnowske and Stammann
(2019).
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δ̂LRk =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

∆̂k,LR
ijt , with ∆̂k,LR

ijt =
∂F̃ijt
∂xijtk

or ∆̂k,LR
ijt = F̃ijt|xijtk=1

−F̃ijt|xijtk=0
, (11)

in the case of continuous or binary regressors, respectively. We obtain bias-corrected

estimates of δLRk by substituting individual long-run partial effects ∆̂k,LR
ijt for the simple

individual partial effects in equation (9). Corresponding standard errors are calculated by

applying the same substitution in the concentrated delta method given in equation (6).

4 Monte Carlo Simulations

In this section, we conduct extensive simulation experiments to investigate the properties of

different estimators for both the structural parameters and the APEs. The estimators we

study are MLE, ABC, SPJ and a (bias-corrected) ordinary least squares fixed effects estimator

(LPM).17 Our main focus are the biases and inference accuracies. To this end, we compute

the relative bias and standard deviation (SD) in percent, the ratio between standard error

and standard deviation (SE/SD), the relative root mean square error (RMSE) in percent,

and the coverage probabilities (CPs) at a nominal level of 95 percent.

For the simulation experiments we adapt the design for a dynamic probit model of Fernández-

Val and Weidner (2016) to our ijt-panel structure with three-way fixed effects.18 In line

with our theoretical model, the simulations include unobserved components captured by

fixed effects in the it, jt, and ij, as well as the lagged dependent variable. Specifically, we

generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt + µij ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 + µij ≥ εij0] ,

where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , βy = 0.5, βx = 1, λit ∼ iid. N (0, 1/24),

ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼ iid. N (0, 1).19 The exogenous re-

gressor is modeled as an AR-1 process, xijt = 0.5xijt−1 + λit + ψjt + µij + νijt, where

17Details on LPM and our suggested bias correction in this context are given in Appendix B.4.
18Further simulation experiments including dynamic panel models with two-way fixed effects and static

panel models with three-way fixed effects are presented in Appendices C.2 and C.3. In an earlier version of
this article we additionally report simulations results for static two-way fixed effects models.

19We again follow Fernández-Val and Weidner (2016) and incorporate the information that {λit}IT , {ψjt}JT ,
and {µij}IJ are independent sequences, and λit, ψjt, and µij are independent for all it, jt, ij in the covariance
estimator for the APEs. The explicit expression is provided in Appendix B.3.
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νijt ∼ iid. N (0, 0.5) and xij0 ∼ iid. N (0, 1). We consider different sample sizes, specifically

N ∈ {50, 100, 150} and T ∈ {10, 20, 30, 40, 50} and generate 1,000 data sets for each.

Tables A4 – A9 in Appendix C.1 summarize the extensive simulation results for both regres-

sors. For ABC and LPM we report two different choices of the bandwidth parameter, L = 1

and L = 2. Here, we focus on the biases and coverage probabilities for N ∈ {50, 150} which

are shown in Figures 2 and 3.

We start by considering the different estimators for the structural parameters. For both kinds

of regressors, MLE exhibits a severe bias that decreases with increasing T . However, even

with N = 150 and T = 50, the estimator shows a distortion of 11 percent in the case of the

predetermined regressor and 5 percent in the case of the exogenous regressor. We also find

that the inference is not valid, since the CPs are zero or close to zero. The bias corrections

bring a substantial improvement. First, they reduce the bias considerably. For example, the

MLE estimator of the predetermined regressor shows a distortion of 64 percent for T = 10

and N = 150. ABC reduces the bias to 8 percent and SPJ to 20 percent. In the case of

the exogenous regressor, MLE exhibits a bias of 23 percent, whereas ABC has a bias of 1

percent and SPJ of 7 percent. Irrespective of the type of the regressor, both bias-corrected

estimators also converge quickly to the true parameter value with growing T . Second, the

bias corrections improve the CPs. For the exogenous regressor the CPs of ABC are close to

the desired level of 95 percent for all T , whereas SPJ remains far away from 95 percent

even at T = 50. In the case of the predetermined regressor, the CPs of both corrections

approach the nominal level when T rises. This happens faster for ABC.

We proceed with the APEs, where we also consider LPM as an alternative estimator. Overall,

we obtain similar findings as for the structural parameters. MLE is distorted over all settings,

but the bias decreases as T increases. The distortion is especially severe in the case of the

predetermined regressor. Even at T = 50, MLE suffers a bias of 15 percent. The bias correc-

tions bring a substantial reduction in this case. Whereas ABC shows only a small distortion

of 1 percent in the case of the exogenous regressor at T = 10, SPJ is even more heavily

distorted than MLE. However, with increasing T , both SPJ and ABC quickly converge to the

true APE. Furthermore, unlike ABC, SPJ needs a sufficiently large number of time periods to

get its CPs close to 95 percent. For the predetermined regressor, these convergence processes

last longer for both bias corrections. Looking at LPM in the case of the exogenous regressors,

it produces almost unbiased estimates irrespective of T , but its CPs fall dramatically with

increasing T . Moreover, in the case of the predetermined regressor, we observe an increase

in the bias up to 14 percent with increasing T .20 These results illustrate the superiority of
20A similar behaviour of LPM has been observed by Czarnowske and Stammann (2019) in the context of a
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Figure 2: Dynamic: Three-way Fixed Effects – Predetermined Regressor
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Figure 3: Dynamic: Three-way Fixed Effects – Exogenous Regressor
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ABC and SPJ over LPM.

Overall, our three-way fixed effects simulation results confirm the conjecture of Fernández-

Val and Weidner (2018) about the general form of the bias and lend support to our bias

corrections. First, we find that the bias corrections indeed substantially mitigate the bias.

Second, as already found in other studies, analytical bias corrections clearly outperform

split-panel jackknife bias corrections (see among others Fernández-Val and Weidner, 2016,

and Czarnowske and Stammann, 2019). For samples with shorter time horizons, ABC is

often less distorted and its dispersion is generally lower. This is also reflected by better

CPs. Further, our three-way fixed effects simulation results suggest that estimates based on

MLE or LPM should be treated with great caution. Generally, in the three-way fixed effects

setting, a sufficiently large number of time periods appears to be crucial to obtain reliable

results, even for the bias-corrected estimators.

5 Determinants of the Extensive Margin of Trade

Having described the estimation and bias correction procedures, we now turn to the estima-

tion of the determinants of the extensive margin of international trade outlined in Section 2.

Recall equation (3) that relates the incidence of nonzero aggregate trade flows to exporter-

time and importer-time specific characteristics, trade in the previous period, time-invariant

unobservable trade barriers and bilateral trade policy variables:

yijt =

1 if κ+ λit + ψjt + βyyij(t−1) + x′ijtβx + µij ≥ ζijt,

0 else .

This yields the following dynamic three-way fixed effects probit model:

Pr(yijt = 1|yij(t−1),xijt, λit, ψjt, µij) = F
(
βyyij(t−1) + x′ijtβx + λit + ψjt + µij

)
, (12)

yij(t−1) is the lagged dependent variable, x is a vector of observable bilateral variables,

dynamic probit model with individual and time fixed effects. To ensure that the bias correction presented in
Appendix B.4 in our three-way fixed effects specification is implemented correctly we have tested it in a data
generation process for classical linear models, i.e. without binary dependent variables, and found that it works
as intended. The undesirable behavior in our simulation design for the probit model is driven by the fact that,
because of the autoregressive process of x, the predicted probabilities of LPM exceed the boundaries of the
unit interval more and more frequently as T increases. This is particularly reflected in the APEs for binary
regressors, since they are based on differences of predicted probabilities.
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and βy and βx are the corresponding parameters. We largely follow Helpman, Melitz, and

Rubinstein (2008) and the wider literature on the determinants of the intensive margin of

trade (compare Head and Mayer, 2014) in the choice of these variables: distance, a common

land border, the same origin of the legal system, common language, previous colonial ties,

a joint currency, an existing free trade agreement, or joint membership in the WTO. The

effect of all time-invariant variables will only be identified in specifications in which we omit

the bilateral fixed effects. In terms of data, we turn to the comprehensive gravity dataset

provided alongside Head, Mayer, and Ries (2010), which encompasses annual information

on bilateral trade flows and these variables of interest of 208 countries from 1948 – 2006.

5.1 Main results

Before turning to the regression results, we repeat the descriptive analysis about the

persistence of the bilateral trade flows from Section 1, now considering the transition

probabilities into export from period t− 1 to t for the time horizon from 1948 – 2006. Table

3 confirms the high level of persistence: 86.8 percent of the countries which did not trade

in the previous year did not trade in the following year and 92.3 percent of the countries

which did trade in the previous year continued to trade in the following year. Thus, 79.1

percent of the unconditional probability to export in a given period can be explained by the

export status in the previous period.21 However, Table 3 does not reveal any information

about the kind of persistence. In the following analysis we will investigate the importance of

using dynamic model specifications which allow us to disentangle the observed persistence

into two sources: (i) true state dependence and (ii) observed and unobserved heterogeneity.

Table 3: Transition Probabilities

yijt = 0 yijt = 1
yij(t−1) = 0 86.8 % 13.2 %
yij(t−1) = 1 7.7 % 92.3 %

Table 4 reports average partial effects of several static and dynamic fixed effects probit spec-

ifications.22 Bias-corrected estimates and their corresponding standard errors are printed

in bold. For comparison, the uncorrected estimates are also shown. In column (1) we first

mimic the static specification estimated by Helpman, Melitz, and Rubinstein (2008).23 Their

21The number is computed as difference between the probability of exporting in period t conditional on
exporting and not exporting in period t− 1.

22Coefficient estimates are reported in Table A19 in the Appendix.
23Helpman, Melitz, and Rubinstein (2008) use a dataset that ranges from 1970 to 1997. They also include

dummy variables for whether both countries are landlocked or islands, or follow the same religion. Hence our
estimates deviate somewhat from theirs, while remaining qualitatively similar.
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specification includes exporter, importer, and time fixed effects.24 All average partial effects

have the expected sign, indicating a negative impact of distance on the probability to trade,

while having a common border, the same origin of the legal system, a shared language, or a

joint colonial history are all estimated to have a positive impact. Also note the strong and

highly significant impact of a common currency, free trade agreement or joint membership

of the WTO. Ceteris paribus, each is estimated to increase the probability of nonzero flows

by between 6 and 10 percentage points.

Column (2) introduces a stricter set of fixed effects, namely at the exporter-time and

importer-time level. This specification can be considered a theory-consistent estimation of

the model by HMR, and of our model if entry costs are zero and other bilateral trade cost

determinants are fully observable. The average partial effects are qualitatively the same and

quantitatively similar for most variables to those in column (1). However, e.g. the estimated

effect of colonial ties more than doubles and the estimated WTO effect is roughly cut in half.

Specification (3) keeps the same fixed effects, but adds a lagged dependent variable and

thus controls for one type of persistence. Assuming no unobservable bilateral heterogeneity,

this specification correctly estimates the model set up in Section 2. As the partial effects of

static and dynamic models are not directly comparable due to the feedbacks involved in the

latter, we show two types of average partial effects for our dynamic specifications: the usual

direct effects and the long-run effects described in Section 3.3. The first result to note for the

third specification is the highly significant average partial effect for the lagged dependent

variable, which reflects the strong impact of previous nonzero trade flows on current ones.

Ceteris paribus, the average partial effect shows a 35 percentage points higher probability of

nonzero trade, given the two countries were also engaged in trade in the previous year. This

implies that 43.7 percent of the observed persistence are attributed to true state dependence

in this first dynamic specification.25 In terms of our model, this suggests a vast effect of

market entry costs on the aggregate extensive margin. The second observation is that direct

APEs are about 50 percent smaller than in column (2) across the board. However, once

dynamic adjustments are taken into account, the average partial effects resulting from

specifications (2) and (3) become very similar, suggesting that accounting for the market

entry dynamics mainly matters for getting the timing of trade policy effects right, rather

than for the overall magnitude of the effects.

24Note that following Fernández-Val and Weidner (2018) the incidental bias problem is small enough to
ignore in this setting with i, j and t fixed effects, since the order of the bias is 1/IT + 1/JT + 1/IJ , which in
our case becomes negligible small since I, J and T are large.

25This value is calculated as the ratio of the estimated average partial effect and the unconditional exporting
probability (34.6/79.1).
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Table 4: Probit Estimation: Average partial effects

Dependent variable: yijt

(1) (2) (3) (4) (5)
direct long-run direct long-run

lagged DV - - 0.346∗∗∗ - - 0.179∗∗∗ -
(-) (-) (0.034) (-) (-) (0.052) (-)
- - 0.344∗∗∗ - - 0.138∗∗∗ -

(-) (-) (0.035) (-) (-) (0.048) (-)
log(Distance) - -0.135∗∗∗ -0.066∗∗∗ -0.133∗∗∗ - - -

(-) (0.013) (0.007) (0.013) (-) (-) (-)
-0.136∗∗∗ -0.135∗∗∗ -0.066∗∗∗ -0.132∗∗∗ - - -
(0.001) (0.014) (0.007) (0.013) (-) (-) (-)

Land border - 0.035∗∗∗ 0.015∗∗∗ 0.030∗∗∗ - - -
(-) (0.005) (0.003) ( 0.006) (-) (-) (-)

0.054∗∗∗ 0.035∗∗∗ 0.015∗∗∗ 0.030∗∗∗ - - -
(0.004) (0.005) (0.003) (0.006) (-) (-) (-)

Legal - 0.023∗∗∗ 0.011∗∗∗ 0.022∗∗∗ - - -
(-) (0.002) (0.001) ( 0.003) (-) (-) (-)

0.019∗∗∗ 0.023∗∗∗ 0.011∗∗∗ 0.022∗∗∗ - -
(0.001) (0.002) (0.001) (0.003) (-) (-) (-)

Language - 0.071∗∗∗ 0.035∗∗∗ 0.070∗∗∗ - - -
(-) (0.007) (0.004) (0.007) (-) (-) (-)

0.078∗∗∗ 0.071∗∗∗ 0.035∗∗∗ 0.069∗∗∗ - - -
(0.001) (0.007) (0.004) (0.007) (-) (-) (-)

Colonial ties - 0.107∗∗∗ 0.061∗∗∗ 0.117∗∗∗ - - -
(-) (0.013) (0.008) (0.015) (-) (-) (-)

0.039∗∗∗ 0.111∗∗∗ 0.066∗∗∗ 0.125∗∗∗ - - -
(0.004) (0.013) (0.008) (0.015) (-) (-) (-)

Currency union - 0.103∗∗∗ 0.053∗∗∗ 0.103∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗

(-) (0.011) (0.006) (0.011) (0.012) (0.009) (0.013)
0.078∗∗∗ 0.103∗∗∗ 0.054∗∗∗ 0.103∗∗∗ 0.037∗∗∗ 0.025∗∗ 0.036∗∗

(0.003) (0.011) (0.006) (0.011) (0.013) (0.010) (0.014)
FTA - 0.089∗∗∗ 0.045∗∗∗ 0.088∗∗∗ 0.009 0.004 0.007

(-) (0.010) (0.005) (0.010) (0.007) (0.006) (0.009)
0.103∗∗∗ 0.088∗∗∗ 0.044∗∗∗ 0.086∗∗∗ 0.008 0.003 0.005
(0.004) (0.010) (0.005) (0.010) (0.007) (0.006) ( 0.009)

WTO - 0.026∗∗∗ 0.013∗∗∗ 0.026∗∗∗ 0.006∗∗ 0.004 0.007∗

(-) (0.003) (0.002) ( 0.004) (0.003) (0.003) (0.004)
0.061∗∗∗ 0.026∗∗∗ 0.013∗∗∗ 0.025∗∗∗ 0.006∗ 0.005 0.007
(0.001) (0.003) (0.002) (0.004) (0.003) (0.003) ( 0.004)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Column (1) uncorrected average partial effects, columns (2) - (5) bias-corrected average partial effects (bold
font) and uncorrected average partial effects (normal font). Column (5) bias-corrected with L = 2. Standard errors in
parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Specification (4) takes one step back and one forward. While not including the lagged

dependent variable in the estimation, it introduces a bilateral fixed effect that controls for

a second type of persistence — bilateral unobserved heterogeneity. This also follows the

important insight by Baier and Bergstrand (2007), who show that controlling for unob-

served bilateral heterogeneity produces a considerably different estimated impact of free

trade agreements, among other variables, on the intensive margin of trade. While now an

identification of many of the variables of interest is no longer possible because of their time

invariance, this specification reveals a much reduced estimated impact of the time-varying

variables. The impact of a common currency on the probability of exporting is reduced to 3.8

percentage points, while those of a common free trade agreement and WTO are decreased

to less than 1 percentage point. These results highlight the importance of controlling for

unobserved country pair heterogeneity to avoid endogeneity problems associated with trade

policy variables.

Finally, in the last two columns we present the results from our preferred specification (5),

which implements equation (12). The estimation again includes the “full set” of fixed effects,

i.e. exporter-time, importer-time and bilateral fixed effects, now combined with the lagged

dependent variable, and therefore controls for both kinds of persistence simultaneously.

Again, the average partial effect on the lagged dependent variable is highly significant. It

now entails a partial effect of about 18 percentage points, i.e. roughly 22.6 percent of the ob-

served persistence can be attributed to true state dependence and 77.4 percent to observed

and unobserved factors. Failure to account for unobserved heterogeneity in specification (3)

hence overestimated the importance of the lagged dependent variable (corresponding to

entry costs in our model) roughly by a factor of two and therefore mislabelled a substantial

part of spurious as true state dependence. Considering the effects of the time-varying trade

policy variables, the only remaining statistically significant direct average partial effect in

column (5) is estimated for a common currency at 2.4 percentage points. The direct impacts

of a free trade agreement or joint membership of the WTO are statistically insignificant.

Just as in the comparison between specifications (2) and (3), the average partial effects

again become very similar when the static effects are compared to the long-run effects in

the dynamic specification.

When comparing bias-corrected and uncorrected average partial effects throughout Table 4,

it is noticeable that both differ only slightly for the exogenous regressors within the different

specifications. The most significant impact is observed on the average partial effect for

the predetermined variable, which in specification (5) differs by almost 24 percent. These

results are in line with the theoretical properties of the estimators and the findings of our

25



simulation study.26 Despite the small biases for the exogenous variables, a bias correction

is still necessary for our three-way fixed effects specifications because the biases are not

negligible relative to the standard errors and thus inference of the uncorrected estimator

is invalid. Note that for applications with a shorter time horizon, the biases will be more

evident.

5.2 Predictive Analysis

After we have seen that the presented innovations matter significantly for the estimation of

extensive margin determinants, we now consider the predictive performance of the different

specifications discussed above. As an additional benchmark, we also look at a naive —

purely descriptive — approach that predicts export decisions in period t solely based on

the export decision in period t − 1. For the resulting altogether six options, we evaluate

the predictive power using the following measures: the total share of correctly predicted

export decisions (accuracy), the share of correctly predicted decisions conditional on not

exporting (true negative rate), and the share of correctly predicted decisions conditional

on exporting (true positive rate). As becomes clear in Table 5, the naive approach already

works very well for predictive purposes. Close to 90 percent of the exporting decisions

in period t are correctly predicted by simply reproducing exporting decision from t − 1,

irrespective of the measure we are considering. As it turns out, both the static model with

i, j, and t fixed effects (specification (1)) and the static model with it and jt fixed effects

(specification (2)) produce poorer predictions than the naive approach — clearly so by

about five percentage points in the former case. However, this changes once persistence is

explicitly taken into account (specifications (3) to (5)). All of them at least slightly improve

the predictions of the naive approach. Whether persistence is incorporated only via the

lagged dependent variable or via pair fixed effects turns out to yield very similar predictive

quality. Combining both in our preferred specification — the dynamic three-way fixed effects

models — yields the highest predictive power. We are able to correctly predict 92.5 percent

of the export decisions, 91.4 percent of the decisions conditional on not exporting, and

93.2 percent of the decisions conditional on exporting, implying an improvement compared

to the naive approach by 2.4 – 2.5 percentage points. All in all, the predictive analysis

underlines the importance of controlling for true state dependence and unobserved bilateral

factors simultaneously.

26For the two-way models in columns (2) - (3) the order of the bias is 1/I + 1/J , i.e. the bias only depends
on the number of exporters/importers. For the three-way models in columns (4) - (5) the order of the bias
is 1/I + 1/J + 1/T , i.e. the bias additionally depends on the number of time periods. In our application the
number of exporters/importers is relatively large but the number of time periods is substantially lower.
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Table 5: Predictive Analysis

Naive (1) (2) (3) (4) (5)

Accuracy 90.0 % 83.0 % 86.9 % 91.1 % 91.3 % 92.5 %
True negative rate 88.9 % 78.9 % 83.6 % 89.6 % 90.0 % 91.4 %
True positive rate 90.8 % 86.0 % 89.2 % 92.2 % 92.2 % 93.2 %

Notes: Column (1) uncorrected probit model, columns (2) – (5) bias-corrected probit
model.

5.3 Robustness Checks

We next consider two robustness checks for our main results from Section 5.1. First, while

our preferred estimation of the extensive margin of trade with a dynamic three-way fixed

effects binary choice estimator follows from the stylized facts and our theoretical model, the

decision on which binary choice estimator to use hinges on the distributional assumption for

the error term (and hence for the demand shock in our model). We followed Eaton, Kortum,

and Kramarz (2011) and assumed log-normal shocks, leading us to using a probit for our

main estimations. We now consider log-logistic shocks and the resulting logit estimator

instead. Table 6 displays the results for the same specifications as in Table 4, but estimated

using a logit. Reassuringly, the average partial effects are very similar to the probit case for

all variables in all specifications. Introducing the different innovations step-by-step changes

the estimated effects in the same way as for the probit. The insights discussed above

therefore do not hinge on the specific distributional assumption made in the parametrization

of the probability of success.

Second, in the estimation of our preferred specification (5) we have discretionary power

in one dimension for the exact form of bias correction used. Specifically, the bandwidth

parameter L used to estimate the spectral densities has to be chosen. We therefore follow

the recommendation by Fernández-Val and Weidner (2016) and investigate the sensitivity

of the results with respect to L. Table 7 depicts the direct and long-run average partial

effects obtained with the bias-corrected dynamic three-way fixed effects probit estimator

for L ∈ {1, 2, 3, 4}. Again, our results turn out to be very robust. There only appears to be

a slight upward trend in the estimated persistence for larger L and the significance of the

WTO effect is a little stronger for larger choices of L.
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Table 6: Logit Estimation: Average partial effects

Dependent variable: yijt

(1) (2) (3) (4) (5)
direct long-run direct long-run

lagged DV - - 0.331∗∗∗ - - 0.168∗∗∗ -
(-) (-) (0.033) (-) (-) (0.049) (-)
- - 0.332∗∗∗ - - 0.130∗∗∗ -

(-) (-) (0.034) (-) (-) (0.045) (-)
log(Distance) - -0.138∗∗∗ -0.067∗∗∗ -0.134∗∗∗ - - -

(-) (0.014) (0.007) (0.013) (-) (-) (-)
-0.140∗∗∗ -0.137∗∗∗ -0.067∗∗∗ -0.133∗∗∗ - - -
(0.001) (0.014) (0.007) (0.013) (-) (-) (-)

Land border - 0.058∗∗∗ 0.016∗∗∗ 0.031∗∗∗ - - -
(-) (0.007) (0.003) (0.006) (-) (-) (-)

0.077∗∗∗ 0.059∗∗∗ 0.016∗∗∗ 0.032∗∗∗ - - -
(0.004) (0.007) (0.003) (0.006) (-) (-) (-)

Legal - 0.025∗∗∗ 0.012∗∗∗ 0.023∗∗∗ - - -
(-) (0.003) (0.001) (0.003) (-) (-) (-)

0.020∗∗∗ 0.025∗∗∗ 0.012∗∗∗ 0.023∗∗∗ - - -
(0.001) (0.003) (0.001) (0.003) (-) (-) (-)

Language - 0.069∗∗∗ 0.035∗∗∗ 0.069∗∗∗ - - -
(-) (0.007) (0.004) (0.007) (-) (-) (-)

0.078∗∗∗ 0.069∗∗∗ 0.035∗∗∗ 0.068∗∗∗ - - -
(0.001) (0.007) (0.004) (0.007) (-) (-) (-)

Colonial ties - 0.122∗∗∗ 0.069∗∗∗ 0.130∗∗∗ - - -
(-) (0.014) (0.009) (0.016) (-) (-) (-)

0.040∗∗∗ 0.127∗∗∗ 0.074∗∗∗ 0.136∗∗∗ - - -
(0.004) (0.014) (0.009) (0.016) (-) (-) (-)

Currency union - 0.104∗∗∗ 0.053∗∗∗ 0.102∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗

(-) (0.011) (0.006) (0.011) (0.013) (0.009) (0.014)
0.077∗∗∗ 0.104∗∗∗ 0.054∗∗∗ 0.102∗∗∗ 0.040∗∗∗ 0.028∗∗ 0.039∗∗

(0.003) (0.011) (0.006) (0.011) (0.014) (0.011) (0.015)
FTA - 0.098∗∗∗ 0.046∗∗∗ 0.088∗∗∗ 0.009 0.004 0.007

(-) (0.010) (0.006) (0.010) (0.007) (0.006) (0.009)
0.110∗∗∗ 0.097∗∗∗ 0.045∗∗∗ 0.086∗∗∗ 0.008 0.003 0.004
(0.004) (0.011) (0.005) (0.010) (0.007) (0.006) (0.008)

WTO - 0.022∗∗∗ 0.013∗∗∗ 0.026∗∗∗ 0.007∗∗ 0.005∗ 0.008∗∗

(-) (0.003) (0.002) (0.004) (0.003) (0.003) (0.004)
0.056∗∗∗ 0.021∗∗∗ 0.013∗∗∗ 0.025∗∗∗ 0.006∗ 0.006∗ 0.008∗

(0.001) (0.003) (0.002) (0.004) (0.003) (0.003) (0.004)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.857×105 6.976×105 5.200×105 4.728×105 4.184×105

Notes: Column (1) uncorrected average partial effects, columns (2) - (5) bias-corrected average partial effects (bold
font) and uncorrected average partial effects (normal font). Column (5) bias-corrected with L = 2. Standard errors in
parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 7: Probit Estimation with Different Bandwidths: Bias-Corrected Average Partial Effects

Dependent variable: yijt

L = 1 L = 2 L = 3 L = 4

direct long-run direct long-run direct long-run direct long-run

lagged DV 0.174∗∗∗ - 0.179∗∗∗ - 0.182∗∗∗ - 0.183∗∗∗ -
(0.051) (-) (0.052) (-) (0.053) (-) (0.053) (-)

Currency union 0.025∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗ 0.024∗∗∗ 0.038∗∗∗ 0.025∗∗∗ 0.038∗∗∗

(0.009) (0.013) (0.009) (0.013) (0.009) (0.013) (0.009) (0.013)
FTA 0.004 0.006 0.004 0.007 0.005 0.007 0.005 0.008

(0.006) (0.009) (0.006) (0.009) (0.006) (0.009) (0.006) (0.009)
WTO 0.004 0.007∗ 0.004 0.007∗ 0.005∗ 0.007∗ 0.005∗ 0.008∗

(0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.004)

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination fixed effects. Standard errors
in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

5.4 Comparison to Linear Probability Model

A common strategy to avoid the challenges associated with non-linear estimators in a binary

choice setting is to rely on linear probability models instead. The Monte Carlo study pre-

sented in Section 4 demonstrated that this may be a far from innocent simplification. The

previous subsection demonstrated that our probit estimates are very robust and therefore

are a good benchmark to compare OLS estimates to in order to see whether a LPM is an

appropriate alternative. Table 8 shows the LPM and probit estimates for both direct and

long-run average partial effects in our preferred specification with three-way fixed effects

and a lagged dependent variable. It is evident that OLS produces estimates that are far off

the probit ones. OLS e.g. vastly overestimates the size of the true state dependence and

ascribes a negative effect on the probability of trading for country pairs in a common FTA.

Figure 4 plots the fitted probabilities obtained with OLS and probit for our preferred

specification in ascending order. It illustrates one reason for the poor performance of the

LPM: in one third of the cases, it produces fitted probabilities outside of the unit interval.

All partial effects depicted in Table 8 are obtained by subtracting fitted probabilities if the

variable of interest is equal to zero from fitted probabilities if the variable of interest is equal

to one and are hence unreasonable if fitted probabilities fall out of the unit interval. Note

however, that even if the regressors of interest were continuous instead, estimated APEs

based on the slope of the orange curve would not be meaningful either. As the probability

of success approaches zero or one, this slope necessarily has to be close to zero — as it

is in probit case, but not in the LPM case. Consider a country pair that essentially has a

zero probability of trading: increasing the distance cannot make trade any more unlikely.

An estimator that does not take this into account will not produce sensible average partial

29



effect estimates. In line with our insights from the Monte Carlo analysis, the results from

the application of LPM on real data lead us to a strong recommendation against its usage

for the estimation of extensive margin determinants.

Table 8: Probit vs. OLS Estimation: Average Partial Effects

Dependent variable: yijt

direct long-run

OLS Probit OLS Probit

lagged DV 0.474∗∗∗ 0.179∗∗∗ - -
(0.001) (0.052) (-) (-)

Currency union 0.008∗∗ 0.024∗∗∗ 0.015∗∗ 0.038∗∗∗

(0.003) (0.009) (0.006) (0.013)
FTA -0.062∗∗∗ 0.004 -0.117∗∗∗ 0.007

(0.002) (0.006) (0.004) (0.009)
WTO 0.008∗∗∗ 0.004 0.015∗∗∗ 0.007∗

(0.002) (0.003) (0.003) (0.004)

Notes: Bias-corrected with L = 2. All columns include Origin × Year
and Destination × Year fixed effects. Standard errors in parenthesis.
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Figure 4: Probit vs. OLS Estimation: Fitted Probabilities with Dynamic Three-way Fixed Effects
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6 Conclusion

In this paper we reexamine the determinants of the extensive margin of international trade.

We set up a model that exhibits a dynamic component and allows for time-invariant unob-

served bilateral trade cost factors, generating persistence — a feature in the data that has so

far been given little attention. We estimate the model using a dynamic probit estimator with

high-dimensional fixed effects. As fixed effects create an incidental parameter problem in

binary choice settings, we characterize and implement bias corrections. Finally, we show

that our estimates of the determinants of the extensive margin of trade differ significantly

from previous ones. This highlights the importance of true state dependence and unobserved

heterogeneity and therefore strongly supports the use of our bias-corrected dynamic fixed

effects estimator.

The extensive margin of trade obviously extends beyond the aggregate level, warranting

further research at lower levels of aggregation, in particular in the context of firms. While

our model’s prediction and its empirical specification rely on some abstractions, it provides

a very tractable and flexible framework that can be estimated with recently established

estimation procedures, when combined with the bias correction technique we introduce.
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Appendix

A Stylized facts

Figure A1: Determinants of the Extensive margin of Trade — Gravity and Persistence (1990–1991).
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Figure A2: Determinants of the Extensive Margin of Trade — Gravity and Persistence (1997–2006).
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B Computational and Econometric Details

B.1 Computational Details

In this section we briefly demonstrate how the method of alternating projections (MAP)

works in the context of logit and probit models with a two- or three-way error component,

and how it can be efficiently embedded into a standard Newton-Raphson optimization

routine (see Stammann, 2018, for further details).

First, note that Mv is essentially a weighted within transformation, where v is an arbitrary

n× 1 vector, and M = In−P = In−D(D′ΩD)−1D′Ω. The computation of M is problematic

even in moderately large data sets, and since M is non-sparse, there is also no general

scalar expression to compute Mv. Thus Stammann (2018) proposes to calculate Mv using

a simple iterative approach based on the MAP tracing back to Von Neumann (1950) and

Halperin (1962).27 Let Dk, denote the dummy variables corresponding to the k-th group,

k ∈ {1, 2, 3}. Further, let MDk
v, with MDk

= In −Dk(D
′
kΩDk)

−1D′kΩ. The corresponding

scalar expressions of MDk
v are summarized in Table (A1).

Table A1: Scalar Transformations

group MDk
v

importer-time (k = 1) vijt −
∑J
j=1 ωijtvijt∑J
j=1 ωijt

exporter-time (k = 2) vijt −
∑I
i=1 ωijtvijt∑I
i=1 ωijt

dyadic (k = 3) vijt −
∑T
t=1 ωijtvijt∑T
t=1 ωijt

The MAP can be summarized by algorithm 1, where K = 2 in the case of two-way fixed

effects and K = 3 in the case of three-way fixed effects. Thus, the MAP only requires to

repeatedly apply weighted one-way within transformations (see Stammann, 2018)). The

entire optimization routine is sketched by algorithm 2.

Algorithm 1 MAP: Neumann-Halperin

1: Initialize Mv = v.
2: repeat
3: for k = 1, . . . , K do
4: Compute MDk

Mv and update Mv such that Mv = MDk
Mv

5: until convergence.

27The MAP has been introduced to econometrics by Guimarães and Portugal (2010) and Gaure (2013) in
the context of linear models with multi-way fixed effects.
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Algorithm 2 Efficient Newton-Raphson using the MAP

1: Initialize β0, η0, and r = 0.

2: repeat

3: Set r = r + 1.

4: Given η̂r−1 compute ν̂ and Ω̂.

5: Given ν̂ and Ω̂ compute M̂ν̂ and M̂X using the MAP

6: Compute βr − βr−1 =
(

(M̂X)′Ω̂(M̂X)
)−1

(M̂X)′Ω̂(M̂ν̂)

7: Compute η̂r = η̂r−1 + ν̂ − M̂ν̂ + M̂X(βr − βr−1)

8: until convergence.

B.2 Neyman-Scott Variance Example

In this section we study two variants of the classical Neyman and Scott (1948) variance

example to support the form of the bias terms, and to illustrate the functionality of the

bias corrections. To the best of our knowledge, the variance example of Neyman and Scott

(1948) has not been investigated for our specific error components. We start with the more

general three-way fixed effects case, which nests the two-way error structure.

B.2.1 Three-way Fixed Effects

Let i = 1, . . . , I, j = 1, . . . , J and t = 1, . . . , T . Consider the following linear three-way fixed

effects model

yijt = x′ijtβ + λit + ψjt + µij + uijt . (A1)

According to Balazsi, Matyas, and Wansbeek (2018), the appropriate within transformation

corresponding to equation (A1) is given by

zijt − z̄ij· − z̄·jt − z̄i·t + z̄··t + z̄·j· + z̄i·· − z̄··· ,

where z̄ij· = 1
T

∑T
t=1 zijt, z̄·jt = 1

I

∑I
i=1 zijt, z̄i·t = 1

J

∑J
j=1 zijt, z̄··t = 1

IJ

∑I
i=1

∑J
j=1 zijt,

z̄·j· =
1
IT

∑I
i=1

∑T
t=1 zijt, z̄i·· =

1
JT

∑J
j=1

∑T
t=1 zijt, and z̄··· = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 zijt.

This result is helpful to study the following variant of the Neyman and Scott (1948) variance

example

yijt|λ,ψ,µ ∼ N (λit + ψjt + µij, β) ,

where we can now easily form the uncorrected variance estimator
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β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳij· − ȳ·jt − ȳi·t + ȳ··t + ȳ·j· + ȳi·· − ȳ···)2 (A2)

and the (degrees-of-freedom)-corrected counterpart

β̂corI,J,T =
IJT

(I − 1)(J − 1)(T − 1)
β̂I,J,T .

Taking the expectation of (A2) (conditional on the fixed effects) yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)(J − 1)(T − 1)

IJT

)
(A3)

= β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)
,

where β0 is the true variance parameter. Thus, the three leading bias terms, which drive the

main part of the asymptotic bias, are B
β

1,∞ = −β0, B
β

2,∞ = −β0, and B
β

3,∞ = −β0.

Analytical Bias Correction

Using equation (A3), we can form the analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T −
B̂β

1,I,J,T

I
−

B̂β
2,I,J,T

J
−

B̂β
3,I,J,T

T
, (A4)

where we set B̂β
1,I,J,T = −β̂I,J,T , B̂β

2,I,J,T = −β̂I,J,T , and B̂β
3,I,J,T = −β̂I,J,T to reduce the order

of the bias in equation (A3) at costs of introducing higher order terms (see equation (A6)).

Thus, we can rewrite the analytically bias-corrected estimator (A4)

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J
+

1

T

)
. (A5)

Taking the expectation of (A5) yields

A5



β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 1

I
− 1

J
− 1

T
+

1

IT
+

1

JT
+

1

IJ
− 1

IJT

)(
1 +

1

I
+

1

J
+

1

T

)
(A6)

= β0

(
1− 1

IT
− 1

JT
− 1

T 2
− 3

IJ
+

1

I3
+

1

J3
+

4

IJT
+

1

IT 2
+

1

JT 2

− 1

I3T
− 1

J3T
− 1

IJT 2

)
.

Split-Panel Jackknife

As an alternative to equation (A5) we can also form the following SPJ estimator

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T − β̂I,J,T/2 ,

where β̂I/2,J,T denotes the half panel estimator based on splitting the panel by exporters.

This estimator also reduces the order of the bias in equation (A3) as we see from its expected

value

β̄spjI,J,T = Eφ[β̂spjI,J,T ] = 4β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T − β̄I,J,T/2 (A7)

= β0

(
1− 1

IT
− 1

JT
− 1

IJ
+

2

IJT

)
.

Numerical Results

Table A2 shows numerical results for the uncorrected and the bias-corrected estimators in

finite samples, where we assume symmetry, i.e. I = J = N . The results demonstrate that

the bias corrections are effective in reducing the bias.

Table A2: Bias - Three-way Fixed Effects

N T (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 10 -0.271 -0.052 -0.028
25 10 -0.171 -0.021 -0.009
25 25 -0.115 -0.009 -0.005
50 10 -0.136 -0.015 -0.004
50 25 -0.078 -0.004 -0.002
50 50 -0.059 -0.002 -0.001
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B.2.2 Two-way Fixed Effects

In the following we briefly review the example with two-way fixed effects

yijt|λ,ψ ∼ N (λit + ψjt, β) .

Since it is a subcase of three-way fixed effects example, all previous results simplify by

dropping the terms that exhibit T .

The uncorrected variance estimator is28

β̂I,J,T =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(yijt − ȳ·jt − ȳi·t + ȳ··t)
2

and the (degrees-of-freedom)-corrected variance estimator is

β̂corI,J,T =
IJ

(I − 1)(J − 1)
β̂I,J,T .

Taking the expected value yields

β̄I,J,T = Eα[β̂I,J,T ] = β0

(
(I − 1)2

IJ

)
(A8)

= β0

(
1− 1

I
− 1

J
+

1

IJ

)
.

Analytical Bias Correction

Based on equation (A8) we can form the following analytically bias-corrected estimator

β̃aI,J,T = β̂I,J,T

(
1 +

1

I
+

1

J

)
,

which has the expected value

β̄aI,J,T = Eα[β̃aI,J,T ] = β0

(
1− 3

IJ
+

1

I3
+

1

J3

)
.

28We draw on the appropriate demeaning formula for the two-way fixed effects model yijt = x′ijtβ + λit +
ψjt + uijt, which is given by zijt − z̄·jt − z̄i·t + z̄··t.
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Split-Panel Jackknife

A suitable split-panel jackknife estimator is

β̂spjI,J,T = 4β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T ,

which has the expected value

β̄spjI,J,T = Eα[β̂spjI,J,T ] = 3β̄I,J,T − β̄I/2,J,T − β̄I,J/2,T

= β0

(
1− 1

IJ

)
.

Numerical Results

The numerical results in Table A3 demonstrate that the bias corrections work.

Table A3: Bias - Two-way Fixed Effects

N (β̄I,J,T − β0)/β0 (β̄aI,J,T − β0)/β0 (β̄spjI,J,T − β0)/β0

10 -0.190 -0.028 -0.010
25 -0.078 -0.005 -0.002
50 -0.040 -0.001 -0.000
100 -0.020 -0.000 -0.000

B.3 Asymptotic Bias Corrections

For the following expressions we draw on the results of Fernández-Val and Weidner (2016),

who have already derived the asymptotic distributions of the MLE estimators for structural

parameters and APEs in classical two-way fixed effects models based on it-panels. As

outlined in Cruz-Gonzalez, Fernández-Val, and Weidner (2017) the bias corrections of

Fernández-Val and Weidner (2016) can easily be adjusted to two-way fixed effects models

based on pseudo-panels with an ij-structure (i corresponds to importer and j to exporter),

and importer and exporter fixed effects. We give an intuitive explanation. Since only

J observations are informative per exporter fixed effects, we get a bias of order J for

including exporter fixed effects, and vice versa a bias of order I for including importer fixed

effects. Further, since there are no predetermined regressors in an ij-structure, we get two

symmetric bias terms
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B1,∞ = plimI,J→∞

[
− 1

2J

J∑
j=1

∑I
i=1 Eα[Hij∂η2Fij(MX)ij]∑I

i=1 Eα[ωij]

]
, (A9)

B2,∞ = plimI,J→∞

[
− 1

2I

I∑
i=1

∑J
j=1 Eα[Hij∂η2Fij(MX)ij]∑J

j=1 Eα[ωij]

]
, (A10)

where ωij is the ij-th diagonal entry of Ω, and M = IIJ −D(D′ΩD)−1D′Ω. ∂ι2g(·) denotes

the second order partial derivative of an arbitrary function g(·) with respect to some pa-

rameter ι. The explicit expressions of Hijt and ∂η2Fijt are reported in Table 2. Equations

(A9) and (A10) are essentially D∞ from Fernández-Val and Weidner (2016) with adjusted

indices. The same adjustment can be transferred to the APEs.

In the following we apply the same logic to derive the asymptotic bias terms in our two- and

three-way error structure.

B.3.1 Two-way fixed effects

We get a bias of order J for including exporter-time fixed effects, since J observations are

informative per exporter-time fixed effect. In the same way we get a bias of order I for

including importer-time fixed effects. Similar to the case of the ij-structure of Cruz-Gonzalez,

Fernández-Val, and Weidner (2017) we get two symmetric bias terms in the distributions

of the structural parameters and the APEs, respectively, because including predetermined

regressors does not violate the strict exogeneity assumption.

Asymptotic distribution of β̂

√
IJ(β̂I,J,T − β0)→d W

−1

∞N (κB1,∞ + κ−1B2,∞,W∞), with (A11)

B1,∞ = plimI,J→∞

[
− 1

2J

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

]
,

B2,∞ = plimI,J→∞

[
− 1

2I

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

W∞ = plimI,J→∞

[
1

IJ

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

]
,

where
√
J/I → κ as I, J →∞.
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Asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ

1,∞ − J−1B
δ

2,∞)→d N (0,V∞), with (A12)

B
δ

1,∞ = plimI,J→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

]
,

B
δ

2,∞ = plimI,J→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

V
δ

∞ = plimI,J→∞
r2

I2J2T 2
Eα

[(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)′
+

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

]
,

where ∆̄ijt = ∆ijt−δ, ∆ijt = [∆1
ijt, . . . ,∆

m
ijt]
′, δ = [δ1, . . . , δm]′, δk = 1

IJT

∑I
i=1

∑J
j=1

∑T
t=1 ∆k

ijt,

Ψijt = ∂η∆ijt/ωijt, r is a convergence rate, and

Γijt =Eα

[
(IJ)−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆ijt − (PX)ijt ∂η∆ijt

]′
W
−1

∞ Eα
[
(MX)ijt ωijtνijt

]
− Eα

[
(PΨ)ijt ∂η`ijt

]
.

∂ιg(·) denotes the first order partial derivative of an arbitrary function g(·) with respect

to some parameter ι. The expression V
δ

∞ can be modified by assuming that {λit}IT and

{ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt:

V
δ

∞ = plimI,J→∞
r2

I2J2T 2
Eα

(
I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+
I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt

)
.

Bias-corrected estimators

The form of the bias suggests to separately split the panel by I and J , leading to the

following split-panel corrected estimator for the structural parameters:
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β̂
sp

= 3β̂I,J,T − β̂I/2,J,T − β̂I,J/2,T , with (A13)

β̂I/2,J,T =
1

2

[
β̂{i:i≤dI/2e},J,T + β̂{i:i≥bI/2+1c},J,T

]
,

β̂I,J/2,T =
1

2

[
β̂I,{j:j≤dJ/2e,T} + β̂I,{j:j≥bJ/2+1c,T}

]
,

where b·c and d·e denote the floor and ceiling functions. To clarify the notation, the subscript

{i : i ≤ dI/2e}, J, T denotes that the estimator is based on a subsample, which contains all

importers and time periods, but only the first half of all exporters.

In order to form the appropriate analytical bias correction, we make use of the asymptotic

distribution of the MLE, which we have described above. The analytical bias-corrected

estimator β̃a is formed from estimators of the leading bias terms that are subtracted from

the MLE of the full sample β̂I,J,T . More precisely:

β̃a = β̂I,J,T −
B̂β

1

I
− B̂β

2

J
, with B̂β

1 = Ŵ−1B̂1, B̂
β
2 = Ŵ−1B̂2, and

B̂1 = − 1

2JT

J∑
j=1

T∑
t=1

∑I
i=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑I

i=1 ω̂ijt
,

B̂2 = − 1

2IT

I∑
i=1

T∑
t=1

∑J
j=1 Ĥijt∂η2F̂ijt

(
M̂X

)
ijt∑J

j=1 ω̂ijt
,

Ŵ =
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

ω̂ijt

(
M̂X

)
ijt

(
M̂X

)′
ijt
,

where ∂ι2g(·) denotes the second order partial derivative of an arbitrary function g(·) with re-

spect to some parameter ι. The explicit expressions ofHijt and ∂η2Fijt are reported in Table 2.

The split-panel jackknife estimator works similarly with APEs as with structural parameters.

We simply replace in formula (A13) the estimators for the structural parameters with

estimators for the APEs. The following analytically bias-corrected estimator for the APEs is

formed based on the asymptotic distribution presented in Appendix B.3:
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δ̃a = δ̂ − B̂δ
1

I
− B̂δ

2

J
, with

B̂δ
1 =

1

2JT

J∑
j=1

T∑
t=1

∑I
i=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑I
i=1 ω̂ijt

,

B̂δ
2 =

1

2IT

I∑
i=1

T∑
t=1

∑J
j=1−Ĥijt∂η2F̂ijt

(
P̂Ψ̂
)
ijt

+ ∂η2∆̂ijt∑J
j=1 ω̂ijt

.

The covariance can be estimated according to this simplified two-way fixed effects counter-

part of equation (6) in the main text:

V̂δ =
1

I2J2T 2

((
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

̂̄∆ijt

)′
+

I∑
i=1

J∑
j=1

T∑
t=1

Γ̂ijtΓ̂
′
ijt

)
. (A14)
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B.3.2 Three-way fixed effects

With the inclusion of pair fixed effects, we introduce an additional bias of order T , since

only T observations are informative per pair fixed effect. Another difference that occurs in

contrast to the two-way fixed effects case is that predetermined regressors lead to a violation

of the strict exogeneity assumption. To deal with this issue we adapt the asymptotic bias

terms B∞ and B
δ

∞ of Fernández-Val and Weidner (2016) to the new structure.

Conjectured asymptotic distribution of β̂

√
IJT (β̂I,J,T − β0)→d W

−1

∞N (κ1B1,∞ + κ2B2,∞ + κ3B3,∞,W∞), with

B1,∞ = plimI,J,T→∞

[
− 1

2JT

T∑
t=1

J∑
j=1

∑I
i=1 Eα[Hijt∂η2Fijt(MX)ijt]∑I

i=1 Eα[ωijt]

]
,

B2,∞ = plimI,J,T→∞

[
− 1

2IT

T∑
t=1

I∑
i=1

∑J
j=1 Eα[Hijt∂η2Fijt(MX)ijt]∑J

j=1 Eα[ωijt]

]
,

B3,∞ = plimI,J,T→∞

− 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

Eα[Hijt∂η2Fijt(MX)ijt]

+2
T∑

τ=t+1

Eα[Hijt(Yijt − Fijt)ωijt(MX)ijt]

)]
,

W∞ = plimI,J,T→∞

[
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

Eα[ωijt(MX)ijt(MX)′ijt]

]
.

where
√

(JT )/I → κ1,
√

(IT )/J → κ2, and
√

(IJ)/T → κ3 as I, J, T → ∞. The second

term in the numerator of B3,∞ is dropped if all regressors are assumed to be strictly

exogenous.
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Conjectured asymptotic distribution of δ̂

r(δ̂ − δ − I−1B
δ

1,∞ − J−1B
δ

2,∞ − T−1B
δ

3,∞)→d N (0,V
δ

∞), with

B
δ

1,∞ = plimI,J,T→∞

[
1

2JT

T∑
t=1

J∑
j=1

∑I
i=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑I

i=1 Eα[ωijt]

]
,

B
δ

2,∞ = plimI,J,T→∞

[
1

2IT

T∑
t=1

I∑
i=1

∑J
j=1−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt] + Eα[∂η2∆ijt]∑J

j=1 Eα[ωijt]

]
,

B
δ

3,∞ = plimI,J,T→∞

 1

2IJ

I∑
i=1

J∑
j=1

(
T∑
t=1

Eα[ωijt]

)−1( T∑
t=1

−Eα[Hijt∂η2Fijt]Eα[(PΨ)ijt]

+Eα[∂η2∆ijt] + 2
T∑

τ=t+1

Eα[∂η`ijt−lωijt (MΨ)ijt]

)]
.

V
δ

∞ = plimI,J,T→∞
r2

I2J2T 2
Eα

[(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)(
I∑
i=1

J∑
j=1

T∑
t=1

∆̄ijt

)′

+
I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

]
,

Γijt = Eα

[
(IJT )−1

I∑
i=1

J∑
j=1

T∑
t=1

∂β∆ijt − (PX)ijt ∂η∆ijt

]′
W
−1

∞ Eα
[
(MX)ijt ωijtνijt

]
− Eα

[
(PΨ)ijt ∂η`ijt

]
,

and r is a convergence rate. The last term in the numerator of B3,∞ and V
δ

∞ are dropped

if all regressors are assumed to be strictly exogenous. The expression V
δ

∞ can be further

modified by assuming that {λit}IT , {ψjt}JT and {µij}IJ are independent sequences, and λit,

ψjt and µij are independent for all it, jt, ij:

V̂δ = plimI,J,T→∞
r2

I2J2T 2
Eα

(
I∑
i=1

T∑
t=1

J∑
j=1

J∑
r=1

∆̄ijt∆̄
′
irt +

J∑
j=1

T∑
t=1

I∑
i 6=p

∆̄ijt∆̄
′
pjt

+
I∑
i=1

J∑
j=1

T∑
s6=t

∆̄ijt∆̄
′
ijs +

I∑
i=1

J∑
j=1

T∑
t=1

ΓijtΓ
′
ijt + 2

I∑
i=1

J∑
j=1

T∑
s>t

∆̄ijtΓ
′
ijs

)
,
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B.4 Bias-corrected Ordinary Least Squares

Consider the three-way fixed effects linear probability model

yijt = λit + ψjt + µij + x′ijtβ + εijt ,

which can also be rewritten in matrix notation:

y = Dα+ Xβ + ε . (A15)

We first deal with the computational burden. Applying the three-way fixed effects residual

projection M = IIJT −D(D′D)−1D′ to (A15), leads to the following concentrated regression:

My = MXβ + ε . (A16)

The demeaning can be efficiently carried out by using the method of alternating projections

(see Gaure, 2013).

Hahn and Moon (2006) have derived the bias of dynamic linear models with individual

and time fixed effects. They show that there is only a bias of order 1/T stemming from the

inclusion of individual effects in combination with predetermined regressors. Transferring

their result to our problem with the three-way error component suggests that the inclusion

of pair fixed effects in combination with predetermined regressors leads to the same order

of the bias. Thus, the linear probability model needs only to be bias-corrected if not all

regressors are strictly exogenous. This is, for example, the case in a dynamic model, where

we include yt−1 to our set of regressors.

An estimator of the bias is given by

B̂ =

(
1

IJT

I∑
i=1

J∑
j=1

T∑
t=1

(MX)ijt(MX)′ijt

)−1(
−

I∑
i=1

J∑
j=1

L∑
l=1

1

T − l

T∑
t=l+1

Xijtε̂ijt−l

)
,

where ε̂ is the residual of (A16) and L is a bandwidth parameter.29 This yields the bias-

corrected estimator

β̂ − B̂

IJT
, (A17)

where β̂ = ((MX)′(MX))−1 (MX)′My.

29The residuals of equation (A15) and equation (A16) are identical (see Gaure, 2013).
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C Monte Carlo Results

C.1 Three-way Fixed Effects: Dynamic

This subsection provides the detailed results corresponding to the graphical representation

and verbal discussion in Section 4 of the main text.
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Table A4: Dynamic: Three-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 29 3 29 0.83 0.00 4 2 4 1.01 0.30
ABC (1) -0 2 2 1.02 0.95 -1 2 2 1.07 0.93
ABC (2) -1 2 2 1.01 0.94 -1 2 2 1.06 0.92
SPJ -14 3 14 0.63 0.00 4 2 5 0.85 0.31
LPM (1) 0 2 2 0.93 0.93
LPM (2) -0 2 2 0.92 0.92

N = 50; T = 20

MLE 16 1 16 0.90 0.00 3 1 3 0.96 0.33
ABC (1) -0 1 1 1.02 0.95 -0 1 1 0.98 0.95
ABC (2) -0 1 1 1.02 0.94 -0 1 1 0.98 0.95
SPJ -5 1 5 0.84 0.03 1 1 1 0.87 0.88
LPM (1) -0 1 1 0.91 0.92
LPM (2) -0 1 1 0.90 0.92

N = 50; T = 30

MLE 12 1 12 0.92 0.00 2 1 2 1.04 0.44
ABC (1) -0 1 1 1.01 0.95 -0 1 1 1.05 0.96
ABC (2) -0 1 1 1.01 0.94 -0 1 1 1.05 0.96
SPJ -3 1 3 0.93 0.16 0 1 1 0.98 0.95
LPM (1) -0 1 1 0.94 0.94
LPM (2) -0 1 1 0.94 0.91

N = 50; T = 40

MLE 10 1 10 0.92 0.00 1 1 2 1.01 0.54
ABC (1) -0 1 1 1.00 0.94 -0 1 1 1.02 0.95
ABC (2) -0 1 1 1.00 0.94 -0 1 1 1.01 0.94
SPJ -2 1 2 0.93 0.26 -0 1 1 0.94 0.92
LPM (1) -0 1 1 0.90 0.89
LPM (2) -0 1 1 0.89 0.87

N = 50; T = 50

MLE 9 1 9 0.93 0.00 1 1 1 1.01 0.63
ABC (1) -0 1 1 1.01 0.94 -0 1 1 1.01 0.95
ABC (2) -0 1 1 1.00 0.93 -0 1 1 1.01 0.95
SPJ -2 1 2 0.93 0.32 -0 1 1 0.97 0.94
LPM (1) -0 1 1 0.87 0.88
LPM (2) -0 1 1 0.87 0.85

Table A5: Dynamic: Three-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 25 1 25 0.84 0.00 4 1 4 0.99 0.02
ABC (1) 0 1 1 0.99 0.92 -0 1 1 1.02 0.92
ABC (2) 0 1 1 0.98 0.94 -1 1 1 1.01 0.90
SPJ -8 1 9 0.66 0.00 6 1 6 0.82 0.00
LPM (1) 0 1 1 0.86 0.90
LPM (2) -0 1 1 0.85 0.90

N = 100; T = 20

MLE 13 1 13 0.97 0.00 2 1 2 0.99 0.01
ABC (1) 0 1 1 1.06 0.95 0 1 1 1.01 0.96
ABC (2) 0 1 1 1.06 0.96 -0 1 1 1.01 0.96
SPJ -3 1 3 0.91 0.01 1 1 1 0.92 0.51
LPM (1) -0 1 1 0.89 0.92
LPM (2) -0 1 1 0.89 0.89

N = 100; T = 30

MLE 9 1 9 0.94 0.00 2 0 2 0.96 0.06
ABC (1) 0 0 0 1.01 0.95 0 0 0 0.97 0.93
ABC (2) -0 0 0 1.01 0.94 -0 0 0 0.97 0.94
SPJ -1 1 2 0.93 0.14 0 0 1 0.93 0.86
LPM (1) -0 0 1 0.84 0.88
LPM (2) -0 0 1 0.84 0.79

N = 100; T = 40

MLE 7 0 7 0.99 0.00 1 0 1 0.97 0.10
ABC (1) 0 0 0 1.04 0.95 0 0 0 0.98 0.94
ABC (2) -0 0 0 1.04 0.96 -0 0 0 0.98 0.95
SPJ -1 0 1 0.94 0.34 0 0 0 0.93 0.92
LPM (1) -0 0 0 0.81 0.82
LPM (2) -0 0 1 0.81 0.74

N = 100; T = 50

MLE 6 0 6 0.94 0.00 1 0 1 0.95 0.17
ABC (1) 0 0 0 0.98 0.94 0 0 0 0.95 0.93
ABC (2) -0 0 0 0.98 0.95 -0 0 0 0.95 0.94
SPJ -1 0 1 0.94 0.49 0 0 0 0.93 0.94
LPM (1) -0 0 0 0.78 0.76
LPM (2) -0 0 1 0.78 0.68

Table A6: Dynamic: Three-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 23 1 23 0.85 0.00 3 1 3 1.02 0.00
ABC (1) 1 1 1 1.00 0.83 -0 1 1 1.04 0.92
ABC (2) 0 1 1 0.99 0.89 -0 1 1 1.03 0.89
SPJ -7 1 7 0.71 0.00 6 1 6 0.88 0.00
LPM (1) 0 1 1 0.81 0.88
LPM (2) -0 1 1 0.81 0.88

N = 150; T = 20

MLE 11 0 11 0.99 0.00 2 0 2 0.96 0.00
ABC (1) 0 0 0 1.07 0.90 0 0 0 0.96 0.93
ABC (2) 0 0 0 1.07 0.94 -0 0 0 0.96 0.94
SPJ -2 0 2 0.92 0.00 1 0 1 0.87 0.16
LPM (1) -0 0 0 0.82 0.88
LPM (2) -0 0 0 0.82 0.82

N = 150; T = 30

MLE 8 0 8 0.95 0.00 2 0 2 0.95 0.00
ABC (1) 0 0 0 1.01 0.92 0 0 0 0.96 0.94
ABC (2) 0 0 0 1.00 0.95 -0 0 0 0.95 0.94
SPJ -1 0 1 0.92 0.06 0 0 1 0.91 0.70
LPM (1) -0 0 0 0.79 0.81
LPM (2) -0 0 0 0.79 0.66

N = 150; T = 40

MLE 6 0 6 0.98 0.00 1 0 1 0.98 0.01
ABC (1) 0 0 0 1.02 0.94 0 0 0 0.98 0.94
ABC (2) 0 0 0 1.02 0.96 -0 0 0 0.98 0.94
SPJ -1 0 1 0.96 0.22 0 0 0 0.95 0.87
LPM (1) -0 0 0 0.78 0.70
LPM (2) -0 0 0 0.78 0.55

N = 150; T = 50

MLE 5 0 5 0.97 0.00 1 0 1 0.93 0.03
ABC (1) 0 0 0 1.01 0.93 0 0 0 0.93 0.93
ABC (2) -0 0 0 1.00 0.95 -0 0 0 0.93 0.93
SPJ -1 0 1 0.96 0.40 0 0 0 0.90 0.90
LPM (1) -0 0 0 0.73 0.62
LPM (2) -0 0 0 0.73 0.46
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Table A7: Dynamic: Three-way FEs – yt−1, XXX
N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE -62 6 62 0.94 0.00 -70 4 70 1.00 0.00
ABC (1) -6 4 7 1.12 0.83 -7 5 8 1.09 0.76
ABC (2) -7 5 9 1.03 0.70 -8 5 10 1.00 0.62
SPJ 24 7 25 0.75 0.01 -11 6 12 0.91 0.46
LPM (1) 2 5 5 1.00 0.92
LPM (2) 3 5 6 0.92 0.86

N = 50; T = 20

MLE -27 4 27 0.94 0.00 -37 3 37 0.95 0.00
ABC (1) -3 3 4 1.05 0.86 -3 3 5 1.00 0.83
ABC (2) -1 3 3 1.00 0.93 -1 4 4 0.95 0.92
SPJ 5 4 6 0.88 0.71 -2 4 4 0.87 0.86
LPM (1) 8 3 9 0.96 0.28
LPM (2) 11 4 12 0.92 0.09

N = 50; T = 30

MLE -16 3 16 0.99 0.00 -25 3 25 1.00 0.00
ABC (1) -2 2 3 1.08 0.88 -2 3 3 1.04 0.87
ABC (2) -0 3 3 1.05 0.95 -0 3 3 1.01 0.94
SPJ 2 3 3 0.97 0.89 -1 3 3 0.94 0.93
LPM (1) 10 3 11 0.99 0.02
LPM (2) 13 3 13 0.96 0.00

N = 50; T = 40

MLE -10 2 11 0.96 0.01 -18 2 19 0.96 0.00
ABC (1) -2 2 3 1.04 0.90 -2 2 3 1.00 0.88
ABC (2) -0 2 2 1.02 0.95 0 2 2 0.97 0.94
SPJ 1 2 3 0.96 0.92 -0 3 3 0.92 0.93
LPM (1) 12 2 12 0.95 0.00
LPM (2) 13 2 14 0.93 0.00

N = 50; T = 50

MLE -7 2 8 0.99 0.05 -15 2 15 1.00 0.00
ABC (1) -2 2 2 1.06 0.90 -1 2 3 1.03 0.90
ABC (2) -0 2 2 1.04 0.96 0 2 2 1.01 0.95
SPJ 0 2 2 0.98 0.94 -0 2 2 0.95 0.94
LPM (1) 12 2 12 0.95 0.00
LPM (2) 14 2 14 0.93 0.00

Table A8: Dynamic: Three-way FEs – yt−1, XXX
N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE -63 3 63 0.94 0.00 -70 2 70 1.00 0.00
ABC (1) -6 2 7 1.09 0.23 -8 2 8 1.07 0.11
ABC (2) -8 2 8 0.99 0.09 -9 3 10 0.97 0.05
SPJ 21 3 21 0.74 0.00 -11 3 12 0.90 0.02
LPM (1) 2 2 3 0.96 0.83
LPM (2) 4 3 5 0.88 0.65

N = 100; T = 20

MLE -29 2 29 0.97 0.00 -37 2 37 0.97 0.00
ABC (1) -3 2 4 1.05 0.43 -4 2 4 1.01 0.38
ABC (2) -1 2 2 1.01 0.88 -2 2 2 0.97 0.84
SPJ 4 2 5 0.91 0.27 -2 2 3 0.90 0.80
LPM (1) 8 2 9 0.95 0.00
LPM (2) 11 2 11 0.91 0.00

N = 100; T = 30

MLE -18 1 18 0.97 0.00 -25 1 25 0.97 0.00
ABC (1) -3 1 3 1.03 0.53 -3 1 3 0.99 0.51
ABC (2) -1 1 1 1.00 0.93 -1 1 2 0.97 0.92
SPJ 2 1 2 0.95 0.70 -0 1 2 0.91 0.92
LPM (1) 10 1 10 0.93 0.00
LPM (2) 13 1 13 0.91 0.00

N = 100; T = 40

MLE -13 1 13 0.99 0.00 -19 1 19 0.98 0.00
ABC (1) -2 1 2 1.04 0.57 -2 1 2 1.01 0.56
ABC (2) -0 1 1 1.02 0.95 -0 1 1 0.99 0.94
SPJ 1 1 1 0.96 0.86 -0 1 1 0.94 0.93
LPM (1) 11 1 11 0.95 0.00
LPM (2) 13 1 13 0.93 0.00

N = 100; T = 50

MLE -10 1 10 0.97 0.00 -15 1 15 0.97 0.00
ABC (1) -2 1 2 1.01 0.64 -2 1 2 0.99 0.63
ABC (2) -0 1 1 1.00 0.94 -0 1 1 0.97 0.94
SPJ 1 1 1 0.95 0.89 -0 1 1 0.93 0.93
LPM (1) 12 1 12 0.92 0.00
LPM (2) 14 1 14 0.91 0.00

Table A9: Dynamic: Three-way FEs – yt−1, XXX
N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE -64 2 64 0.96 0.00 -71 1 71 1.02 0.00
ABC (1) -7 1 7 1.11 0.00 -8 2 9 1.08 0.00
ABC (2) -8 2 9 1.02 0.00 -10 2 10 0.99 0.00
SPJ 20 2 20 0.77 0.00 -11 2 12 0.91 0.00
LPM (1) 2 2 3 1.01 0.73
LPM (2) 3 2 4 0.93 0.43

N = 150; T = 20

MLE -30 1 30 0.94 0.00 -37 1 37 0.94 0.00
ABC (1) -4 1 4 1.01 0.07 -4 1 4 0.98 0.04
ABC (2) -2 1 2 0.98 0.66 -2 1 2 0.94 0.59
SPJ 4 1 4 0.91 0.06 -2 1 2 0.89 0.60
LPM (1) 8 1 8 0.93 0.00
LPM (2) 11 1 11 0.89 0.00

N = 150; T = 30

MLE -19 1 19 1.00 0.00 -25 1 25 0.99 0.00
ABC (1) -3 1 3 1.06 0.12 -3 1 3 1.02 0.11
ABC (2) -1 1 1 1.02 0.89 -1 1 1 0.99 0.86
SPJ 2 1 2 0.96 0.48 -1 1 1 0.93 0.90
LPM (1) 10 1 10 0.97 0.00
LPM (2) 13 1 13 0.94 0.00

N = 150; T = 40

MLE -14 1 14 1.01 0.00 -19 1 19 0.99 0.00
ABC (1) -2 1 2 1.06 0.23 -2 1 2 1.01 0.23
ABC (2) -0 1 1 1.03 0.93 -0 1 1 0.99 0.92
SPJ 1 1 1 0.96 0.71 -0 1 1 0.93 0.92
LPM (1) 11 1 12 0.95 0.00
LPM (2) 13 1 13 0.93 0.00

N = 150; T = 50

MLE -11 1 11 0.98 0.00 -15 1 15 0.98 0.00
ABC (1) -2 1 2 1.01 0.30 -2 1 2 1.00 0.31
ABC (2) -0 1 1 1.00 0.94 -0 1 1 0.99 0.94
SPJ 1 1 1 0.96 0.84 -0 1 1 0.95 0.94
LPM (1) 12 1 12 0.93 0.00
LPM (2) 14 1 14 0.92 0.00
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C.2 Two-way fixed effects

The simulations in this section correspond to a theory-consistent estimation of the extensive

margin outlined in Section 2 of the main text, taking into account unobserved time-varying

exporter- and importer-specific terms as well as dynamics, but not allowing for bilateral

unobserved heterogeneity. Specifically, we generate data according to

yijt = 1[βyyijt−1 + βxxijt + λit + ψjt ≥ εijt] ,

yij0 = 1[βxxij0 + λi0 + ψj0 ≥ εij0] ,

where i = 1, . . . , N , j = 1, . . . , N , t = 1, . . . , T , λit ∼ iid. N (0, 1/16), ψjt ∼ iid. N (0, 1/16),

and εijt ∼ iid. N (0, 1).30 Further, xijt = 0.5xijt−1 +λit +ψjt + νijt, where νijt ∼ iid. N (0, 0.5),

xij0 ∼ iid. N (0, 1). To get an impression of how the different statistics evolve with chang-

ing panel dimensions, we consider all possible combinations of N ∈ {50, 100, 150} and

T ∈ {10, 20, 30, 40, 50}. For each of these combinations we generate 1, 000 samples.

Tables A10 – A15 report the extensive simulation results for the exogenous and prede-

termined regressors, respectively. The left panels contain the results of the structural

parameters and the right panels the results of the APEs. In the following, we focus on the

biases and coverage probabilities for N ∈ {50, 150}, which we visualize in Figures A3 and

A4 for better comprehensibility.

First of all, we start analyzing the properties of the different estimators for the structural

parameters. MLE exhibits persistent biases that do not fade with increasing T but with in-

creasing N . This result is as expected, since MLE is fixed T consistent as shown in Appendix

B.3. Further, its CPs are too low and decreasing in T . The bias-corrected estimators clearly

perform better than MLE. First, they reduce the bias considerably. ABC shows basically

no bias for any considered sample size. SPJ performs slightly worse. Second, the bias

corrections also dramatically improve the coverage probabilities. Whereas the CPs of ABC

are close to the nominal value in all cases, the CPs of SPJ are somewhat too low for the

exogenous regressor in the case of N = 50.

Next, we turn to the estimators of the APEs, where we now also consider LPM. It turns out

that MLE, as well as the two bias-corrected estimators, are essentially unbiased. This is

particularly noteworthy for MLE, since it exhibits a non-negligible bias for the structural

30Since {λit}IT and {ψjt}JT are independent sequences, and λit and ψjt are independent for all it, jt, we
follow Fernández-Val and Weidner (2016) and incorporate this information in the covariance estimator for the
APEs. The explicit expression is provided in the Appendix B.3.
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Figure A3: Dynamic: Two-way Fixed Effects – Predetermined Regressor
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Figure A4: Dynamic: Two-way Fixed Effects – Exogenous Regressor
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parameters. Remarkably, LPM displays persistent biases that — differently to the nonlinear

estimators — do not vanish with larger N . The bias is very small for the exogenous regressor

but for the predetermined regressor it ranges between 5 and 6 percent.31 These persistent

biases also explain that LPM delivers too small CPs that decrease in T . Contrary, the CPs of

the three nonlinear estimators are close to the nominal value in most cases.

All in all, our two-way fixed effects simulation results demonstrate that the bias-corrected

estimators work extremely well in this context — for both structural parameters and APEs

and both bias and coverage probabilities. Between the two, the analytical correction slightly

outperforms the split-panel jackknife correction. If the interest lies only in APEs, the MLE

estimator works well, too, but for the structural parameters it shows bias and essentially

useless coverage probabilities. LPM performs clearly worse than the probit estimators and

should — given the availability of the nonlinear alternatives — only be used with great

caution.

31We found that the predicted probabilities of LPM exceed the boundaries of the unit interval consider-
ably. This, in turn, affects the APEs for binary regressors, since they are based on differences of predicted
probabilities.
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Table A10: Dynamic: Two-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 2 5 0.93 0.13 0 1 1 0.97 0.94
ABC -0 2 2 0.97 0.94 -0 1 1 0.98 0.94
SPJ -1 2 2 0.93 0.89 -0 1 1 0.95 0.93
LPM -0 1 1 0.91 0.92

N = 50; T = 20

MLE 5 1 5 0.96 0.01 0 1 1 0.96 0.94
ABC -0 1 1 1.00 0.95 -0 1 1 0.97 0.94
SPJ -1 1 1 0.96 0.88 -0 1 1 0.94 0.93
LPM -0 1 1 0.90 0.92

N = 50; T = 30

MLE 5 1 5 0.96 0.00 0 1 1 0.93 0.94
ABC -0 1 1 1.00 0.94 -0 1 1 0.94 0.94
SPJ -1 1 1 0.96 0.87 -0 1 1 0.92 0.94
LPM -0 1 1 0.87 0.91

N = 50; T = 40

MLE 5 1 5 0.95 0.00 0 1 1 0.92 0.93
ABC -0 1 1 0.99 0.94 -0 1 1 0.93 0.93
SPJ -1 1 1 0.96 0.82 -0 1 1 0.90 0.91
LPM -0 1 1 0.85 0.89

N = 50; T = 50

MLE 5 1 5 0.94 0.00 0 1 1 0.92 0.93
ABC -0 1 1 0.98 0.95 -0 1 1 0.93 0.94
SPJ -1 1 1 0.95 0.80 -0 1 1 0.90 0.92
LPM -0 1 1 0.85 0.89

Table A11: Dynamic: Two-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 1 2 0.99 0.13 0 1 1 0.94 0.94
ABC -0 1 1 1.01 0.95 -0 1 1 0.94 0.94
SPJ -0 1 1 0.99 0.94 -0 1 1 0.92 0.93
LPM -0 1 1 0.78 0.86

N = 100; T = 20

MLE 2 1 2 1.00 0.01 0 1 1 0.92 0.93
ABC -0 1 1 1.02 0.95 -0 1 1 0.92 0.93
SPJ -0 1 1 1.00 0.94 -0 1 1 0.92 0.92
LPM -0 1 1 0.77 0.83

N = 100; T = 30

MLE 2 0 2 0.99 0.00 0 0 0 0.90 0.92
ABC -0 0 0 1.01 0.96 -0 0 0 0.90 0.92
SPJ -0 0 0 0.99 0.94 -0 0 0 0.90 0.93
LPM -0 0 1 0.74 0.83

N = 100; T = 40

MLE 2 0 2 0.97 0.00 0 0 0 0.90 0.93
ABC -0 0 0 0.99 0.94 -0 0 0 0.90 0.92
SPJ -0 0 0 0.99 0.93 -0 0 0 0.90 0.92
LPM -0 0 0 0.74 0.82

N = 100; T = 50

MLE 2 0 2 0.95 0.00 0 0 0 0.89 0.92
ABC -0 0 0 0.97 0.94 -0 0 0 0.89 0.92
SPJ -0 0 0 0.95 0.92 -0 0 0 0.88 0.92
LPM -0 0 0 0.74 0.82

Table A12: Dynamic: Two-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 2 0 2 1.00 0.13 0 1 1 0.92 0.93
ABC -0 0 0 1.02 0.95 -0 1 1 0.92 0.93
SPJ -0 0 0 1.01 0.95 -0 1 1 0.92 0.92
LPM -0 1 1 0.68 0.80

N = 150; T = 20

MLE 2 0 2 0.99 0.00 0 0 0 0.93 0.92
ABC -0 0 0 1.01 0.96 -0 0 0 0.93 0.92
SPJ -0 0 0 1.00 0.95 -0 0 0 0.92 0.92
LPM -0 0 0 0.70 0.80

N = 150; T = 30

MLE 2 0 2 1.03 0.00 0 0 0 0.88 0.92
ABC -0 0 0 1.05 0.96 -0 0 0 0.88 0.92
SPJ -0 0 0 1.03 0.95 -0 0 0 0.88 0.92
LPM -0 0 0 0.66 0.76

N = 150; T = 40

MLE 2 0 2 0.97 0.00 0 0 0 0.93 0.93
ABC 0 0 0 0.98 0.94 0 0 0 0.93 0.93
SPJ -0 0 0 0.98 0.94 -0 0 0 0.93 0.93
LPM -0 0 0 0.70 0.75

N = 150; T = 50

MLE 2 0 2 0.97 0.00 0 0 0 0.92 0.93
ABC -0 0 0 0.99 0.94 -0 0 0 0.92 0.93
SPJ -0 0 0 0.98 0.93 -0 0 0 0.92 0.92
LPM -0 0 0 0.69 0.73
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Table A13: Dynamic: Two-way FEs – yt−1, XXX
N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 5 4 7 1.00 0.78 0 4 4 0.99 0.95
ABC -0 4 4 1.05 0.96 -0 4 4 1.01 0.95
SPJ -1 4 4 1.00 0.95 -0 5 5 0.97 0.94
LPM 6 4 7 0.97 0.74

N = 50; T = 20

MLE 5 3 6 1.00 0.62 0 3 3 0.99 0.94
ABC -0 3 3 1.05 0.95 0 3 3 1.01 0.95
SPJ -1 3 3 1.02 0.94 -0 3 3 0.98 0.95
LPM 6 3 6 0.98 0.54

N = 50; T = 30

MLE 5 3 6 0.96 0.50 -0 3 3 0.97 0.95
ABC -0 3 3 1.00 0.95 -0 3 3 0.98 0.95
SPJ -1 3 3 0.96 0.93 -0 3 3 0.95 0.94
LPM 5 3 6 0.94 0.40

N = 50; T = 40

MLE 5 2 6 0.98 0.38 0 2 2 0.99 0.95
ABC -0 2 2 1.02 0.95 -0 2 2 1.00 0.95
SPJ -1 2 2 1.00 0.94 -0 2 2 0.98 0.95
LPM 6 2 6 0.96 0.28

N = 50; T = 50

MLE 5 2 5 0.94 0.32 0 2 2 0.95 0.94
ABC -0 2 2 0.98 0.94 -0 2 2 0.97 0.94
SPJ -1 2 2 0.96 0.94 -0 2 2 0.94 0.94
LPM 6 2 6 0.94 0.22

Table A14: Dynamic: Two-way FEs – yt−1, XXX
N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 2 2 3 0.98 0.81 -0 2 2 0.98 0.94
ABC -0 2 2 1.00 0.95 -0 2 2 0.99 0.95
SPJ -0 2 2 1.00 0.94 -0 2 2 0.98 0.95
LPM 5 2 6 0.95 0.29

N = 100; T = 20

MLE 2 2 3 0.99 0.65 -0 2 2 0.99 0.95
ABC -0 2 2 1.01 0.95 -0 2 2 1.00 0.95
SPJ -0 2 2 0.99 0.95 -0 2 2 0.99 0.94
LPM 5 2 6 0.96 0.06

N = 100; T = 30

MLE 2 1 3 0.96 0.52 -0 1 1 0.96 0.94
ABC -0 1 1 0.98 0.95 -0 1 1 0.96 0.94
SPJ -0 1 1 0.97 0.94 -0 1 1 0.95 0.93
LPM 6 1 6 0.92 0.02

N = 100; T = 40

MLE 2 1 3 1.02 0.40 0 1 1 1.00 0.95
ABC -0 1 1 1.04 0.96 -0 1 1 1.01 0.96
SPJ -0 1 1 1.02 0.95 -0 1 1 1.00 0.95
LPM 6 1 6 0.97 0.00

N = 100; T = 50

MLE 2 1 3 0.97 0.31 0 1 1 0.96 0.93
ABC -0 1 1 0.99 0.94 -0 1 1 0.96 0.94
SPJ -0 1 1 0.97 0.93 -0 1 1 0.95 0.93
LPM 6 1 6 0.93 0.00

Table A15: Dynamic: Two-way FEs – yt−1, XXX
N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 2 1 2 0.99 0.80 -0 2 2 0.98 0.95
ABC -0 1 1 1.00 0.95 -0 2 2 0.98 0.95
SPJ -0 1 1 0.98 0.95 -0 2 2 0.97 0.94
LPM 5 2 6 0.93 0.04

N = 150; T = 20

MLE 2 1 2 1.02 0.64 0 1 1 1.00 0.95
ABC -0 1 1 1.03 0.96 0 1 1 1.00 0.95
SPJ -0 1 1 1.02 0.95 0 1 1 0.99 0.95
LPM 6 1 6 0.96 0.00

N = 150; T = 30

MLE 2 1 2 0.99 0.52 0 1 1 0.98 0.95
ABC 0 1 1 1.00 0.95 0 1 1 0.99 0.95
SPJ -0 1 1 0.99 0.95 0 1 1 0.97 0.95
LPM 6 1 6 0.93 0.00

N = 150; T = 40

MLE 2 1 2 1.00 0.41 -0 1 1 0.99 0.95
ABC -0 1 1 1.01 0.95 -0 1 1 0.99 0.96
SPJ -0 1 1 1.00 0.95 -0 1 1 0.99 0.96
LPM 6 1 6 0.93 0.00

N = 150; T = 50

MLE 2 1 2 0.96 0.29 0 1 1 0.95 0.94
ABC 0 1 1 0.97 0.94 0 1 1 0.96 0.94
SPJ -0 1 1 0.96 0.94 0 1 1 0.95 0.94
LPM 6 1 6 0.91 0.00
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C.3 Static: Three-way Fixed Effects

yijt = 1[βxijt + λit + ψjt + µij ≥ εijt] ,

where λit ∼ iid. N (0, 1/24), ψjt ∼ iid. N (0, 1/24), µij ∼ iid. N (0, 1/24), and εijt ∼ iid. N (0, 1).

Further, xijt = 0.5xijt−1 +λit +ψjt +µij + νijt, where νijt ∼ iid. N (0, 0.5), xij0 ∼ iid. N (0, 1).

Note that, unlike in the dynamic three-way fixed effects model, the OLS estimator of the

linear probability model (LPM) does not require a bias correction for the specifications

considered in this section.

We now review the key results of the simulation experiments (see Tables A16, A17, A18).

We find a considerable distortion in the MLE estimates of the structural parameters, which

decreases with rising T , but is not negligibly small even at T = 50. ABC and SPJ both reduce

this bias considerably, but ABC works better in samples with smaller T . While the CPs of

ABC quickly converge to the nominal level, the CPs of SPJ are still far away from 95 percent

even at T = 50. If we look at the APEs, we see that all estimators have either a very small

bias of 1 percent or none at all. With increasing T , their CPs are also getting closer to 95

percent.
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Table A16: Static: Three-way FEs – x, N = 50

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 50; T = 10

MLE 21 2 22 0.88 0.00 1 1 2 1.03 0.91
ABC -1 2 2 1.08 0.86 -1 1 2 1.11 0.86
SPJ -12 2 12 0.73 0.00 -0 2 2 0.90 0.91
LPM 0 1 1 1.07 0.96

N = 50; T = 20

MLE 12 1 12 0.89 0.00 0 1 1 0.96 0.92
ABC -1 1 1 0.98 0.91 -0 1 1 0.99 0.92
SPJ -4 1 4 0.86 0.08 -1 1 1 0.88 0.85
LPM -0 1 1 0.97 0.94

N = 50; T = 30

MLE 10 1 10 0.93 0.00 0 1 1 1.04 0.95
ABC -0 1 1 1.01 0.92 -0 1 1 1.06 0.95
SPJ -2 1 3 0.92 0.27 -0 1 1 0.97 0.90
LPM -0 1 1 1.00 0.95

N = 50; T = 40

MLE 8 1 8 0.93 0.00 0 1 1 0.98 0.93
ABC -0 1 1 0.99 0.94 -0 1 1 1.00 0.94
SPJ -2 1 2 0.94 0.40 -0 1 1 0.95 0.90
LPM 0 1 1 0.95 0.94

N = 50; T = 50

MLE 8 1 8 0.91 0.00 0 1 1 1.02 0.95
ABC -0 1 1 0.97 0.93 -0 1 1 1.04 0.95
SPJ -1 1 2 0.90 0.48 -0 1 1 0.95 0.91
LPM 0 1 1 0.97 0.94

Table A17: Static: Three-way FEs – x, N = 100

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 100; T = 10

MLE 18 1 18 0.89 0.00 1 1 1 1.02 0.89
ABC -1 1 1 1.04 0.84 -1 1 1 1.06 0.72
SPJ -8 1 8 0.77 0.00 0 1 1 0.88 0.88
LPM 0 1 1 0.99 0.95

N = 100; T = 20

MLE 9 1 9 0.94 0.00 0 0 1 1.02 0.93
ABC -0 1 1 1.02 0.92 -0 0 1 1.03 0.92
SPJ -2 1 2 0.92 0.01 -0 1 1 0.96 0.92
LPM -0 0 0 0.97 0.95

N = 100; T = 30

MLE 7 0 7 0.94 0.00 0 0 0 1.03 0.94
ABC -0 0 0 1.00 0.94 -0 0 0 1.04 0.94
SPJ -1 0 1 0.94 0.24 -0 0 0 0.97 0.92
LPM 0 0 0 0.98 0.94

N = 100; T = 40

MLE 6 0 6 0.95 0.00 0 0 0 1.02 0.94
ABC -0 0 0 0.99 0.93 -0 0 0 1.03 0.95
SPJ -1 0 1 0.94 0.46 -0 0 0 0.98 0.93
LPM 0 0 0 0.95 0.93

N = 100; T = 50

MLE 5 0 5 0.92 0.00 0 0 0 1.00 0.94
ABC -0 0 0 0.96 0.92 -0 0 0 1.00 0.94
SPJ -1 0 1 0.92 0.58 -0 0 0 0.98 0.94
LPM 0 0 0 0.91 0.92

Table A18: Static: Three-way FEs – x, N = 150

Coefficients APE

Bias SD RMSE SE/SD CP .95 Bias SD RMSE SE/SD CP .95

N = 150; T = 10

MLE 16 1 16 0.90 0.00 0 0 1 1.05 0.88
ABC -1 1 1 1.05 0.76 -1 0 1 1.08 0.50
SPJ -7 1 7 0.78 0.00 1 1 1 0.92 0.75
LPM -0 0 0 0.95 0.94

N = 150; T = 20

MLE 8 0 8 0.94 0.00 0 0 0 1.00 0.91
ABC -0 0 0 1.00 0.90 -0 0 0 1.01 0.90
SPJ -2 0 2 0.90 0.00 -0 0 0 0.95 0.92
LPM 0 0 0 0.93 0.92

N = 150; T = 30

MLE 6 0 6 0.98 0.00 0 0 0 1.03 0.94
ABC -0 0 0 1.03 0.93 -0 0 0 1.04 0.94
SPJ -1 0 1 0.96 0.09 -0 0 0 0.97 0.91
LPM 0 0 0 0.93 0.94

N = 150; T = 40

MLE 5 0 5 0.97 0.00 0 0 0 1.06 0.94
ABC -0 0 0 1.01 0.94 -0 0 0 1.07 0.96
SPJ -1 0 1 0.95 0.36 -0 0 0 0.99 0.93
LPM 0 0 0 0.94 0.93

N = 150; T = 50

MLE 4 0 4 0.99 0.00 0 0 0 0.99 0.95
ABC -0 0 0 1.02 0.94 -0 0 0 1.00 0.94
SPJ -0 0 0 0.98 0.51 -0 0 0 0.96 0.92
LPM -0 0 0 0.89 0.92
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Table A19: Probit Estimation: Coefficients

Dependent variable: yijt

(1) (2) (3) (4) (5)

lagged DV - - 1.664∗∗∗ - 1.142∗∗∗

(-) (-) (0.004) (-) (0.005)
- - 1.719∗∗∗ - 1.057∗∗∗

(-) (-) (0.005) (-) (0.005)
log(Distance) - -0.800∗∗∗ -0.528∗∗∗ - -

(-) (0.003) (0.004) (-) (-)
-0.656∗∗∗ -0.821∗∗∗ -0.546∗∗∗ - -
(0.003) (0.003) (0.004) (-) (-)

Land border - 0.207∗∗∗ 0.118∗∗∗ - -
(-) (0.016) (0.018) (-) (-)

0.260∗∗∗ 0.214∗∗∗ 0.124∗∗∗ - -
(0.014) (0.016) (0.018) (-) (-)

Legal - 0.137∗∗∗ 0.089∗∗∗ - -
(-) (0.004) (0.005) (-) (-)

0.090∗∗∗ 0.141∗∗∗ 0.093∗∗∗ - -
(0.004) (0.004) (0.005) (-) (-)

Language - 0.426∗∗∗ 0.280∗∗∗ - -
(-) (0.006) (0.007) (-) (-)

0.380∗∗∗ 0.436∗∗∗ 0.289∗∗∗ - -
(0.005) (0.006) (0.007) (-) (-)

Colonial ties - 0.657∗∗∗ 0.487∗∗∗ - -
(-) (0.031) (0.036) (-) (-)

0.190∗∗∗ 0.702∗∗∗ 0.542∗∗∗ - -
(0.020) (0.032) (0.037) (-) (-)

Currency union - 0.631∗∗∗ 0.424∗∗∗ 0.303∗∗∗ 0.214∗∗∗

(-) (0.015) (0.017) (0.032) (0.034)
0.381∗∗∗ 0.649∗∗∗ 0.443∗∗∗ 0.335∗∗∗ 0.255∗∗∗

(0.012) (0.015) (0.017) (0.032) (0.034)
FTA - 0.543∗∗∗ 0.359∗∗∗ 0.074∗ 0.038

(-) (0.019) (0.021) (0.038) (0.041)
0.508∗∗∗ 0.552∗∗∗ 0.364∗∗∗ 0.072∗ 0.033
(0.017) (0.020) (0.022) (0.038) (0.040)

WTO - 0.152∗∗∗ 0.101∗∗∗ 0.052∗∗∗ 0.039∗∗

(-) (0.008) (0.009) (0.016) (0.017)
0.286∗∗∗ 0.154∗∗∗ 0.104∗∗∗ 0.058∗∗∗ 0.048∗∗∗

(0.005) (0.008) (0.009) (0.016) (0.017)

Fixed effects i, j, t it, jt it, jt it, jt, ij it, jt, ij
Sample size 1204671 1204671 1171794 1204671 1171794
Deviance 8.891×105 7.019×105 5.183×105 4.76×105 4.189×105

Notes: Column (1) uncorrected coefficients, columns (2) - (5) bias-corrected coefficients (bold
font) and uncorrected coefficients (standard font). Column (5) bias-corrected with L = 2.
Standard errors in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table A20: Logit Estimation with Different Bandwidths: Bias-Corrected Average Partial Effects

Dependent variable: yijt

L = 1 L = 2 L = 3 L = 4

direct long-run direct long-run direct long-run direct long-run

lagged DV 0.163∗∗∗ - 0.168∗∗∗ - 0.171∗∗∗ - 0.172∗∗∗ -
(0.047) (-) (0.049) (-) (0.049) (-) (0.049) (-)

Currency union 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗ 0.027∗∗∗ 0.041∗∗∗

(0.009) (0.014) (0.009) (0.014) (0.009) (0.014) (0.009) (0.014)
FTA 0.004 0.007 0.004 0.007 0.005 0.008 0.005 0.008

(0.006) (0.009) (0.006) (0.009) (0.006) (0.009) (0.006) (0.009)
WTO 0.005∗ 0.008∗∗ 0.005∗ 0.008∗∗ 0.006∗ 0.009∗∗ 0.006∗∗ 0.009∗∗

(0.003) (0.004) (0.003) (0.004) (0.003) (0.004) (0.003) (0.004)

Notes: All columns include Origin × Year, Destination × Year and Origin × Destination fixed effects. Standard errors
in parenthesis. ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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